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SOME REMARKS ON THE ARTIN-TATE FORMULA

FOR DIAGONAL HYPERSURFACES

NORIYUKI SUWA®

Abstract

In this note, we give some remarks on the Artin-Tate-Milne formula for diagonal hypersurfaces, which was

studied by [3]. Detailed account will appear elsewhere.

1. Prelinminaries

1.1. Let k be a field, X be a smooth projective variety over k. Let G be a finite subgroup of Aut;(X)
and X a Q-character of G. Put N = |G |. Define an idempotent element p, of Z[%] [G] by

_ 1 2 ~1
Py = & X(977) 9
“ N!IEG
1.2. Let R be a ring, in which /NVis invertible, and let # be a contravariant functor from a category
of varieties over k to the category of R-modules. For a Q-character of X of G, define

F(X)0) =Iml[p}: F(X)—> F(X)].

Hence we obtain a decomposition

Fx) =P Fx)0,
X

where the summation is taken over all the Q-irreducible characters of G.
We apply terminologies defined for varieities to the pair (X;p,).

Example 1.3. Let | be a prime number different from the characteristic of k. The l-adic étale
cohomology group H*(X, Q, (¢)) defines a contravariant functor from a category of varieties over k
to the category of Q-linear spaces; moreover, if I is prime to N, H*(X, Z/l'Z(i)), H*(X, Z)(i)) and
H*(X,Q/7Z,4)) define contravariant functors from a category of varieties over & to the category of
Z,-modules. Recall that dime, A’ (XE ,Qy) is called the j-th Betti number of Xand denoted by 5; (X).
Example 1.4. If N is invertible in k, the de Rham cohomology group H,,(X/k) defines a
contravariant functor from a category of varieties over k to the category of k-linear spaces.
Moreover the Hodge spectral sequence

EJ=HI(X,Q )= H ] (X/k)
is functorial. Recall that dim,H’(X;, Qg() is called the (i,5)-th Hodge number of X and denoted by

H(X).
For the examples 1.5 and 1.6, we assume that k is perfect of characteristic p>0 and that p does
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not divide /M.

Example 1.5. (cf.[5],Ch.II, [6],Ch.IV.) The crystalline cohomology group H*(XX/W), defines a
contravariant functor from a category of varieties over k to the category of K-linear spaces, and
H*(X/W,)and H*(X/W) define contravariant functors from a category of varieties over k to the
category of M modules. Here W denotes the ring of Witt vectors with components in k, and K
denotes the field of fractions of W. Moreover the slope spectral sequences

EP=HI(X.W, Qly) =H (X W,)
and
EJ=HI(X,WQ',) =H" (X/W)

are functorial.
Recall the definitions

74 (X) = dim Domino /7 (X, WQ'y )
and

hi (X)) = dim HY (X, WQY,, )/(tors + V) +dim 7 (X, WQ)/(tors + F)
+ T (X) — 27 1 X)) + T 2942 (X))

([6], Ch.1.2.16 and [3]).
Recall also the following terminologies:
(1) Xis of Hodge-Witt type in degree n if /(X WQZX ) is of finite type for all (z,j) with i+j=n;
(2) X'is ordinary if X'is of Hodge-Witt type in degree n and H’(X, BWQ'y )=0 for all (i,j) with i+
=n+1 ([6],Ch.IV.4.6 and 4.12).
We shall say that:
(3) Xis supersingular in degree n if the Frisocrystal H"(X/W), is purely of slope n/2.
If Xis an ordinary (resp. supersingular) abelian variety, Xis an ordinary (resp. supersingular) in
each degree n in the above sense.
Example 1.6. (cf.[6],Ch.IV.3,[4],Ch. I ) The logarithmic Hodge-Witt cohomology groups
H'(X,2/p"2(0) = H* (X, W,Q 10)
H(X,Z,(0) :Hng*(X, Z/p"Z(i)),

H'(X,Q,/Z,, () =limH* (X, Z/p"Z().

define contravariant functors from a category of varieties over k to the category of Z,-modules.
Moreover the perfect groups

(X, Z/p"Z0), U (X, Z/p"Z(i)),

(X,Z,6), U*(X,Z,(),
D'(X,Q,/Z, ), U'(X,Q,/Z,).

D'
D’

define contravariant functors from a category of varieties over k to the category of pro-algebraic
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groups. Recall the equality
dim Domino' H7(X,WQy) = dimU "/ (X,Z ,(i—1)).

Example 1.7. Let CH'(X) and CH"( X} ) denote the Chow group of rational equivalence classes of
algebraic cycles of codimension r on Xand Xj, respectively. Recall that there is defined a cycle
map CH'(X;) — H"(Xj, Z(r)) for each prime I. The Tate conjecture ([18]) asserts that, if & is
finitely generated over Q or F,, A"(X;,Q,(r))" is spanned by the image of the composite CH"(X)
- CH"(X3) > H" (Xz, Q).

Let N'(Xj) denote the group of numerical equivalence classes of algebraic cycles on Xi of
codimension r. Then N" (X3 ) is a free Z-module of finite rank and equipped with a nondegenerate
symmetric bilinear from induced by the intersection pairing. Let N"(X) denote the image of the
composite CH" (X) — CH" (X} ) > N" (X}).

Lemma 1.8. Let [ be a prime different from the characteristic of k. Let X be a Q-irreducible character of G.
Assume that dimo H?'( X5, @)m < deg x. Then the cycle map [CH"(X) ®ZQ]](X) - H%( X5, @1)(1’ is
surjective or [N (X) ®ZQ](X)=O,

Corollary 1.9. Under the assumption of 1.8,

(1) If kis of characteristic O and k™ (X, x)# B,,.(X, x), IN"(X)®,Q] X =0;

(2) If kis of characteristic p>0 and (X, X ) is not supersingular in the degree 2r, [N"(X)®;Q 10 =0.
2. Diagonal hypersurfaces

2.1. Let n and m be integers > 1. Let & be a field and Xbe a diagonal hypersurface of P/ defined
by

coly" +e "+t e, 100 =0,
(CoyClysCuyy) ER*.If qo=c=...=¢,,; =1, X is nothing but the Fermat variety of dimension » and

of degree m.

We assume that £ contains all the m-th roots of unity and that (m, p) = 1 if k is of characteristic
P > 0. Let u, denote the group of m-th roots of unity in k. The group G=(u,,)""?/(diagonal) acts
on X by

(CO; Cl!-"! C7l+1)(t0’ fl’“n fn,+l):( COtO’ Cl fl’“" Cn+1 tn,+l)'

The character group G of Gis identified with the set

n+l
la=(ay, aj,eeay,) s 0; EZ/mZ, Zai =0}
=0
Let (Z/mZ)* act on G by ta = (tagy,...,ta, ) € G for any a € G and ¢ €(Z/mz2)*. Let C,, be a
fixed primitive m-th root of unity in Q. For the (Z/mZ)*-orbit A of a = (ag,..., Gy )€ G, define a
Q-character X1 of G by X (9) = 1 ZTYQ((;" )/Q(a(g)_l). Here d=gcd(m,ay,..., a,,;). Note that X. is

n+l
moogeG

Q-irreducible.
Let X(n,m) denote the Fermat variery of dimension n and of degree m. Then

(tostysetng) = (Fcy to’n\l/atl 3o Cp ty)
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defines an E—isomorphism of X to X (n,m), which is compatible the actions of G on X and on
X (n,m). Hence we see that (X X.) is isomorphic to (X (n,m), X.) over k . It follows that the Betti
numbers, Hodge numbers and the Newton polygons, if ¥ is characteristic p > 0, of (X, X.1) do not
depend on (¢, ¢y, *, G0 1), but depend only on A.

2.2. Now assume that n=2r. Then we have a diagram

[V e, zi]® [ Nrx e, zi]

;

[V (X mm) @, 210 —— [N (X (nm)p) @, 2111] %

Proposition 2.2.1. Let k be a field and X a diagonal hypersuface of degree m of ]P:,"” . Under
the identi fication [N’( —)®- Z[ 1 ] [N’ m):)®- Z[L]](XA) we have
Z k VA m ’

(v xe, 2] <[V Xnmy e, 211

or
, (X4)
[V x)e Ll ™ -

Proof. It is enough to note that X is isomorphic to X (n,m) over an extension of k of degree dividing
a power of m.
Corollary 2.3. Let k be a field and X a diagonal hypersuface of degree m of P,?“l . If mis prime, then B,(X)
—rkN'(X) is divisivle by m— 1.
Proposition 2.4. Let k be a perfect field of characteristicp > 0 and X a diagonal hypersuface of degree m of
P:“l . Assume that:
(I)n=2;
(2) n>4, and m is not divisible by any prime less than n+2;
or (3)n > 4, and m is a prime or 4.

Ifp = 0orp = 1 mod m, det N'(X) divides a power of m.
Proof. The case of Fermat varieties is verified as in [15]. The proposition follows from, together with
Proposition 2.2.1, from the assertion for Fermat varieties.
Remark 2.4.1. Under the assumptions of 2.4, the numerical equivalence coincides with the
homological equivalence.
Remark 2.4.2. [3](p.8) proved the assertion for n = 2r > 4 when m is prime and k is finite under
the assumption on the existence of Lichtenbaum complexes Z(r).

3. The Artin-Tate formula

3.1. Let k = F,and Xa smooth projective variety over k of dimension n. Put 7~ = Gal( k/k). Let @
denote the geometric Frobenius of X over k and £A(X;7) = det(1—®* 7 H'( X} ,Q)), where [ is a
prime different from the characteristic of k. By Deligne, 7;(X;7) € Q[7] and independent of [.

3.2. Now we recall the Artin-Tate-Milne formula ([9],Cor.6.4, Prop.6.6, Th.0,1,[10],Th.6.6) in a
modified form. We refer to [7] and [10] on the formalism of Lichtenbaum complexes Z(r).

=HHi(X
1

Define
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and

HXz0) =] [ Hix, )
l

We define also

6i(7") _ TT*I,Z'*T(X)_'_T'rfl,ifrﬂ(X)i (T,_j)h%*](X) ,

=0
r—1
a'(X)= —2T7"71’7"(X)+Z (T,_j)hpjl,/zr—j()()
j=0
and
o "=the multiplicity of ¢" as a reciprocal root of 7, (X;7)=0.
Let 2's H¥(X,Z )~H?%*(X,Z ) denote a map defined by the cup-product with 1 € Z =H'(k, 7).

3.2.1.(Artin-Tate-Milne formula 1) Assume that i+2r. Then H'( Xg,z (r)” and H( Xg,z(r))l, are

finite. Moreover,

el (r) | Hi(XE;Z(T'))F‘

P Xs == T —
A N a

In the following assertions, we assume that n = 2r.
8.2.2. (Artin-Tate-Milne formula Ila) /H?'( X,;,Z (r)) {;rs and H?" (X,;,Z () f1ors» @TE finite. Moreover,
assume that for all I, the action of ®* on H*" (XE , Qu(r)) is semi-simple. Then det ( €?") is defined and

| H* X 20 ors| ‘
| H O 20D orsl | H (X Z0 D ors)

P, (X;T)

- iqezr(r)det( ")
(I=q"T)""

T=qg—r

3.2.3. (Artin-Tate-Milne formula IIb) Assume that for all I, the action of ®* on Hi( X];, Qy(r)) is

semi-simple. Then

P, (X;T)
(1—=q"T)°"

:idet( e?ry | }7,2“1()(’2(7"))t0rs|
g | HP (X5, 20 ors?

T=q—r

3.2.4. (Artin-Tate-Milne formula Ilc) Assume that:
(1) There exists a Lichtenbaum complex Z(r);

(2) the Tate conjecture holds for r and all I;

(3) the cycle map CH"(X) —H? (X, Z(r)) is surjective.
Then.

P, (X;T) _ 4| Br'(X) | det[C"(X)/tors]
(1 _ qu)pr - qaﬂ"(X)| CT(X)torSF

q—r
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Here Br'(X) = H**Y(X, Z(r)) and C"(X) denotes the image of the cycle map CH'(X) — H* (X%, 7 ().
Remark 3.2.5. Milne [9] defined e’(r) and &'(X) in a different form:

=TT Y= v (@)
(o)<

and

aT(X) — T'rfl,'rH_ZT'rfl,'r + Z (T’_ v ( a)) ,
via)<r
where the summation is taken over all the reciprocal roots « of P(X;7)=0 and v is the p-adic
order nomalized by v (g)=1. Now we verify

r—1

D= (a) = D g )= T,

v(o)<r 7=0

Indeed, by the definition,

A (X) =dim H (X, WQL)/(tors+ V) +dim, H 7 (X, WQA")/(tors + F)
+ I (X)) =277 VI X) + T 21702 (X)),

Therefore,
r—1

E (T—j)hﬂi}w(){)— 7T X))
=0

r—

= 2= ) dim, H7 T (X, WQY, )/(tors + V) +(r—j— Ddim, H' I (X, WQ, )/(tors + F)}

[
Il
o

r—

{<r—j> DG+l —v(a)+r—j—1) Z<v<a>—j>}

(a)<j+l1 j<v(a)<j+l

Example 3.3. Let X be a smooth complete intersection in a projective space over k. Let n = dim.X.

Then it is known that
hy}, = h' for all (i, )
and
749 =0if i+j+n.
Hence

r—1
el (7") _ T'rfl,nf'ml_z (T_J-)hj,nfj
j=0

and, if n=2r,

Moreover, if n # 2r,
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H" X, 20) p = H"(X, Z(r))

and
H™( X, Z20r)! =0;
ifn = 2r,
H™(X, Z,(r) = H"(X [, Z0)fors =0, CT(X)iors =0
and

Hn(Xﬁyz(r))F,tors SH™ (X’z(r))tors'

Remark 3.3.1. Let X' be a smooth complete intersection in a projective space of dimension n over a
perfect field of characteristic p>0. Assume that X is supersingular. Then we have

rim—i _ pn—i—2,ivz _ lz (i +1—F)RFn
k=0
forO < i <r—1ifn = 2ror2r +1.
Remark 3.3.2. [3](Prop.8.4) proved the assertions of 3.2 when X is a diagonal hypersurface of
Hodge-Witt type.
Example 3.4. Let X'be an abelian variety over k. Let n = dim.X. Then it is known that

hyj, = A for all (i, ;).

Hence we obtain

r—1
et(r):Trfl,zfr+Tr71,zfr+1 Z _}Z 7
j=0
and

r—1

a'r() TT1T+erhJ2rJ
j=0

Remark 3.5. Here are some easy consequences of the hypotheses, from which Milne [10] deduced
the Artin-Tate-Milne formula. Assume that:
(1) there exists a Lichtenbaum complex Z(r);
(2) Br'(X)=H?*Y(X,Z(r)) is finite,
Then we have gotten bijections

Hzr(X’@l/Zl(r))cotors = Brr(X)lftors
2
Hzr*l(X’Zl(r))tors

for all I. It follows that, if n = 2r, |Br'(X) |is a square up to 2. Moreover, assume that CH"(X) ®z Q
— H?( X3, Qr)) is surjective for some ! # p. Then we have an exact sequence
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H* (XE’ZZ(T))tors,F - Brr(X)l—tors - HZT”(X}Z’ZI(?"))tC)rs

for all . In particular, if H*(X;, Z(r)es = H* (X5, Zi(r)os = O for all I # p, then Br'(X)is a
p-group.

Remark 3.6. Let k be a field and X a smooth projective variety over k of dimension n. Let 2r < n.
Assume that the cycle map CH'(X) ®: Q — H*(Xj, Qr)) is surjective for some I. Then the
numerical equivalence coincides with the homological equivalence up to torsion for algebraic
cycles of X} of codimension r and n—r.

Remark 3.7. Let k£ be a field of characteristic p > 0 and X a smooth projective variety over k of
dimension n = 2r. Assume that CH"(X) ®z Z; - H%( X,; ,Z,(r)) is surjective for all I # p. Then
det/NV'(X) is a power of p.

Remark 3.8. Let G be a finite subgroup of Auty(X) and V = |G| . Let X be a Q-character of G. Put
P(X, x;T) = det(1—®* T3 H'( X5 ,Q)W). Then P(X,,7T) € Q[T ]. Moreover, we have gotten a

factorization H(X;T)zHPj(X ,x;T), where the summation is taken over all the Q-irreducible
characters of G. There is'no difficulty to pass the Artin-Tate-Milne formula for X to the pair (X;p,)
up to the prime factors of V. For example, the case of Fermat varieties is studied in [15],[17], and
the case of diagonal hypersurfaces in [3].

References

[I] N.Aoki-On some arithmetic problems related to the Hodge cycles on the Fermat varieties.
Math. Ann. 266 (1983) 23-54

[2] T. Ekedahl - Diagonal camplexes and F-gauge structures. Hermann (1986)

[8] F. Gouveéa, N. Yui - Arithmetic of diagonal hypersurfaces over finite fields. Max Planck
Institut Preprint MPI 94-36 (1994)

[4] M. Gros, N. Suwa-Application d'Abel-Jacobi p-adique et cycles algébriques. Duke Math. J. 57
(1988) 579-613

[5] L. Illusie-Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. Ecole Norm. Sup. 4°
serie 12 (1979) 501-661

[6] L. Illusie, M. Raynaud-Les suites spectrales associées au complexe de de Rham-Witt. Publ.Math.
IHES 57 (1983) 73-212

[7] S. Lichtenbaum-The construction of weight-two arithmetic cohomology. Invent. Math. 88
(1987) 183-215

[8] J-S. Milne-On a conjecture of Artin-Tate. Ann. of Math. 102 (1975) 517-533

[9] J-S. Milne-Values of zeta functions of varieties over finite fields. Amer. J. Math. 108 (1986)
297-360

[10] J-S. Milne-Motivic cohomology and values of zeta functions. Compositio Math. 68 (1988)
59-102

[11] T. Shioda-The Hodge conjecture and the Tate conjecture for Fermat varieties. Proc. of Japan
Acad. 55 Ser. A (1979) 111-114

[12] T. Shioda-The Hodge conjecture for Fermat varieties. Math. Ann. 245 (1979) 175-184

[13] T. Shioda-Some observations on Jacobi sums. Advanced Studies in Pure Math. 12, North
Holland-Kinokuniya (1987) 119-135

[14] T. Shioda, T. Katsura-On Fermat varieties. Tohoku Math. J. 31 (1979) 97-115

[15] N. Suwe-Fermat motives and the Artin-Tate formula I,II. Proc. Japan Acad. 67 (1991)
104-107, 135-138



SOME REMARKS ON THE ARTIN-TATE FORMULA
FOR DIAGONAL HYPERSURFACES

[16] N. Suwa-Hodge-Witt cohomology of complete intersections. J. Math. Soc. Japan 45 (1993)
295-300

[17] N. Suwa N. Yui-Arithmetic of Fermat varieties I: Fermat motives and p-adic cohomologies.
MSRI Preprint Series, Berkeley (1988)

[18] J. Tate-Algebraic cycles and poles of zeta functions. Arithmetic algebraic geometry, Harper
and Row (1965) 93-110

[19] J. Tate-Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966) 133-144

[20] J. Tate-On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. Sém.
Bourbaki exposé 306, in Dix exposés sur la cohomologie des schémas, North-Holland,
Amsterdam (1986) 189-214

DEPARTMENT OF MATHEMATICS, CHUO UNIVERSITY, 1-13-27 KASUGA,
BUNKYO-KU, TOKYO 112-8551, JAPAN



