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Several investors and operation researchers have been interested in modeling the

risk of financial operations. VaR estimates the risk that can be taken from a financial

position over a specific horizon of time. It is used specially to manage portfolio risk.

However, there is strong empirical evidence of problems when VaR is calculated.

This evidence shows that financial returns have a heavy tail and excess of kurtosis,

demonstrating that portfolio return is not always normal.

On other hand, VaR gives little importance to extreme losses. Assuming elliptical

distribution for the losses leads VaR to be a coherent risk measure. Generally, VaR

is not a coherent risk measure because it does not satisfies the sub-addivity proper-

ties. Conditional Value at Risk (CVaR) was introduced as a coherent risk measure.

CVaR is a function of VaR defined as the conditional expected value of losses that

exceed VaR. This measure has desirable properties of convexity and sub-addivity.

A parametric approach is used to obtain analytical expressions for computing these

risk measures.

Based in previous works, estimating the VaR and CVaR using different mixtures

of probability distributions is desired. This thesis is concerned with the estimation

of VaR for the portfolio problem. The considered portfolio is formulated as a linear

combination of several random variables. It is noted that VaR is commonly defined

for a single random variable. The innovative point of this research is that these

random variables are not necessarily assumed to be independent, but may have a

possible nonlinear relationship. Although the assumption of independence is very

often used in financial analysis, it is believed that many phenomena show some de-

pendence features. To deal with nonlinear dependence, Copula functions methods

are used.

The main focus is to analyze previous approaches of estimation of VaR and CVaR

for the portfolio problem with numerical experiments and compare these with the

alternative of Copulas method with normal mixture distributed margins. These em-

pirical studies show the effectiveness of copula-based methods compared with some

benchmarks methodologies.
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Chapter 1

Introduction

1.1 Introduction

Several crises around the world have produced disastrous results for many finan-

cial institutions impacting consumers as well as entire nations. To name a few, the

subprime mortgage crisis in the USA around 2008, the European debt crisis since

late 2009, or the recent global situation caused by COVID-19 pandemic. As a result

of that, the study of risk caused by unexpected movements in the financial markets

increasingly important.

From investors to operation researchers, people have been interested in model-

ing the risk of financial operations. The problem of measuring this risk has been

widely studied. In this frame, it was proposed to measure financial risk in order to

prevent huge losses, or at least to protect the investors from losing all their invest-

ment. As a result of this, the Basel Committee on Banking Supervision (BCBS) was

established in 1988, under the auspices of the Bank for International Settlements

(BIS), which stated recommendations to banks and financial institutions for mini-

mum capital requirements. In 1993, JPMorgan proposed a market risk measure in

its RiskMetrics methodology. It was based on an optimization portfolio model by

Markowitz (1952) which tries to maximize the profit given a preset risk level. This

risk measure is known as Value at Risk (VaR). This measure has become a standard

in all industry thanks to its easy understanding.

VaR estimates the risk that can be taken from a financial position over a specific

horizon of time. It is used specially to manage portfolio risk. Because of its sim-

plicity and readiness of use, VaR is now well recognized as one of the principal risk
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measures in financial risk management. It is defined as the worst loss over a target

horizon such that there is a low, pre-specified probability that the actual loss will

be larger (Jorion et al., 2010). Theoretical study as well as various practical estima-

tion methods have deepened its computation and properties. In 1993, Basel Com-

mittee stated that financial entities may adopt its own proprietary models for VaR.

The usual calculation of VaR includes historical, analytical method and Monte Carlo

simulation. However, there is strong empirical evidence of problems when VaR is

calculated with these methods. For instance, historical and Monte Carlo methods as-

sume that the return pattern will repeat over a time horizon which may not be true

for certain risk assets. In Duffie and Pan (1997), a portfolio consisting of derivatives

using first and second order approximations is considered. Fat tails and skewness

can be observed in several markets such as equity, exchange rates, interest rates and

commodity. But maybe the biggest flaw of VaR is its lack of sub-additivity, meaning

that the total risk of a sum of two portfolios may not be less than or equal to sum of

the risk for each individual portfolio.

Also, one limitation of VaR measure is that it gives little importance to the most

extreme losses since the skewness and kurtosis of the distribution are not adequately

reflected. On the other hand, the assumption of normality overestimates the VaR

for very high percentile values while it is underestimated for low percentile values,

which correspond to extreme events. VaR is not a coherent risk measure since it

has undesirable mathematical characteristics such as the lack of sub-additivity and

convexity, which are only satisfied under the assumption of normality and whose

absence can lead to contradictory results in portfolio optimization processes.

Therefore, it is necessary to implement a coherent risk measure in terms of its

mathematical characterization, which allows greater precision to estimate the as-

sumed level of market risk. Assuming elliptical distribution for the losses (e.g. nor-

mal distribution) leads VaR to be a coherent risk measure. Artzner et al. (1999) states

the properties of a good indicator of market risk. Conditional Value at Risk (CVaR)

was introduced as a coherent risk measure. CVaR is a function of VaR defined as

the conditional expected value of losses that exceed VaR. This measure has desirable

properties as convexity and sub-additivity regardless of the functional form of the

lost profit distribution is.
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Diverse methods are used to estimate VaR and CVaR of a portfolio. The Vari-

ance Co-variance method is an easy form to estimate VaR given by Baumol (1963).

Unfortunately, this method is not convenient due to the assumption of normality

in the distribution of portfolio losses. Cornish Fisher estimation approximates the

probability distribution percentiles using asymmetry and kurtosis coefficients for a

confidence degree and it is used to calculate VaR proposed by Zangari (1996). In the

historical simulation method, an enormous amount of relevant data is required for

its estimation. In many occasions it is not enough for an adequate estimation in the

future. Monte Carlo simulation method also fails in precision when not specifying a

model for the distribution of losses in the period that requires to estimate the value

at risk.

In order to overcome the non-normality in the distribution of portfolio, using a

mixture of Gaussian distribution as a tool for modeling asymmetry and excess of

kurtosis has been considered. Parameter fitting can be done quickly and efficiently

thanks to Expected-Maximization methods. It can be remarked that this approach

can also fit rare functional form as bi-modality.

In the previous methods, when considering the losses of portfolio return, the

non-linear relationship of its component assets is not being taken into account. Al-

though the assumption of independence is very often used in financial analysis, it is

believed that many phenomena show some dependence features. When estimating

risk, it is only being considered dependent through linear correlation. Thus, it is

necessary to study the risk of the entire portfolio with another tool that also permits

the study of the dependence structure.

Copulas are well recognized to provide a flexible tool for analyzing the depen-

dence relation among random variables. Because of its readiness for applications,

copulas are now usually employed in various areas. In fact, it is much easier to re-

late several individual margins with a copula than consider a specific multivariate

distribution function. Copulas are very useful functions for modeling joint distri-

butions because it is not necessary the hypothesis of joint normality and they allow

to decompose any n-dimensional joint distribution into its n-marginal distributions.

Copulas also indicate nonlinear relationships between their risk factors. That is why

it is natural to think about using Copulas to estimate VaR. Also, the wide spectrum of
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families of copulas can give the estimation of the value at risk many more possibili-

ties than the previous models. The estimation of VaR and CVaR can be implemented

with Monte Carlo simulations.

Compared to the usual notion for the single random variable, a multivariate

Value at Risk is concerned with several variables and thus the relation between each

risk factors should be taken into account. A new definition of copula-based condi-

tional Value at Risk (CCVaR) is presented, which is ready to be computed. VaR is

defined for a single random variable, and there have been efforts for extending that

the definition to involve multivariate random vectors. Indeed, the pioneering work

of Prékopa (2012) considers a vector valued multivariate Value at risk (MVaR). It

is natural to ask, however, whether MVaR really serves as a risk measure; in other

words, whether MVaR characterizes effectively the risk structure of multiple random

variables, especially, the non-linear dependence relation between each risk factors.

The answer is partially positive and still under development.

With all the methods considered until now, it is important to measure the robust-

ness of proposed methods for estimating VaR and CVaR. Through many calculation

periods, we can check performance and determine which one is more accurate over

a certain time window. The VaR is estimated and then compared to the actual losses

at the end of the next day. Such methodology is known as backtesting. It can help to

determine if it is necessary to re-calibrate a model or even to reject it. For example,

Christoffersen and Pelletier (2004) develop a test for dependence between consecu-

tive days of failures.

1.2 Objectives

The main goal of this thesis is to establish a method for estimating VaR and CVaR

for the portfolio problem that overcomes deficiencies of classical approaches. The

considered portfolio is formulated as the linear combination of several random vari-

ables. It is noted that VaR is commonly defined for a single random variable. The

innovative point of this research is that these random variables are not necessarily

assumed to be independent, but may have a possible nonlinear relationship. Also,
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consider the elements of portfolio to present asymmetry and excess of kurtosis. This

can be modeled with mixture of Gaussian distributions.

The main contribution can be listed as follows:

• To try to establish a practical analytical formula to estimate VaR for certain

families of copula and study its properties

• To make numerical computations with actual real data from market and esti-

mate VaR and CVaR with copula with margins modeled by a mixture of Gaus-

sian distribution

• To perform backtesting on the proposed copula model with classical approaches

to determinate its validity

Then we conclude based on these empirical studies that effectiveness of copula-

based methods compared with some benchmarks methodologies have strengths and

weaknesses and try to conclude how the performance will be in the general setting.

1.3 Contents of thesis

In Chapter 2, preliminaries are described. It addresses an introduction to Value at

Risk, Coherent risk measures, Conditional Value at Risk, properties and the basic

approaches to estimate them for a portfolio.

In Chapter 3, the main tools for the realization of this work are presented. ARMA-

GARCH models, mixture of Gaussian distributions, Copulas and their main proper-

ties.

In Chapter 4, analytical results for the copula-based VaR formula and the method-

ology for numerical estimation along with backtesting are discussed.

Chapter 5 presents experimental results with this thesis’s approach and com-

pares with classical methodologies through backtesting.

And finally, Chapter 6 presents our considerations and conclusions.
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Chapter 2

Preliminaries

In this chapter, the definition for Value at Risk and its properties are presented. It

also presents the definition for Coherent Risk Measure as Conditional Value at Risk

and their properties in terms of VaR. Finally, classical methods for its estimation are

introduced and brief explanations for Historical simulation, Variance-Covariance

method, and Monte Carlo simulation are discussed.

2.1 Value at Risk

The stock price can be considered as a random variable. Let us describe its realiza-

tion over a discrete period of time stating at t = 0 as initial day till t = T as final

day. From now, we will work with log-return of the stock price series as our starting

point.

Definition 1 (Log-return of an asset). For an asset, consider the stock price {St}T
t=0. Its

daily geometric return Xt is represented by

Xt = log
(

St

St−1

)
(2.1)

for t = 1, 2, . . . , T.

From now, we write Y the loss process, defined as Y = −X.

Definition 2 (Value at Risk). Let {Xt} be log-return of a stock price series. Let Yt be the

cost variable or the losses associated to Xt, generally described by X = −Y and let FY be its

distribution function, i.e FY(u) = P(Y ≤ u). Also consider F−1
Y (v) be its left continuous

inverse, i.e. F−1
Y (v) = inf{u : FY(u) ≥ v}. Value at Risk (VaR) is the maximum loss of X
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FIGURE 2.1: Graphic interpretation for Value at Risk

that will not be exceeded with a specified probability λ ∈ (0, 1) over a predetermined time

horizon t. Then VaRλ is defined as:

VaRλ(Y) = F−1
Y (λ)

If the loss distribution Y is continuous and strictly increasing, VaR will be uniquely

determined by F(VaR) = λ. Note that this same definition coincides with the λ-

quantile function for the loss distribution. Usual values for λ, known as confidence

level are λ = 0.95 or λ = 0.99. In this ambit, it represents the minimum loss of an

asset given a significance level of λ. We note that some authors prefer to work with

daily difference of prices ∆St = St − St−1 in the definition of VaR. Also, some define

VaR for a significance level (usually 5% or 1%), so VaR represents the worst expected

loss given that significance level.

2.2 Classical methods for VaR

Some classical methods for estimating VaR will be briefly introduced. More detailed

presentations are included in McNeil, Frey, and Embrechts (2015).
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2.2.1 VaR under normal distribution

Suppose that the loss process is normally distributed with mean µ and standard

deviation σ. Then, for a level of significance λ

VaRt,λ = µ + σΦ−1(λ) (2.2)

where Φ−1(·) is the inverse cumulative distribution function for a standard normal

random variable.

2.2.2 Variance-Covariance Method

Supposing that for a set of n assets, their losses vector Yt = (Y1,t, Y2,t, . . . , Yn,t)′ has a

multivariate normal distribution named Yt ∼ N(µt, Σt), where µt is the mean vector

and Σt is the covariance matrix, both at time t. Also suppose that ω = (ω1, . . . , ωn)′

are the weight components for asset ωi ≥ 0, i(i = 1, . . . , n) for the portfolio satis-

fying ∑n
i=1 ωi = 1. If the risk components are sufficiently small, the total loss of the

portfolio at time t can be approximated by:

Yp,t ≈
n

∑
i=1

ωiYi,t (2.3)

The variance of portfolio will be

σ2
p,t = ω′Σtω (2.4)

Then, Yt ∼ N(ω′µt, σ2
p,t), and using the VaR formula for normal distribution, we

have that

VaRt,λ = ω′µt +
√

ω′ΣtωΦ−1(λ) (2.5)

Above methods have been very criticized due to the assumption of normally

distributed returns, which in practice is not so feasible. Another problem with the

variance-covariance method is the assumption of linearity of the assets conforming

the portfolio.
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2.2.3 Historical Simulation

Historical simulation requires data from the past values for assets. It tries to estimate

a return distribution from empirical distribution function (edf ) of data. Under this,

edf can be used to sample a considerable number of independent realizations and

sample the quantile for estimate VaR. In order to capture extreme scenarios, a good

amount of past data has to be taken so estimation of VaR will be reliable. In this

sense, the Historical method can be seen as a Monte Carlo simulation.

2.2.4 Monte Carlo simulation

The Monte Carlo method refers to multiple operations that try to model fit empirical

distribution for the return of the underlying asset to another selected distribution.

This simulation may or may not be of parametric type. For a certain period of time,

m independent realizations are carried out. Once this is done, the empirical quantile

for the estimation of VaR is extracted from the simulated data.

But for a portfolio with a large number of assets, the Monte Carlo method be-

comes pretty expensive in the computational sense. Even with a huge number of

simulated realizations, it does not guarantee a reliable estimate.

2.3 Coherent Risk Measures

Under the assumption of normality, VaR is overestimated for high values and under-

estimated for low values in quantiles. Artzner et al. (1999) proposed a list of axioms

that a coherent risk measure should satisfy.

Definition 3 (Coherent Risk Measures). A coherent risk measure is a risk indicator ρ,

which satisfies the following axioms:

• Positive homogeneity: ρ(λu) = λρ(u)

• Monotonicity: u ≤ v implies ρ(u) ≤ ρ(v)

• Translation invariance: ρ(u + a) = ρ(u) + a

• Sub-additivity: ρ(u + v) ≤ ρ(u) + ρ(v)
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One essential problem with VaR is that does not satisfy sub-additivity when the

log-return series is not normally distributed, hence it is not a coherent risk measure.

McNeil, Frey, and Embrechts (2015) explains each property on the following terms.

The positive homogeneity has to hold if there is no diversification between the assets

of the portfolio. The monotonicity is obvious from an economic viewpoint. Trans-

lation invariance states that by adding or taking a deterministic quantity a to a po-

sition leading to the loss, capital requirements are changed by exactly that amount.

The sub-additivity says that the total risk of a sum of two portfolios may not be

less than or equal to sum of the risk for each individual portfolio. The sum of two

portfolios can not create additional risk because this is being diversified. The last

property means that risk can not increase if the portfolio is compound. Also it is

important to note that a risk measure that satisfies positive homogeneity and sub-

additivity is convex. This important property is very desirable in the general context

of optimization, and therefore in portfolio optimization theory.

2.4 Conditional Value at Risk

Knowing that VaR does not satisfy the sub-additivity property, another risk measure

was suggested to be coherent. Acerbi and Tasche (2002) proposed Expected Shortfall

as a substitute to overcome the deficiencies of VaR. The Conditional Value at Risk, also

known as expected shortfall (ES); is defined as the conditional expected value of

losses that excess VaRλ.

Definition 4 (Conditional Value at Risk). Given a process {Yt}T
t=0 and a significance

level λ ∈ (0, 1), the Conditional Value at Risk (Pflug, 2000) is defined as the solution of the

following optimization problem:

CVaRλ(Y) := inf
{

a +
1

1− λ
E[Y− a]+ : a ∈ R

}

where [z]+ = max(z, 0). Uryasev and Rockafellar (1999) show that for smooth FY, CVaR is

equal to the conditional expectation of Y given that Y > VaRλ, i.e.

CVaRλ(Y) = E [Y | Y > VaRλ(Y)]
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It is easily inferred that

CVaRλ(Y) ≥ VaRλ(Y)

Note that CVaR measures the average loss of a portfolio, given that the loss is

greater than a certain limit. CVaR is not a quantile measure like VaR, but a tail

measure. It looks deeper on the tail, giving more information on extreme events

(McNeil, Frey, and Embrechts, 2015).

If λ is in the range of FY, then an alternative representation of CVaR is given by:

CVaRλ(Y) = E
[
Y | Y > F−1(λ)

]
=

1
1− λ

∫ 1

λ
F−1(v)dv

=
1

1− λ

∫ ∞

F−1(λ)
udF(u)

(2.6)

CVaR was proved to be coherent in the sense of Artzner et al. (1999), and its

applicability to portfolio optimization has been shown by Uryasev and Rockafellar

(1999). More important properties are proven by Pflug (2000).

Proposition 1. For λ ∈ (0, 1) and Y a random variable, then

(i) If Y has a density,

E(Y) = (1− λ)CVaRλ(Y)− λCVaR(1−λ)(−Y)

(ii) CVaR is convex in the following sense: For arbitrary random variables Y1 and Y2 and

0 < ω < 1,

CVaRλ (ωY1 + (1−ω)Y2) ≤ ωCVaRλ (Y1) + (1−ω)CVaRλ (Y2)

(iii) VaRλ(Y) = −VaR(1−λ)(−Y)

(iv) If Y is non-negative, then as n→ ∞,

[
E (Yn)− (1− λ)CVaRλ (Yn)

λ

]1/n

→ VaRλ(Y)
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2.4.1 Conditional Value at Risk for Normal loss distribution

Let’s suppose that Y has a normal distribution with mean µ and standard deviation

σ. For λ ∈ (0, 1), the CVaR is given by

CVaRλ(Y) = µ + σ
φ
(
Φ−1(λ)

)
1− λ

where φ represents the probability density function (pdf) of the standard normal

distribution.

2.5 VaR and CVaR backtesting

It is important to measure the robustness of proposed methods for estimating VaR

and CVaR. Through many calculation periods, we can check performance and deter-

mine which one is more accurate over a certain time window. The VaR is estimated

and then compared to the actual losses at the end of the next day. Such methodology

is known as backtesting. It can help to determine if it is necessary to re-calibrate a

model or even to reject it. Basel Committee for Banking Supervision also suggests

its own backtesting methodology for bank capital requirements for market risk.

2.5.1 Binomial Test

If T is the number of observations, p = 1− λ and N the number of failures, and if the

failures are independent, then N is distributed as a binomial distribution with pa-

rameters T and p. The expected number of failures is Tp, and the standard deviation

of the number of failures is √
Tp(1− p)

and the test statistic is the z-score, defined as

Z =
(N − Tp)√
Tp(1− p)

The z-score approximately follows a standard normal distribution. We refer to Jorion

et al. (2010) for details.
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2.5.2 Unconditional Model Evaluation: Kupiec’s test

This backtesting method was proposed by Kupiec (1995). Since VaR is based on

a confidence level p, when we observe N losses in excess of VaR out of T obser-

vations, hence we observe N/T proportion of excessive losses: the Kupiec’s deter-

mines whether N/T is statistically significantly different from p. Following binomial

theory, the probability of observing N failures out of T observations is (1− p)T−N pN ,

so that the test of the null hypothesis that the expected exception frequency N/T = p

is given by a likelihood ratio test statistic:

LRUC = −2 log[(1− p)T−N pN ] + 2 log[(1− N/T)T−N(N/T)N ]

which is distributed as χ2(1) under H0. This test can reject a model for both high

and low failures.

2.5.3 Conditional Model Evaluation: Christoffersen’s test

This test proposed by Christoffersen (1998) takes account of any conditionality in

forecast: for example, if volatilities are low in some period and high in others, the

VaR forecast should respond to this clustering event. The Christoffersen procedure

enables us to separate clustering effects from distributional assumption effects.

LRCC = −2 log[(1− p)T−N pN ] + 2 log[(1− π01)
n00πn01

01 (1− π11)
n10πn11

11 ]

where nij is the number of observations with value i followed by j for i, j = 0, 1 and

πij =
nij

∑i nij
are the corresponding probabilities. Under the H0, this test is distributed

as a χ2(2)

2.6 CVaR backtesting

Contrary to VaR backtesting where we find many types of tests, Conditional Value at

Risk does not offer a large amount of these. This is due to the fact that we can see if

the forecast amount is less than the realization. But for CVaR this is not so. Formally,
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it is said that VaR is elicitable but CVaR is not (Carver, 2013). This conclusion made

many people think that the CVaR was not back-testable. But Acerbi and Szekely

(2014) showed that elicitability has nothing to do with the backtesting and proposed

some tests for CVaR which are non-parametric and can be applied to any estimate

without worrying about the distribution of the losses.

2.6.1 Test 2 by Acerbi and Szekely

Test 2 by Acerbi and Szekely, also known as Unconditional test, scales the losses by

the corresponding CVaR value. This test statistic is defined by:

ZUncond =
1

N(1− λ)

N

∑
t=1

Yt1t

CVaRλ
+ 1 (2.7)

where 1t represents the VaR failure indicator on period t with a value of 1 if Yt >

VaRλ and 0 otherwise. Test 2 jointly evaluates frequency and magnitude of 1− λ

tail. Critical values for this test statistic are based on Normal and t distribution with

3 degrees of freedom.
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Chapter 3

Modeling tools

In this chapter the main tools for modeling random variables and their dependence

structure are presented. For analyzing time series, the ARMA (autoregressive mov-

ing average) and GARCH (generalized autoregressive conditionally heteroscedastic)

processes are introduced. Then for modeling the standardized residuals, the mixture

of Gaussian distributions are presented. And finally we review copula functions and

the Sklar’s theorem.

3.1 ARMA-GARCH processes

Through several empirical observations drawn from financial time series, certain be-

haviors can be observed in the daily series of risk factors. This collection is known as

stylized facts. For instance, the return series are not independent identically distributed

(i.i.d), and show little serial correlation but squared returns show profound serial

correlation (McNeil, Frey, and Embrechts, 2015). Also, conditional expected returns

are close to zero, volatility varies over time and return series present leptokurtosis

and asymmetry.

In Figure 3.1, volatility clustering can be seen, meaning that large absolute re-

turns tend to follow large absolute returns and the same for small returns. The

ARMA processes have been applied with success in the time series analysis. They

are covariance-stationary processes and use white noise.

Definition 5 (ARMA). An ARMA process of order (p, q) ∈ N for a series (Xt) is given

by:

Xt = a0 +
p

∑
i=1

aiXt−i + εt +
q

∑
j=1

bjεt−j
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where (εt)t∈Z is a white noise process with zero mean and unit variance (Francq and Za-

koian, 2019).

Note that volatility is not being considered yet on an ARMA model. We need

to deal with the stylized fact of non-constant variance and add a model that gener-

ates volatility clusters. In practice, many authors have used GARCH to model high

volatility.

Definition 6 (GARCH). A GARCH process of order (r, s) ∈ N for the variance σ2
t of

{Xt} is given by:

σ2
t = c0 +

r

∑
i=1

ciε
2
t−i +

s

∑
j=1

djσ
2
t−j

where εt = σtzt. Here {zt}t is a sequence of independently and identically distributed

(i.i.d.) random variables known as standardized innovation process and Xt is given by an

ARMA(p, q) model.

The conditional distribution of the standardized innovations

zt =
εt

σt
| Ft−1 (3.1)

is usually modeled by standard normal or student t distributions. Ft−1 represents a

filtration generated by the information set at t− 1.

GARCH processes allows the white noise εt to depend of its past values, so pe-

riods with huge fluctuations will be followed by the same fluctuations but different

amplitude. Certain conditions must be imposed to the parameters (a0, a1, . . . , ap, b0, b1,

. . . , bq) and (c0, c1, . . . , cr, d0, d1, . . . , ds) for the ’non-explosion’ of the series. We refer

to Francq and Zakoian (2019) for specific details.

3.2 Mixture of normal Gaussian distributions

ARMA-GARCH models have been used extensively to model high excessive kur-

tosis, dependence, and volatility clustering. But again, there is empirical evidence

against the normality of the innovations. Lee and Lee (2011) proposed a new al-

gorithm based on ARMA-GARCH models with Gaussian mixture innovations as a

tool to estimate VaR in the presence of heavy tailed and skewed residuals. These
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mixture distributions allow also to model unusual forms for the return distribution

as bimodality, for example.

Definition 7 (Gaussian Mixture). A random variable Y is distributed with K component

Gaussian mixture if its probability distribution function (pdf) is given by:

fη(y) =
K

∑
i=1

πi f (y; µi, σi)

where

f (y; µi, σi) =
1√

2πσi
exp

{
−1

2

(
y− µi

σi

)2
}

and ∑K
i=1 πi = 1 for 0 ≤ πi ≤ 1 and i = 1, 2, . . . , K

The mean and variance will be given by

E[X] = µ =
K

∑
i=1

πiµi

σ2 =
K

∑
i=1

πi
(
σ2

i + µ2
i − µ2)
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Skewness and Kurtosis are given respectively by:

α3 =
1
σ3

K

∑
i=1

πi (µi − µ)
[
3σ3

i + (µi − µ)2
]

α4 =
1
σ4

K

∑
i=1

πj

[
3σ4

i + 6 (µi − µ)2 σ2
i + (µi − µ)4

]

3.3 Estimation of parameters for ARMA-GARCH with mix-

ture of normal distributions

Lee and Lee (2011) describes the procedure for estimating model parameters for an

ARMA-GARCH with mixture of Gaussian distributions. A Gaussian quasi-maximum

likelihood estimator (QMLE) is necessary and then an (EM) algorithm is employed

to find the estimators for the residual innovations distribution. Let the space of pa-

rameter be given by:

Ω ⊂
{

η = (π1, . . . , πK, µ1, . . . , µK, σ1, . . . , σK)
′ ∈ [0, 1]K ×RK × (0, ∞)K :

K

∑
i=1

πi = 1,
K

∑
i=1

πiµi = 0,
K

∑
i=1

πi(µ
2
i + σ2

i ) = 1

}

These conditions imply that the mixture has mean zero and unit variance, which are

adequate for modeling standardized residuals {zt}.

Let ϕ = (ϑ′, θ′)′ =
(
a0, a1, . . . ap, b1, . . . , bq, θ′

)′ be the real parameter vector. A

Gaussian QMLE for the parameter ϕ, which is denoted by ϕ̂T =
(
θ̂′1, θ̂′2

)
, where

θ̂1 =
(

â0, . . . , âp, b̂1, . . . , b̂q

)′
and θ̂2 =

(
ĉ0, . . . , ĉr, d̂1, . . . , d̂s

)′
is given by any solution

of

ϕ̂n = arg min
ϕ∈Φ

Ĩn(ϕ) (3.2)

where Ĩn(ϕ) = n−1 ∑n
t=1

˜̀t and ˜̀t = ˜̀t(ϕ) = ε̃2
t (ϑ)/σ̃2

t (ϕ) + log σ̃2
t (ϕ) Using the

Gaussian QMLE ϕ̂T we obtain the residuals for ARMA-GARCH

z̃t =
ε̃t
(
θ̂1
)√

σ̃2
t (ϕ̂T)

, t = 1, . . . , T (3.3)
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where ε̃t
(
θ̂1
)

and σ̃2
t (ϕ̂T) , t = 1, . . . , T, are defined recursively by using

ε̃t
(
θ̂1
)
= Xt − â0 −

p

∑
i=1

âiXt−i −
q

∑
j=1

b̂jε̃t−j
(
θ̂1
)

and

σ̃2
t (ϕ̂T) = ĉ0 +

r

∑
i=1

ĉi ε̃
2
t−i
(
θ̂1
)
+

s

∑
j=1

d̂jσ̃
2
t−j (ϕ̂T)

respectively.

Finally, we determine the parameter for density using the above residual and

maximizing the log-likelihood function for Gaussian mixture parameter η as

η̂T = (π̂1, . . . , π̂K, µ̂1, . . . , µ̂K, σ̂1, . . . , σ̂K)
′ := arg max

η
l̃T(η), (3.4)

where

l̃T(η) :=
1
T

T

∑
t=1

log fη (z̃t)

This last step will take advantage of the efficiency of the EM algorithm for its sim-

plicity and computational speed (Redner and Walker, 1984).

3.4 Copulas

Copulas are useful functions to describe the dependence structure between two or

more random variables representing risk factor. Copulas are quite helpful for ana-

lyzing dependence of extreme events, and therefore its utility comes in the context of

risk management being easy to interpret the quantile scale for use on the estimation

of Value at Risk. We can think of Copulas being a multivariate cumulative distribu-

tion function which margins are uniformly distributed. So Copula will ’link’ these

variables with a desirable dependence structure. While, the number of multivariate

distributions are limited, Copulas function expand the possibilities for constructing

joint distribution functions. Copulas have already been used in financial applica-

tions. Patton (2006) extended the application to conditional copula modeling for

time varying conditional dependence.

In this section, the definition for a bivariate copula is given for simplicity pur-

poses, but the higher dimensions case is straightforward (Nelsen, 2007).
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Definition 8 (Copula). A function C defined on I2 := [0, 1]× [0, 1] and valued in I is said

to be a copula if the following conditions are satisfied:

1. For every (u, v) ∈ I2,

C(u, 0) = C(0, v) = 0

C(u, 1) = u, C(1, v) = v

2. For every (ui, vi) ∈ I2(i = 1, 2) with u1 ≤ u2 and v1 ≤ v2,

C(u1, v1)− C(u1, v2)− C(u2, v1) + C(u2, v2) ≥ 0

Hence any bivariate distribution function whose margins are standard uniform

distributions is a copula. It is noted that a copula is a continuous function by its def-

inition. The requirement (iv) is referred to as the 2-increasing condition. The Copula

function C is a copula for the random vector X = (X1, X2)′ if it is the joint distribu-

tion function of the random vector U = (U1, U2)′ where Ui = Fi(Xi) and Fi are the

marginal distribution functions of Xi, i = 1, 2

This imply that:

H(x1, x2) = C(F1(x1), F1(x2))

where H in the joint distribution function for the vector (X1, X2)′

3.4.1 Sklar’s Theorem

The most important result in Copula theory is the Sklar’s theorem. It states that any

group of univariate distribution can be linked with any copula and a valid multi-

variate distribution can be defined.

Theorem 1 (Sklar’s Theorem). Let H be a 2-dimensional joint distribution function with

marginal distributions F1, F2. Then exist a copula C such that for all (x1, x2) ∈ R2,

H(x1, x2) = C(F1(x1), F2(x2))
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FIGURE 3.3: Plots and contour plots for the Frechet bounds copu-
las: (a),(d) countermonotonicity, (b),(e) independence, (c),(f) comono-

tonicity

If F1, F2 are continuous, then C is unique; otherwise, C is uniquely determined on Ran(F1)×

Ran(F2). Otherwise, if C is a copula and F1, F2 are distribution functions, then the function

H defined above, is a joint distribution function with margins F1, F2.

The Sklar theorem states that any group of univariate distribution can be linked

with any copula and a valid multivariate distribution can be defined. The demon-

stration of this theorem can be found in Nelsen (2007).

Theorem 2 (Frechet bounds). For any copula C we have bounds

max {u + v− 1, 0} ≤ C(u, v) ≤ min {u, v}

These are sometimes called Frechet-Hoeffding bounds.

Definition 9 (Empirical copula). The empirical copula Ĉ is defined as:

Ĉ
(

t1

T
,

t2

T

)
=

1
T

T

∑
t=1

1[x1,t≤x1(t1)
,x2,t≤x1(t2)

]
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where 1 is the indicator function defined as

1A(x) :=

 1 if x ∈ A

0 if x /∈ A

and xi,(tj), i = 1, 2, j = 1, 2 are the tj-th order statistics of the i-th variable and t1, t2 ∈

{1, . . . , T}. Given a sample of n variates X1, . . . , XN , reorder them so that Y1 < Y2 < . . . <

YN . Then Yi is called the i th order statistic sometimes also denoted X(i)

Definition 10 (Distance between two copulas). The quadratic distance between two cop-

ula C1 and C2 in a finite set of bivariate points A = {a1, a2, . . . , am} is defined as:

d̄(C1, C2) =

[
m

∑
i=1

(C1(ai)− C2(ai))
2

]1/2

For instance, when selecting a model in order to estimate VaR, the region of interest should

be the lower tail.

The tail dependence is an important concept for modeling extreme losses in the

context of Value at Risk. This measures the dependence between variables in the

upper-right quadrant and in the lower-left quadrant of I2.

Definition 11 (Tail dependence). Let X and Y be continuous random variables with dis-

tribution functions F and G, respectively. The upper tail dependence parameter τU is the

limit (if it exists) of the conditional probability that Y is greater than the t -th quantile of G

given that X is greater than the t-th quantile of F as t approaches 1, i.e.

τU = lim
t→1−

P
[
Y > G(−1)(t) | X > F(−1)(t)

]

Similarly, the lower tail dependence parameter τL is the limit (if it exists) of the conditional

probability that Y is less than or equal to the t -th quantile of G given that X is less than or

equal to the t -th quantile of F as t approaches 0, i.e.

τL = lim
t→0+

P
[
Y ≤ G(−1)(t) | X ≤ F(−1)(t)

]
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Note that if C is copula for X and Y then tail dependence parameters can be

expressed as:

τU = 2− lim
t→1−

1− C(t, t)
1− t

, τL = lim
t→0+

C(t, t)
t

3.4.2 Some families of copulas

The independence copula is

Π(u, v) = uv (3.5)

The Gaussian copula for | ρ |< 1 can be expressed as

CGa
ρ (u, v)

=
∫ Φ−1(u1)
−∞

∫ φ−1(u2)
−∞

1
2π(1−ρ2)

1/2 exp
{
−(s2−2ρst+t2)

2(1−ρ2)

}
dsdt

(3.6)

The bivariate Student-t copula is the function

Ct
R12,ν

(u, v) =

t−1
ν (u)∫
−∞

t−1
ν (v)∫
−∞

1
2π(1− ρ2)1/2

{
1 +

s2 − 2ρ2 + t2

ν(1− ρ2)

}(−(ν+2)/2)

dsdt

where t−1
ν is the inverse of univariate t distribution with ν degrees of freedom.

Plackett’s copula is the function

Cθ(u, v) =
1

2(θ − 1)
{1 + (θ − 1)(u + v)−

([1 + (θ − 1)(u + v)]2 − 4uvθ(θ − 1))1/2
}

for θ 6= 1, and Cθ(u, v) = uv for θ = 1, which is defined for θ > 0. One disadvantage

of the Plackett’s copula is that it cannot be easily extended for dimensions larger

than two.

The Joe-Clayton copula is given by

CJC(u, v|τU , τL) =1−
( {

[1− (1− u)κ]−γ

[1− (1− v)κ]−γ − 1
}−1/γ )1/κ

where
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distribution

FIGURE 3.4: Plots and contour plots for Gaussian and t copula: (a),(c)
Gaussian ρ = 0.4, (b),(d) t ρ = 0.4 and ν = 4

κ = 1/ log2(2− τU)

γ = −1/ log2(τL)

τU ,τL ∈ (0, 1)

The parameter τU and τL are the coefficients of upper and low tail dependence, respectively.

The Joe-Clayton copula still has a asymmetry when τU = τL. The symmetrized Joe-Clayton

copula was proposed which is given by

CSJC(u, v|τU , τL) =
1
2

CJC(u, v|τU , τL) +
1
2

CJC(1− u, 1− v|τL, τU) + u + v− 1

which is symmetric when τU = τL.

3.4.3 Archimedean copulas

An important class of copulas is given by the so-called Archimedean copulas. They have

well algebraic properties and let the estimation of their parameters and simulation to be

almost straightforward. We recall for completeness what are the Archimedean copulas.
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Let ϕ : I → [0, ∞] be a convex function such that ϕ is strictly decreasing and verifies

ϕ(1) = 0. Let ϕ(−1) denote the pseudo-inverse of ϕ; that is, Dom ϕ(−1) = [0, ∞], Ran ϕ(−1) =

I, and

ϕ(−1)(t) =


ϕ−1(t) (0 ≤ t ≤ ϕ(0))

0 (ϕ(0) ≤ t ≤ ∞).

It is then possible to prove that the function C defined on I2 by

C(u, v) = ϕ(−1)(ϕ(u) + ϕ(v)) (3.7)

provides a copula. Copulas of this form are called Archimedean copulas and the function ϕ

is known as a generator of the copula.

The class of Archimedean copula finds a wide range of applications, because it is deter-

mined through single generator. For a general reference concerning Archimedean copulas,

we refer for instance to a book by Nelsen (2007).

Clayton family copula is given by For θ ∈ (0, ∞), ϕ(t) = (1 + t)−1/θ

C(u.v) =
(

u−θ + v−θ − 1
)−1/θ

(3.8)

Frank family copula is given by For θ ∈ (0, ∞), ϕ(t) = − log
(
1−

(
1− e−θ

)
exp(−t)

)
/θ

C(u, v) = −1
θ

log

(
1 +

(
e−θu − 1

) (
e−θv − 1

)(
e−θ − 1

) )

Gumbel family copula for θ ∈ [1, ∞), with generator ϕ(t) = exp
(
−t1/θ

)
is expressed as

C(u, v) = exp
(
−
[
(− log u)θ + (− log v)θ

]1/θ
)

(3.9)

The following proposition can be found in Nelsen (2007). It establishes the tail depen-

dence parameters for Archimedean copulas involving generator and inverse functions.

Proposition 2. Let C be an Archimedean copula with generator ϕ Then

τU = 2− lim
t→1−

1− ϕ(−1)(2ϕ(t))
1− t

= 2− lim
x→0+

1− ϕ(−1)(2x)
1− ϕ(−1)(x)

and

τL = lim
t→0+

ϕ(−1)(2ϕ(t))
t

= lim
x→∞

ϕ(−1)(2x)
ϕ(−1)(x)
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FIGURE 3.5: Plots of Clayton and Gumbel cumulative and density
probabilities: (a),(c) Clayton θ = 2.2, (b),(d) Gumbel θ = 2
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FIGURE 3.6: Simulated points for different copulas: (a) Gaussian ,(b)
t Copula, (c) Clayton θ = 2.2, (d) Gumbel θ = 2
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3.4.4 Estimating parameters for copula

Let (X1, X2), be a vector of two random variables with joint distribution function H and

marginal distribution functions F1 and F2 respectively.Each function depends only on the

parameter ϑi . Denote the ϑ unknown vector of parameters by ϑ = (ϑ1, ϑ2, θ) where θ is the

vector of parameters for the n-dimensional copula {Cθ , θ ∈ Θ} where the copula is known

except for the parameter. Suppose that {(x1,t, x2,t)}T
t=1 is a sample of size T. Hence for

Sklar’s theorem it has

H(x1, x2) = C(F1(x1; ϑ1), F2(x2, ϑ2); θ) (3.10)

The density function differentiating the above expression can be obtained with respect to all

variables

h(x1, x2) = c(F1(x1), F2(x2)) f1(x1) f2(x2) (3.11)

where fi is the density function associated to the marginal distribution Fi and c is the copula

density, given by c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
.

The log-likelihood function is given by

l(ϑ) =
T

∑
t=1

log c(F1(x1,t; ϑ1), F2(x2,t, ϑ2); θ) +
T

∑
t=1

2

∑
i=1

log fi(xi,t; ϑi) (3.12)

Thus, the maximum likelihood estimate ϑ̂ maximizes the above function, it is given by

ϑ̂ = arg max
ϑ

l(ϑ)

But this method results computationally quite expensive. It is better to use Inference Func-

tion for Margins (IFM) Method, where the parameters are estimated in two stages and it is

computationally simpler than the maximum likelihood method.
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Copula-based Value at Risk

The main goal is to estimate Value at Risk for a portfolio of risk factors by exploiting the

time series of daily stock returns for each asset. Fantazzini (2008) considered t-skewed dis-

tribution for marginal data and linked them together with a copula distribution function.

However, his formula seems complicated to solve directly so his approach relies on Monte

Carlo simulation. The specification in this thesis relies on mixture normal distribution for the

margin and uses the same Monte Carlo approach as Fantazzini (2008). Also, a multivariate

Conditional Value at Risk based on copula is proposed and its properties are discussed.

4.1 Estimation of copula-based VaR

Let X and Y denote risk factors at time t and be λ ∈ (0, 1) and Ft and Gt their cdf respectively.

Consider ω ∈ (0, 1) the weight of portfolio. If returns are sufficiently small, we can write the

portfolio losses as Z = ωX + (1− ω)Y. The conditional joint distribution function at time

t− 1 is given by:

Ht (x, y | Ft−1) = Ct (Ft (x | Ft−1) , Gt (y | Ft−1) | Ft−1) (4.1)

and relative density function given by

h(x, y | Ft−1) = c(F1(x | Ft−1), F2(y | Ft−1)) f1(x | Ft−1) f2(y | Ft−1) (4.2)

Hence, the cumulative distribution function for the portfolio loss is given by:

ζ(z) = P (Z ≤ zt | Ft−1) = P (ωX + (1−ω)Y ≤ zt | Ft−1) =

=

+∞∫
−∞


1
ω zt− 1−ω

ω y∫
−∞

ct (Ft (x | Ft−1) , Gt (y | Ft−1) | Ft−1) ft (x | Ft−1) dx

 gt (y | Ft−1) dy

(4.3)
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The one-step-ahead VaR computed in t − 1 for the portfolio at level λ is the solution z∗ of

the equation ζ (z∗) = λ, times the value of the financial position at t− 1.

Note that resolving 4.3 seems quite complicated. In the case of Archimedean copula,

however, this formula can be reduced to the following result which is presented in Molina

Barreto and Ishimura (2020) and seems to be new in literature.

Theorem 3 (Determination formula for VaR). Suppose that X, Y be non-negative random vari-

ables, whose joint distribution function His represented by an Archimedean copula Cϕ with generator

ϕ; namely,

H(x, y) = P(X ≤ x, Y ≤ y) = Cϕ (FX(x), FY(y))

where FX(x) = P(X ≤ x), FY(y) = P(Y ≤ y) are marginal distribution functions of X, Y, respec-

tively. Let Z = ωX + (1−ω)Y(0 < ω < 1) be a portfolio. Then, its Value at Risk at the confidence

level (0 < λ < 1), that is, VaRλ(Z) = F(−1)
Z (λ) = inf {t | FZ(t) ≥ λ} can be attained as the

solution z∗ of the equation

λ =
d

dx

∫ x

0
Cϕ

(
FX

(
1
ω
(x− y)

)
, FY

(
y

1−ω

))
dy

In particular, we have

λ =
d

dx

∫ x

0
Cϕ

(
FX

(
1
ω
(x− y)

)
, FY

(
y

1−ω

))
dy
∣∣∣∣
x=VaRλ(z)

(4.4)

We have developed a substantially simple formula in the case of Archimedean copulas,

which seems to be new in the literature. Proof of this result can be seen at Appendix A.

4.2 Steps for estimating VaR

Computation of VaR may result difficult from formula 3. However, it can be computed

using a simple Monte Carlo simulation by taking sample random returns from conditional

distribution 4.1 and reevaluating portfolio at time t. So Value at Risk can be determined by

taking the empirical quantile at λ of the simulated loss portfolio. We present the general

algorithm for simulate n random sample for a generic copula.
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4.2.1 Random sampling for copula

Definition 12 (Conditional distributions of copulas). Let C be copula function for U and V

random variables. The Conditional Copula of V given U is given by

cu(v) = CV|U (v | u) = P (V 6 v | U = u) = lim
δ→0

C (u + δ, v)− C (u, v)
δ

=
∂

∂u
C (u, v)

We know that cu(v) is a non-decreasing function and exists for almost all v ∈ [0, 1].

The following procedure is described in Cherubini, Luciano, and Vecchiato (2004). We can

generate a pair (u, v) from copula C in the following way:

• Generate two independent uniform r.v.s (u, w) ∈ [0, 1].u is the first draw we are look-

ing for.

• Compute the (quasi-)inverse function of cu(v). This will depend on the parameters of

the copula and on u, which can be seen, in this context, as an additional parameter of

cu(v). Set v = c−1
u (w) to obtain the second desired draw.

4.2.2 Algorithm for VaR and CVaR

Let us suppose we are interested in estimating VaR and CVaR at time t for a level λ for a

portfolio Z = ωX + (1 − ω)Y for one day step-ahead. The following steps describes the

procedure which is formulated in Fantazzini (2008) and we also employ with modification

in this thesis.

1. For each risk factor (xi, yi), find the parameters for ARMA(p,q)-GARCH(r,s) with de-

sired residual innovation distributions F̂x and F̂y with parameters θ̂x,t−1 and θ̂y,t−1.

Transform each risk factor to uniform series using the density of estimated marginals

in 3.1:

(Ut−1, Vt−1)
′ = (F̂x(xi), F̂y(yi))

′ (4.5)

2. Estimate parameter θt−1 for copula C with maximum likelihood function with the

uniform series in step 1.

3. Simulate a sample of N random draws from copula C with parameter θt−1. Denote

this as (u, v)′.

4. Using the inverse functions of estimated marginals, revert the sample to its original

scale

Q = (qx, qy)
′ = (F̂−1

x (u), F̂−1
y (v))′ (4.6)
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5. Rescale the standardized residuals by using the forecasted means and variances given

by ARMA-GARCH estimates in step 1.

{
xj,t, yj,t

}
=
(
µ̂x,t + qj,x · σ̂x,t, µ̂y,t + qj,y · σ̂y,t

)
(4.7)

for j = 1, . . . , N

6. Recalculate the loss of portfolio as

Zj = ωxj,t + (1−ω)yj,t

7. The VaR is equal to the 100 λ%-th statistic order of the recalculated loss of portfolio, i.e

the λ quantile for sample. To get CVaR, we compute the mean of sub-sample obtained

to extract all values of loss greater than VaR.

In order to get an accurate estimates of the quantile, Fantazzini (2008) simulates N = 100000

random samples. One of the main differences between our method proposed here and

Fantazzini’s work rely on the specification for the margins. While Fantazzini uses AR(1)-

Threshold GARCH(1,1) with Normal, Skew-Normal, the Student’s T and Skew-T distribu-

tion, this work uses AR(1)-GARCH(1,1) with a mixture of two normal distributions. First

make use of IFM algorithm for estimating parameters for copula and densities through the

MLE. Their specification requires a modified logistic transformation in order to keep the con-

ditional skewness and degrees of freedom in the desired interval. But our approach relies on

the QMLE for estimating the parameters for the margins which can be easier and faster to

implement than plain MLE. We do not make use of logistic transformation but thanks to the

advantage of EM algorithm, we can readjust the parameters for the mixture in each iteration

step to be inside the parameter space. Also, this specification is utilized with the log-return

for the risk assets while Fantazzini uses the prices.

Evidence shows that this selection is adequate. In chapter 5, empirical studies are pre-

sented, comparing classical methods, Fantazinni’s method (Normal, and t distributed inno-

vations), Lee and Lee (2011) ARMA-GARCH normal mixture VaR, and this thesis approach

method which consists of both methodologies (normal mixture innovations with copula).

4.3 Multivariate Conditional Value at Risk

VaR is defined for a single random variable, and there has been much effort such that the

definition is extended to involve multivariate random vectors. Indeed, in the pioneering

work of Prékopa (2012) considers a vector valued multivariate Value at risk (MVaR). We may
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wonder, however, whether MVaR really serves as a risk measure; in other words, whether

MVaR characterizes effectively the risk structure of multiple random variables, especially,

the nonlinear dependence relation between each risk factors. The answer is partially yes

and partly still under development.

Copulas, we have to recall at this point, are well recognized functions, which provide

a useful tool for understanding the dependence relation among random variables (see for

example Genest and Favre (2007)). Because of their flexibility, copulas are now widely

employed in the research of dependence structure of random variables. It is then natural

and desirable to define MVaR through the formulation of copulas. Along this prospect,

Krzemienowski and Szymczyk (2016) have introduced the concept of copula-based condi-

tional Value at Risk. Their definition is, however, somewhat complicated and it seems that

the computation is hard and requires much work.

Here we introduce a new definition of copula-based conditional Value at Risk (CCVaR),

which is rather simple, easy to calculate, and also enjoys nice properties. It is noted that our

CCVaR extends the multivariate conditional Value at Risk introduced by Lee and Prékopa

(2013). Moreover, in the case of Archimedean copulas, a handy formula of CCVaR is ob-

tained. Examples show that it works well to estimate the nonlinear relation between risk

factors.

4.3.1 Definition of CCVaR

Now we turn our attention to the multivariate conditional Value at Risk, where a new defi-

nition is introduced. In the previous attempts to estimate VaR, it is only defined for a single

random variable, the total loss of the portfolio. It is our intention that multivariate random

variables should be incorporated into the definition of Value at Risk, which will be more use-

ful to application. Several attempts have been already implemented. For example, Prékopa

(2012) introduce a multivariate Value at Risk for random vector, which is vector valued.

However, because of the fact that the measure is vector valued, the order relation becomes

slightly indirect.

Recently, Krzemienowski and Szymczyk (2016) introduced a nice idea of copula-based

conditional Value at Risk. Here their definition in the bivariate case is presented.

Let X = (X1, X2) be a bivariate random vector with the distribution functions FXj(t) =

P(Xj ≤ t) (j = 1, 2). Given a copula C, H(x, y) = C(FX1(x), FX2(y)) becomes a joint distri-

bution function. Let

UKS
λ = {(u, v) ∈ R2 |C(u, v) = λ}.
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FIGURE 4.1: Region of integration of CCVaR in Krzemienowski and
Szymczyk

A copula-based conditional Value at Risk (CCVaRKS
λ (X)) due to Krzemienowski and Szym-

czyk is then defined through

CCVaRKS
λ (X) =

1
λ

min
(u,v)∈UKS

λ

∫ u

0

∫ v

0
(F(−1)

X1
(p) + F(−1)

X2
(q))dC(p, q). (4.8)

However, since the risk measure involves the minimum procedure, the computation

may become troublesome. For example, if C(u, v) = Π(u, v) = uv, namely, X1 and X2 are

independent, then we see that

CCVaRKS
λ (Π) =

1
λ

min
λ≤u≤1

∫ u

0

∫ λ
u

0
(F(−1)

X1
(p) + F(−1)

X2
(q))dpdq

=
1
λ

min
λ≤u≤1

(λ

u

∫ u

0
F(−1)

X1
(p)dp + u

∫ λ
u

0
F(−1)

X2
(q)dq

)
,

taking into account of the fact

UKS
λ (Π) =

{(
u,

λ

u

)
∈ R2 | λ ≤ u ≤ 1

}
.

Here, another slightly different definition of copula-based multivariate conditional Value

at Risk is proposed. We confine ourselves to the bivariate case as before for simplicity and

let X = (X1, X2) be a random vector with the joint distribution function H(x, y) = P(X1 ≤

x, X2 ≤ y) as well as marginal distribution functions FXj(x) = P(Xj ≤ x) (j = 1, 2). Observ-

ing the definition of multivariate conditional Value at Risk introduced by Lee and Prékopa

(2013), we now formulate our definition as follows:
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Definition 13 (Copula-based Conditional Value at Risk). For a random vector X = (X1, X2),

a copula-based conditional Value at Risk (CCVaRλ(X)) at the confidence level λ (0 ≤ λ < 1) is

defined by

CCVaRλ(X) =

∫∫
Uλ
(ωF(−1)

X1
(u) + (1−ω)F(−1)

X2
(v))dC(u, v)∫∫

Uλ
dC(u, v)

, (4.9)

where 0 < λ < 1 and we have put

Uλ := {(u, v) |C(u, v) ≥ λ}.

The constant ω represents the portfolio weight of X1 and X2. If both X1 and X2 follows

the same distribution, then the impact due to ω will be irrelevant. We also remark that for

some C the denominator is zero and/or for some (X1, X2) the numerator is infinite.

It is to be noted that if we write temporally for abuse of notation

EC[ f ] =
∫∫

I2
f (u, v)dC(u, v),

then CCVaR can be written as

CCVaRλ(X) = EC[ωtF(−1)
X | Uλ]

where ω t = (ω, 1− ω), which indicates that this Definition above extends Definition 3 of

Lee and Prékopa (2013).

This CCVaR of (4.9) is simpler than CCVaRKS of (4.8). Nevertheless, this definition seems

to work well as a risk measure, which will be assured by the computation of examples in the

next section.

4.3.2 Properties of CCVaR

First, basic properties of CCVaR are stated.

Proposition 3. A copula-based conditional Value at Risk CCVaR defined by (4.9) verifies:

(i) CCVaRλ(0) = 0,

(ii) CCVaRλ(X + ke) = CCVaRλ(X) + k (k ∈ R, e = (1, 1)),

(iv) CCVaRλ(sX) = sCCVaRλ(X) (s > 0).

The proof is performed along the similar line of that for VaR.

Several remarks are in order. Concerning the monotonicity (iii), it has to be clarified the

meaning of the order between X1 and X2; it is better avoid unfavorable assumption and not
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treat it here. For the sub-additivity (v), it does not seem to be true in the general setting.

Observe Theorem 8 and the example in Lee and Prékopa (2013).

In the case of Archimedean copula, the calculation of CCVaR seems to be ready to im-

plement as it is stated in the following theorem.

Theorem 4. Let X = (X1, X2) be a non-negative random vector, whose joint distribution function

is provided by an Archimedean copula C of the form (3.7), where the generator ϕ is C1-class. Then

the proposed copula-based conditional Value at Risk (CCVaR) of (4.9) is expressed as

CCVaRλ(X) =

∫ 1
λ (ωF(−1)

X1
(t) + (1−ω)F(−1)

X2
(t))

(
1− ϕ′(t)

ϕ′(λ)

)
dt

1− λ + ϕ(λ)
ϕ′(λ)

. (4.10)

Proof of this theorem can be seen in Appendix A.

If the generator is ϕ(t) = − log t, then the corresponding Archimedean copula is Π(u, v) =

uv, that is, the product copula which represents the independence relation. In this case, the

relevant CCVaR reduces to the multivariate conditional Value at Risk (MCVaR) due to Lee

and Prékopa (2013), namely,

MCVaRλ(X) =

∫ 1
λ (ωF(−1)

X1
(t) + (1−ω)F(−1)

X2
(t))

(
1− λ

t

)
dt

1− λ + λ log λ
.

We then obtain the next property immediately from Theorem 4.
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Corollary 5. If the generator ϕ verifies for λ ≤ t ≤ 1

1− ϕ′(t)
ϕ′(λ)

1− λ + ϕ(λ)
ϕ′(λ)

≥
1− λ

t
1− λ + λ log λ

(
resp.,

1− ϕ′(t)
ϕ′(λ)

1− λ + ϕ(λ)
ϕ′(λ)

≤
1− λ

t
1− λ + λ log λ

)
,

(4.11)

then the corresponding CCVaR is not less than (resp., not greater than) the one for the independent

relation. Precisely stated, we have

CCVaRλ(X) ≥ MCVaRλ(X)

(resp., CCVaRλ(X) ≤ MCVaRλ(X)).

It seems, however, that the analytical application of the inequality of this Corollary is

tough in general. Below we present examples to illustrate these observations. To do so, we

introduce a function

f (t) =
(

1− ϕ′(t)
ϕ′(λ)

)
(1− λ + λ log λ)−

(
1− λ

t

)(
1− λ +

ϕ(λ)

ϕ′(λ)

)
for λ ≤ t ≤ 1. It is easy to see that Corollary means that f ≥ 0 on λ ≤ t ≤ 1 (resp. f ≤ 0 on

λ ≤ t ≤ 1) is equivalent to CCVaRλ(X) ≥ MCVaRλ(X) (resp. CCVaRλ(X) ≤ MCVaRλ(X))).

By virtue that we will consider the value of λ near to 1, indeed, we take λ = 0.95 and/or

λ = 0.99 in our computation, the sign of f (1), by the continuity of f , will be a dominant

factor in the evaluation of (4.10). We are therefore content merely with the expansion of f (1)

in terms of 1− λ, which seems sufficient in view of our numerical results in the next chapter.

In addition, as a matter of fact, the evaluation of f ′(t) on λ ≤ t ≤ 1 requires too much task.

Example 6. Let the generator be ϕ(t) = log(t−1(1− θ(1− t))) for θ ∈ [−1, 1); that is, we consider

the Ali-Mikhail-Haq family, which yields

C(u, v) =
uv

1− θ(1− u)(1− v)
.

We then see that the corresponding CCVaRAMH becomes

CCVaRAMH
λ (X) =

∫ 1
λ (ωF(−1)

X1
(t) + (1−ω)F(−1)

X2
(t))

(
1− λ(1−θ(1−λ))

t(1−θ(1−t))

)
dt

1− λ + λ(1−θ(1−λ))
1−θ log λ

1−θ(1−λ)
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Now we infer that

f (1)
λ

= 1− λ + log λ +
1− θ(1− λ)

1− θ

(
− (1− θ)(1− λ + λ log λ) + (1− λ) log

1− θ(1− λ)

λ

)
= −1

2
(1− λ)2 − 1

3
(1− λ)3 − 1

4
(1− λ)4 − · · ·

− (1− θ(1− λ))
(
(1− λ)2 − λ

2
(1− λ)2 − λ

3
(1− λ)3 − λ

4
(1− λ)4 − · · ·

)
+

1− θ(1− λ)

1− θ
(1− λ)

(
(1− θ)(1− λ) +

1− θ2

2
(1− λ)2 +

1− θ3

3
(1− λ)3 + · · ·

)
= − θ2

6
(1− λ)4 + O((1− λ)5),

taking into account that, by the Taylor expansion,

log λ = log(1− (1− λ)) = −(1− λ)− 1
2
(1− λ)2 − · · ·

log(1− θ(1− λ)) = −θ(1− λ)− θ2

2
(1− λ)2 − · · ·

Thus it is expected that

CCVaRAMH
λ (X) ≤ MCVaRλ(X)

Example 7. Let the generator be ϕ(t) = log(1− θ log t) for 0 < θ ≤ 1; that is, we consider the

Gumbel-Barnett family, which yields

C(u, v) = uv exp(−θ log u log v).

We then see that the corresponding CCVaRGB becomes

CCVaRGB
λ (X) =

∫ 1
λ (ωF(−1)

X1
(t) + (1−ω)F(−1)

X2
(t))

(
1− λ

t
(1−θ log λ)
(1−θ log t)

)
dt

1− λ− λ
θ (1− θ log λ) log(1− θ log λ)

.

Now we infer that

f (1)
λ

= 1− λ + log λ +
1− θ log λ

θ

(
− θ(1− λ + λ log λ) + (1− λ) log(1− θ log λ)

)
.

Applying the Taylor expansion

log(1− θ log λ) = −θ log λ− θ2

2
(log λ)2 − θ3

3
(log λ)3 − · · ·

= θ(1− λ) +
θ

2
(1− λ)2 +

θ

3
(1− λ)3 − θ2

2

(
− (1− λ)− 1

2
(1− λ)2 − · · ·

)2

+
θ3

3
(1− λ)3 + · · · ,
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we further compute that

f (1)
λ

= −1
2
(1− λ)2 − 1

3
(1− λ)3 − 1

4
(1− λ)4 − · · ·

− (1− θ log λ)
(
(1− λ)2 − λ

2
(1− λ)2 − λ

3
(1− λ)3 − λ

4
(1− λ)4 − · · ·

)
+ (1− θ log λ)(1− λ)

(
(1− λ) +

1
2
(1− λ)2 +

1
3
(1− λ)3 + · · ·

− θ

2
(1− λ)2 − θ(1− λ)3 +

θ2

3
(1− λ)3 + · · ·

)
= −

((
1− 7

12
λ
)

θ +
θ2

6

)
(1− λ)4 + O((1− λ)5)

which is negative for θ << 1. Thus it is expected, in this case, that

CCVaRGB
λ (X) ≤ MCVaRλ(X),

which agrees with our numerical computation.

Example 8. Let the generator be ϕ(t) = (− log t)θ for 1 ≤ θ < ∞; that is, we consider the Gumbel

family, which yields

C(u, v) = exp(−((− log u)θ + (− log v)θ)1/θ).

We then see that the corresponding CCVaRG becomes

CCVaRG
λ (X) =

∫ 1
λ (ωF(−1)

X1
(t) + (1−ω)F(−1)

X2
(t))

(
1− λ(− log t)θ−1

t(− log λ)θ−1

)
dt

1− λ + λ
θ log λ

.

In this case, we have that

f (1)
λ

= 1− λ + log λ− 1
θ
(1− λ) log λ

=
2− θ

2θ
(1− λ)2 + O((1− λ)3)

which is positive for θ < 2 and it is expected, in this case, that

CCVaRG
λ (X) ≥ MCVaRλ(X),

which agrees with our numerical computation in the next chapter.
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Chapter 5

Empirical study

In this chapter, the numerical studies applied to estimation of VaR and CVaR are presented.

The main idea is to show that this thesis approach, which consists in merging the copula

modeling and normal mixture gaussian innovations, results in better estimates for VaR in

the sense of backtesting accepting. We compare this thesis approach with classical VaR

methodologies, and copula with normal and Student-t distributed standardized residual in-

novations already implemented in Palaro and Hotta (2006) and the plain VaR with Gaussian

mixture ARMA-GARCH model described on Lee and Lee (2011). We present three cases, the

first using copulas proposed by Palaro and Hotta (2006). Secondly, a case with Archimedian

copulas in order to use the new determination formula. And finally, a case for CCVaR is

presented and compared to MCVaR of Lee and Prékopa (2013).

5.1 A case study for VaR with copulas

In this example, we want to show that VaR estimation with this thesis method, consisting in

merging copula with Gaussian mixture ARMA-GARCH models, results in better estimates

than plain Gaussian mixture ARMA-GARCH Value at Risk by Lee and Lee (2011). These

results are published in Molina Barreto, Ishimura, and Yoshizawa (2019).

5.1.1 Descriptive Statistics

The data base used for our empirical analysis consists of daily geometric return obtained

from closing prices for the NASDAQ and Nikkei 225 from 22 August 2013 to 21 August 2018

with a total of 1188 trading days. The data is taken from Yahoo Finance. Table (5.1) contains

descriptive statistics and Figure (5.1) presents plots of both series. The implementation is

performed with MATLAB.
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FIGURE 5.1: Daily and absolute returns of NASDAQ and Nikkei 225

Statistics NASDAQ Nikkei 225
Mean −0.0652 −0.0428
Standard Deviation 0.9546 1.3048
Minimum −4.1520 −7.4262
Median −0.1105 −7.4262
Maximum 4.2023 8.2529
Kurtosis 5.2800 7.8141
Asymmetry 0.6011 0.1742

TABLE 5.1: Descriptive Statistics of daily log-returns of NASDAQ
and Nikkei 225
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FIGURE 5.2: ACF and PACF plots for NASDAQ

5.1.2 Margin modeling

For specifying a model for both series, we consider an ARMA(p, q)-GARCH(r, s) for t =

1, . . . , 1187. Distribution for standardized residuals is set to a Gaussian mixture model.

In order to choose adequate orders for ARMA-GARCH model, we consult methodology

proposed by Francq and Zakoian (2019) in Chapter 5. It states that select minimal orders

(r, s) for GARCH with sample auto-correlations estimates must be inside significance bands

±1.96/
√

T. We can also consider Ljung-Box Q test (see (McLeod and Li, 1983)) in which

the null hypothesis that a series of residuals exhibits no auto-correlation for a fixed number

of lags L, against the alternative that some auto-correlation coefficient ρ(k), k = 1, ..., L is

nonzero. In figure 5.2 and 5.3 we can observe auto-correlation function (ACF) and partial

auto-correlation function (PACF) for losses in NASDAQ and Nikkei series, respectively.

In fact, we fitted two AR(1)-GARCH(1,1) for both series as initial models with a two

component Gaussian mixture. This selection was considered to see there was no autocor-

relation nor squared auto-correlation in the residuals. Also it is usual to consider two or

three components for the mixture of normals (here we only report the case of two). We also

performed a Ljung Box test to infer the null hypothesis is not rejected from lag 1 to 5. We

report these values in table (5.2). Finally, we report values for Kolmogorov-Smirnov (KS),

Chi-square goodness-of-fit test (CSG) and Anderson-Darling test used for uniformity test for

the standardized residuals.
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Parameter NASDAQ Nikkei225
a0 -0.0966 -0.0894

(0.6188) (0.6350)
a1 -0.0339 -0.0331

(0.8024) (0.8366)
c0 0.1288 0.0906

(0.5923) (0.5279)
c1 0.1820 0.1600

(0.7934) (0.5687)
d1 0.6748 0.7964

(1.1545) (0.6589)
π 0.7545 0.6791

(2.1270) (2.4874)
µ1 -0.1858 -0.1247

(1.2318) (1.0617)
µ2 0.5710 0.2639

(6.5601) (3.9875)
σ2

1 0.5163 0.4324
(1.9407) (2.2565)

σ2
2 2.0541 2.0988

(8.5172) (10.6249)
AIC 15.7468 14.5864
Q2(1) 0.9840 0.8117
Q2(5) 0.8655 0.6028
KS 0.0449 0.0221
χ2 0.2043 0.0262
AD 0.0562 0.0218

TABLE 5.2: Model parameters of univariate Gaussian mixture
ARMA-GARCH. Standard errors between brackets. Last values cor-

respond to p-values for each test.
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FIGURE 5.3: ACF and PACF plots for Nikkei 225

A good alternative to choose between sereval models is to use Akaike’s information

criterion (AIC) defined as:

AIC(M) = −2log-likelihood(θt) + 2M

where M is the number of parameters in the maximum likelihood estimates. AIC’s coeffi-

cient penalties in the case of more parameters, so better model will have a smaller AIC value.

(Akaike, 1973) We can consider a good fit for estimates of the margins if transform given by

(3.1) is close to uniform cumulative distribution. In this example, we can see this fit in figure

(5.5)

5.1.3 VaR estimation

We again consider the portfolio of equal weight. First we estimate the parameters using the

data from t = 1 to t = 487 as initial window and update the parameters each day for both

the marginal distributions and for the copula. Our target is to find the solution of (??) for VaR

at the level λ = 0.95 and λ = 0.99 concerning the data from t = 489 to t = 1188 (699 days).

At table (5.3), we can look at the proportion of observations where the loss exceeded the

confidence level. We then compare the forecast VaR with the actual return of the portfolio.

However, the computation is highly demanding and a Monte-Carlo simulation is preferred.

By looking at the number of failures, we could infer the copula models have fewer number

of failures for this portfolio with respect to other methods. But if we consider the effect
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FIGURE 5.4: Empirical distribution of transformed series
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of nonlinear dependence given by the copula and the improvement of implementing it to

the computation of VaR, we can see it outperform in higher levels of confidence. We also

compared with benchmark models like Variance Covariance and Historical VaR. In all cases,

the model with Symmetrized Joe Clayton copula gives the best results. Data is exhibited in

Figure (5.6) and (5.7).

5.1.4 Backtesting

To ascertain the outcome of computation, several back-testings are considered.Here we ap-

peal to Binomial test (Bin), Kupiec’s POF test (POF), and Christoffersen’s test (CCI), respec-

tively. Results are shown in table (5.3).

We can infer the proposed models with copulas results in better estimations than plain

ARMA-GARCH Normal mixture models. Thanks to the property of copula, we can explain

a better non-linear correlation between the two indexes studied here. In effect, for extreme

losses, the copulas give better estimates and pass all the back-tests.

5.2 A case study for VaR with Archimedean copulas

In this case, we study the VaR estimation with some Archimedean copula namely, Clay-

ton, Gumbel and Frank. Estimation can be done numerically from formula (3). Results are

published in Molina Barreto and Ishimura, 2020.

5.2.1 Descriptive Statistics

We consider a portfolio composed of two assets: the S&P 500 and Jakarta Stock Exchange

Composite Index (JCI). The data contains 2377 daily closing prices from December 7 2009 to

December 6 2019, and we compute the daily log-returns and ignore the entries that are not

available at the same time in any of both markets. The data period excludes the direct effect

of the United States subprime mortgage crisis that started in 2007. The data is taken from

Yahoo Finance, and implementation is performed with MATLAB. Statistics are displayed in

table (5.5) and Figure (5.8) shows the plot for both log-return series. We remark the excess of

kurtosis and the significance of negative asymmetry in this case.

5.2.2 Margin modeling

For each marginal series, we consider a general AR(1)-GARCH(1,1) model with innovations

with a two compounded Gaussian mixture distribution. This idea seems accurate due to the

characteristics, such as asymmetry and excess of kurtosis, that can be seen on the series. We
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FIGURE 5.8: Daily and absolute returns of S&P 500 and JCI

Statistics S&P JCI
Mean −0.0441 −0.0384
Standard Deviation 0.9582 1.0504
Minimum −4.7775 −7.0136
Median −0.0611 −0.1002
Maximum 6.8958 9.2997
Kurtosis 7.3810 9.1121
Asymmetry 0.4615 0.5916

TABLE 5.5: Descriptive statistics of daily log-returns of S&P 500 and
JCI stock indices



5.2. A case study for VaR with Archimedean copulas 55

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample ACF for residuals of S&P500

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n

Sample PACF for residuals of S&P500

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 A
u
to

c
o
rr

e
la

ti
o
n

Sample ACF for squared residuals of S&P500

0 5 10 15 20

Lag

0

0.2

0.4

0.6

0.8

1

S
a
m

p
le

 P
a
rt

ia
l 
A

u
to

c
o
rr

e
la

ti
o
n

Sample PACF for squared residuals of S&P500

0 5 10 15 20

Lag

FIGURE 5.9: ACF and PACF plots for S&P500

have observed the ARMA-GARCH with normal mixture distributed innovation models fit

this kind of series better than plain ARMA-GARCH with normal or t distributions.

This selection was considered to see there was no auto-correlation nor squared auto-

correlation in the residuals. We also performed Ljung Box test to infer the null hypothesis is

not rejected from lag 1 to 5. Values for Kolmogorov-Smirnov (KS), Chi-square goodness-of-t

test (CSG) and Anderson-Darling test used for uniformity test for the standardized residuals

are all accepted for significance level of 5%. In figure (5.11) are plotted Conditional variance

and Standardized Residuals for both series.

5.2.3 VaR estimation

We again consider portfolio of equal weights. First, we estimate the parameters using data

from t = 1 to t = 1376 as the initial window and update the parameters each day as for the

marginal distributions as for the copula. Our target is to find the solution formula for VaR at

the level and concerning the data from t = 1377 to t = 2376 (1000 days). We then compare

the forecast VaR with the actual return of the portfolio.

By looking at the value of failures, we could infer that performance of the proposed

model over classical estimations of VaR as Historical or Variance-Covariance is better thanks

to the effect of nonlinear dependence given by the copula and the improvement of im-

plementing it to the computation of VaR. We also compared with benchmark models like

Variance-Covariance. In all cases, the model with Clayton-Normal mixture gives the best

results. Data is exhibited in Figure (5.13) and Figure (5.14).
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FIGURE 5.10: ACF and PACF plots for JCI

0 500 1000 1500 2000

Days of trading

-6

-4

-2

0

2

4

6
Standardized residuals S&P500

0 500 1000 1500 2000 2500

Days of trading

0

5

10

15
Conditional Variance S&P500

0 500 1000 1500 2000

Days of trading

-4

-2

0

2

4

6

8
Standardized residuals JCI

0 500 1000 1500 2000

Days of trading

0

5

10

15
Conditional Variance JCI

FIGURE 5.11: Conditional variance and Standardized Residuals for
log returns series of S&P 500 and JCI stock indices
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Parameter S&P500 JCI
a0 -0.0928 -0.0511

(0.5625) (0.5811)
a1 -0.0705 0.0394

(0.7274) (0.6402)
c0 0.0440 0.0474

(0.2219) (0.3465)
c1 0.1895 0.1284

(0.6909) (0.6524)
d1 0.7708 0.8318

(0.7003) (0.8021)
π 0.6707 0.5811

(2.7581) (2.6726)
µ1 -0.1499 -0.0959

(1.1543) (1.1897)
µ2 0.3054 0.4083

(4.3484) (7.5223)
σ2

1 0.4483 0.5995
(2.4498) (5995)

σ2
2 1.9846 2.4983

(9.1468) (15.5862)
AIC 16.0043 15.4625
Q2(1) 0.4284 0.7436
Q2(5) 0.9054 0.8887
KS 0 0.2559
χ2 0 0.2293
AD 0.0001 0.3000

TABLE 5.6: Model parameters of univariate Gaussian mixture
ARMA-GARCH. Standard errors between brackets. Last values cor-

respond to p-values for each test.
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FIGURE 5.12: Empirical distribution of transformed series

5.2.4 Backtesting

We again have used the Binomial test (Bin), Kupiec’s POF test (POF), and Christoffersen’s

test (CCI), respectively. The result is shown in figure (5.7). Our empirical analysis has shown

that the proposed models with copulas results in better estimations than models such as

Historical or Var-Covariance methods. Thanks to the property of copula, we can explain

a better non-linear correlation between the two indexes studied here. In effect, for extreme

losses, the copulas give better estimates and pass all back-tests. We can also observe a similar

behavior for the three copulas.

5.3 A case study for CCVaR and MCVaR

We now turn our attention to empirical analysis of estimating CCVaR.

5.3.1 Description of data

The data base used for our empirical analysis consists of daily geometric return obtained

from closing prices for the S&P 500 and Nikkei 225 from September 9 2010 to September 3

2020 with a total of 2362 trading days. The data is taken from Yahoo Finance. Table (5.9)
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FIGURE 5.15: Daily and absolute returns of S&P 500 and Nikkei 225

Statistics S&P 500 Nikkei 225
Mean 0.0485 0.0405
Standard 1.1267 1.3707
Minimum −12.7652 −11.1534
Median 0.0715 0.0687
Maximum 8.9683 7.7314
Kurtosis 21.4719 8.6458
Asymmetry −1.0968 −0.4276

TABLE 5.9: Descriptive Statistics of daily log-returns of S&P 500 and
Nikkei 225

contains descriptive statistics and Figure (5.15) presents plots of both series. The implemen-

tation is performed with MATLAB and R.

Both series present asymmetry and have large kurtosis. In both cases, we can observe

the negative value of asymmetry for both series, indicating the likeliness of negative returns,

and excess of kurtosis shows fatter tails than the normal distribution. We can also observe

the effects of volatility clustering. It would be a good idea to consider different models to

Normal or t-distributed innovations for each series.
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5.3.2 Margins modeling

For this study, we consider three different distributions: Standard Normal, Student-t and

Hansen’s Skewed-t. We recall Hansen’s definition (Hansen, 1994): Let yt be a random vari-

able which follows a conditional Skewed- t distribution with density function f (·; νt, λt) and

mean zero and variance one by construction, in order to be a suitable model for the standard-

ized residuals of a conditional mean and variance model. The conditional parameters νt, λt

control the kurtosis and skewness of the variable, respectively, while the density function is

given by:

f (yt; νt, λt | Ft−1) =


bc
(

1 + 1
νt−2

(
byt+a
1−λt

)2
)−(νt+1)/2

for yt ≤ − a
b

bc
(

1 + 1
νt−2

(
byt+a
1+λt

)2
)−(νt+1)/2

for yt > − a
b

(5.1)

This density is defined for 2 < νt < ∞ and −1 < λt < 1 The constants a,b and c are given by

a = 4λtc
(

νt − 2
νt − 1

)

b = 1 + 3λ2
t − a2

c =
Γ
(

νt+1
2

)
√

π(νt − 2)Γ
( νt

2
)

The results for marginal models are shown in Table (5.10). In fact, we fitted two AR(1)-

GARCH(1,1) for both series as initial models with three specified distribution for the stan-

dardized residuals. This selection was considered to see there was no auto-correlation nor

squared auto-correlation in the residuals. We also performed a Ljung-Box test to infer the

null hypothesis is not rejected from lag 1 to 10. We also report values for Kolmogorov-

Smirnov (KS), Chi-square goodness-of-fit test (CSG) and Anderson-Darling test used for

uniformity test for standardized residuals series. We can consider a good fit for the model

if the transformed series are closed to uniform distribution. In figure 4, we can observe the

comparison for each specified model.

5.3.3 Copula parameter estimation

In table (5.11),we present maximum likelihood estimates for three copulas and margins mod-

eled by different distribution. We report standard errors, and the value of the log-likelihood

function evaluated on the optimum, Akaike’s information criterion (AIC). So when selecting

between several models, the best fit will be given for the model with the lowest AIC. We can

also consider de quadratic distance between the estimate and the empirical copula in a finite
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FIGURE 5.16: Conditional Variance and standardized residuals of
S&P 500 with Normal, t and Skewed-t innovations
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FIGURE 5.17: Conditional Variance and standardized residuals of
Nikkei 225 with Normal, t and Skewed-t innovations
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S&P 500 Nikkei 225
Normal Student-t Skewed-t Normal Student-t Skewed-t

a0 -0.0960 -0.1025 -0.0744 -0.0808 -0.0972 -0.0715
(0.0139) (0.0132) (0.0143) (0.0229) (0.0217) (0.0281)

b0 -0.0660 -0.0664 -0.0836 -0.0312 -0.0374 -0.0445
(0.0242) (0.2198) (0.0205) (0.0229) (0.0215) (0.0472)

c0 0.0500 0.0274 0.0253 0.06907 0.0606 0.0574
(0.0049) (0.0066) (0.0060) 0.0104 (0.0157) (0.0288)

c1 0.2239 0.1839 0.1726 0.1230 0.1184 0.1158
(0.0155) (0.0256) (0.0230) (0.0099) (0.0170) (0.0228)

d1 0.7418 0.8103 0.8193 0.8368 0.8542 0.8573
(0.0170) (0.0230) (0.0210) 0.0124 (0.0197) (0.0425)

λ 0.1465 0.0854
(0.0287) (0.0295)

ν 4.4574 4.8783 5.4431 5.7832
(0.4381) (0.4893) (0.6580) (2.0810)

AIC 5.9218 ×103 5.6802×103 5.6540×103 7.6931×103 7.5569×103 7.5470×103

Q2(1) 0.8565 0.6884 0.6375 0.0325 0.0057 0.0033
Q2(10) 0.7684 0.7988 0.8016 0.1097 0.0564 0.0416
KS 6.6143 ×10−5 0∗ 0.0222 1.0033 ×10−4 3.7565×10−9 0.0536
χ2 0∗ 0∗ 0.0040 0∗ 0∗ 0.0074
AD 2.5413 ×10−7 2.5413 ×10−7 0.0798 6.0298×10−6 2.5413 ×10−7 0.1278

TABLE 5.10: Parameter estimates of AR(1)-GARCH(1-1) model for
S&P 500 and Nikkei 225
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FIGURE 5.18: Empirical distribution of the transformed series for
both risk assets
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set of bivariate points. For instance, we are concerned with points whose value of empirical

copula is larger than level λ

5.3.4 Computation of MCVaR and CCVaR

We have consired a portfolio with equal weights in the two risk assets (ω = 0.5) and esti-

mated MCVaR and CCVaR for levels λ = 0.95 and λ = 0.99. With the estimates for copula

and quantile function, we compute equation (4.10) with numerical methods implemented

on MATLAB. Results are reported in Table (5.12).

We can observe that for Ali-Mikhail copula with parameter positive, inequality in the

example 5 is not satisfied, so in this case we have

CCVaRAMH
λ (X) ≤ MCVaRλ(X).

for both λ = 0.95 and λ = 0.99. In Gumbel-Barnet copula, parameter θ is very close to

zero, so close values are expected for CCVaR to MCVaR. We also observed that estimates

for MCVaR and CCVaR with Student-t innovations are greater than those with Normal or

Skewed-t distributions. Further research is needed to establish the relationship between

these estimates.

5.3.5 Behavior through time of MCVaR and CCVaR

We also estimate CCVaR for a period of several days in which parameters for margins and

copula are estimated each new trading day. Then we plot values for MCVaR and CCVaR

to compare both models and infer that volatility clustering has effectively been captured

by the margins and the proportion of portfolio. Figure (5.19) and (5.20) represents MCVaR

and CCVaR for λ = 0.95 and λ = 0.99, respectively. In all cases, we have taken Skewed-t

distribution for comparison.

It seems Ali-Mikhail-Haq and Gumbel-Barnett copulas give estimates for CCVaR very

close to MCVaR corresponding to independence copula. Gumbel copula seems to overes-

timate CCVaR for both levels. We hope we can establish this observed behavior in future

research.
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λ = 0.95 λ = 0.99
Copula Margins MCVaR CCVaR MCVaR CCVaR

Normal 2.1021 2.1011 2.6450 2.6448
Ali-Mikhail-Haq Student-t 3.0944 3.0901 4.7003 4.6992

Skewed-t 2.5763 2.5744 3.8874 3.8865
Normal 2.1021 2.1020 2.6450 2.6449

Gumbel-Barnett Student-t 3.0944 3.0943 4.7003 4.7002
Skewed-t 2.5763 2.5760 3.8874 3.8869
Normal 2.1021 2.2062 2.6450 2.7545

Gumbel Student-t 3.0944 3.3462 4.7003 5.0718
Skewed-t 2.5763 2.8216 3.8874 4.2546

TABLE 5.12: Values of MCVaR and CCVaR for Ali-Mikhail-Haq,
Gumbel-Barnett and Gumbel copula with different margins
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FIGURE 5.19: MCVaR and CCVaR for β = 0.95 and Skewed-t innova-
tions and copula
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FIGURE 5.20: MCVaR and CCVaR for β = 0.99 and Skewed-t innova-
tions and copula
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Chapter 6

Conclusions

VaR is a fundamental tool in the context of portfolio and risk management. One limitation

of VaR measure is that it gives little importance to the most extreme losses since the skew-

ness and kurtosis of the distribution are not adequately reflected. CVaR is a function of VaR

defined as the conditional expected value of losses that exceed VaR. This measure possesses

desirable properties as convexity and sub-additivity regardless of the functional form of the

lost profit distribution is. In this doctoral thesis we have explored specific models for the

estimation of VaR and CVaR for a portfolio of two assets which are not necessarily inde-

pendent but possibly non-linearly related. I also have considered that the dynamics of risk

assets present asymmetry and heavy tails. In this context, we decided to model asset losses

along with the direct effects of volatility employing an ARMA-GARCH model with resid-

ual innovations distributed with a gaussian mixture of standard normal. And not only that,

but I can also take advantage of algorithms like Expectation maximization (EM) for rapid

estimation of mixture parameters. It is meaningful to measure the robustness of proposed

methods for estimating VaR and CVaR.

In addition, I also wish to adequately take into account the non-linear dependence be-

tween risk assets. This can be performed by considering copula as a tool that models the

dependence between various random variables. Copulas can be also considered as a tool to

generate multivariate cumulative distribution functions which margins are uniformly dis-

tributed. Archimedean copulas were considered for their easiness to implement in numer-

ical and analytical scenarios. For the particular case of Archimedean copulas, I have de-

veloped a formula to estimate the VaR whose solution can be obtained numerically. VaR

can be computed implementing a ordinary Monte Carlo simulation by taking sample ran-

dom returns from conditional distribution and reevaluating portfolio at a specified time.

Consequently Value at Risk can be determined by taking the empirical quantile at λ of the

simulated loss portfolio.

VaR is defined for a single random variable, and there has been much effort such that
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the definition is extended to involve multivariate random vectors. Here, I also present an

alternative definition for multivariate copula-based CVaR. I could consider this as a possi-

ble generalization of MVaR (Lee and Prékopa, 2013), whose expression can be obtained by

taking the independence copula. This definition seems to be more accessible and easier to es-

timate than CCVaR by Krzemienowski and Szymczyk (2016). It can even be easily calculated

in the case of Archimedean copulas of which I equally found a relatively ready-to-calculate

expression and established some relationships with MVaR for some examples of copulas.

In the numerical examples, I operated portfolios consisting of risky assets with several

periods of high volatility and and negative skewness. Empirical analysis has shown that

choosing a good specification for the distribution of residual innovations along with cop-

ulation can result in adequate estimates for VaR and thus CVaR. In particular, mixtures of

Gaussian distributions seem to be suitable for assets with strong asymmetry and leptokur-

tosis. We have compared classical methods for VaR estimation such as variance-covariance

method and historical estimation, with our copula approach with ARMA-GARCH mixed

Gaussian distributions. Indeed, I observe the latter reacts to the effects of volatility over

time. Thanks to the property of copula, I can explain a more significant non-linear corre-

lation between risk factors studied here. In effect, the copulas produce better estimates for

VaR than classical ones. In fact, utilizing the backtesting methodology, I have seen that for

more extreme losses, the effect of copula improves the outcome of the tests. I have also de-

veloped a numerical implementation to our definition of CCVaR, which also confirms the

critical importance of choosing the precise specification for the margins.

Intended research should focus on working with more than two risk assets. The task is

arduous for dimensions greater than two. For the multivariate copula, I can consider again

the Archimedean families. Part of this modelling was already performed in Savu (2010),

but he also stated that unfortunately these copulas suffer from a significantly limited depen-

dence structure, since all k-dimensional marginal distributions are identical (k < d). Actual

problems come with the specification of the parameters as the estimation uses depends on

difficult expressions and Monte Carlo simulation also looks very inefficient. Another ap-

proach is the use of vine copulas. This tool allows labeling constraints in high order dimen-

sional distributions. As Cooke (2010) stated; vine copulas owe their increasing popularity

to the fact that they leverage from bivariate copula and enable extension to arbitrary di-

mensions. I intend to use these tools for modeling VaR for the portfolio problem in higher

dimensions, but their implementation seems complicated as the number of variables arise.

For future research, I also want to apply the theory of vine copulas and Archimedean copu-

las for the estimation of the Value at Risk. It must be considered that this development must

be easy and fast to implement numerically. Possibly this task is partly solved in the case of
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Archimedean copulas because they enjoy well algebraic properties and let the estimation of

their parameters and simulation to be almost straightforward. I should be capable to exploit

their properties for a fast calculation of the Value at Risk (Hofert, Mächler, and Mcneil, 2012).

However, these copulas suffer from a severely limited dependence structure. Subsequent re-

search should intend to use more general multivariate copulas such as Vine or Hierarchical

Archimedean (Savu and Trede, 2010).
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Appendix A

Proofs

A.1 Proof of Theorem 3

For simplicity, we assume that FZ(z) is continuous and strictly monotone. General cases are

treated with obvious modifications. First we see that VaRλ(Z) is determined by the equation

λ = P(Z ≤ z) = P(ωX + (1−ω)Y ≤ z)

=
∫ z

0
ds
∫ s

0
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Now, thanks to the assumptions that Cϕ is Archimedean, we derive
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This completes the proof. In above computation, we note that the boundary conditions of

copulas must be taken into account.
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A.2 Proof of Theorem 4

The proof is implemented in an elementary fashion. By the standard approximation argu-

ment, we may assume that ϕ is C2-class. If the copula C is Archimedean of the above form

(3.7), we learn that

dC(u, v) =
−ϕ′′(t)
(ϕ′(t))3 ϕ′(u)ϕ′(v)dudv,

where we have put t = ϕ(−1)(ϕ(u) + ϕ(v)). Taking into account of the symmetry of u, v, we

have

CCVaRλ(X)

=
1∫∫

{ϕ(u)+ϕ(v)≤ϕ(λ)}
−ϕ′′(t)
(ϕ′(t))3 ϕ′(u)ϕ′(v)dudv

·
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X2
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}
.

Now applying the change of variables

(u, v)→ (u, t) where t = ϕ(−1)(ϕ(u) + ϕ(v)),

we infer that

CCVaRλ(X)

=
1∫∫
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·
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,

which implies the theorem.

We remark that a similar calculation for the denominator is already employed in the

literature (see for instance Theorem 4.3.4 in Nelsen (2007)).
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