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Chapter 1

Introduction

1.1 Electromagnetic Wave Scattering

Scattering of electromagnetic waves is the process of re-radiation of an incident wave by an

obstacle (scatterer). Depend on the scatterer’s shape and material, the propagation direc-

tion, amplitude, phase, polarization of the incident electromagnetic wave can be changed.

In some special cases, the incident plane wave can even be changed into the spherical or

cylindrical waves. The purpose of solving a scattering problem is to determine those vari-

ations by combining physical knowledge and mathematical tools. In electromagnetism,

the term scattering can be used as a synonym of diffraction, while there is a distinction

between them in the optical area. It is necessary to understand the electromagnetic scat-

tering characteristics by a certain material body to design microwave, and radio devices

and systems.

Electromagnetic scattering is an interdisciplinary topic that has been researched for

decades and utilized in various applications. Remote sensing technologies use the scat-

tered electromagnetic fields from the object to remotely and non-destructively observe

and predict the surrounding space and material scatterers. Understanding how electro-

magnetic waves interact with the objects and how to get scattered waves from them helps

us to extract their encoded information (shape, material, position, orientation, speed,

etc.) in the scattered fields. An efficient scattered field simulation also plays an impor-

tant role. Radar systems in this application generally operate at microwave frequencies

between 100 MHz and 100 GHz corresponding to wavelength from 3 m to 3 mm which

is comparable to the ordinary scatterer’s size. Moreover, frequencies from 430 THz to
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770 THz of the visible spectrum corresponding to wavelength from 390 nm to 700 nm

is applicable in the nanoscience area. In these cases, the wave nature of electromag-

netic fields is recognizable via the scattering effects, for example, wave penetration into

shadow region, where framework of simple ray optical constructions cannot explain ap-

propriately. The inability of simple ray-based concepts to sufficiently describe these wave

phenomena has led to the creation of electromagnetic scattering theory. Electromagnetic

scattering theory is a branch of electromagnetics that describes, explains, and predicts

electromagnetic field behavior in the existence of objects by fully considering the wave na-

ture of the electromagnetic field. Electromagnetic scattering theory includes knowledge of

physics (particularly, electromagnetics and optics) and mathematics. During its history,

many outstanding researchers, including Rene Descartes (1596–1650), Christiaan Huygens

(1629–1695), Thomas Young (1773–1829), Augustin-Jean Fresnel (1788–1827), Hermann

von Helmholtz (1821–1894), Gustav Kirchhoff (1824–1887), James Clerk Maxwell (1831–

1879), Heinrich Hertz (1857–1894), and Arnold Sommerfeld (1868–1951), have contributed

to the establishment of the wave theory of electromagnetic scattering. The theory is still

in the process of development motivated by new application fields, from stealthy aircraft

and ships to metamaterials in photonics and nanoscience. This thesis concentrates on

radio wave propagation application where analysis of electromagnetic scattering features

from outdoor buildings, trees, and indoor furniture is necessary to build an efficient wave

propagation model.

To be applied to the practical problems with complicated scatterers, it is necessary

to solve the theoretical problems for canonical objects. One of the original research on

electromagnetic scattering solution is related to the classical study of circular cylinder

or sphere diffraction. As introduced in [1], a dielectric circular cylinder diffraction was

first considered by Rayleigh [2], and that of a dielectric sphere was first determined by

Lorenz [3]. Besides, wave diffraction by conducting circular cylinder and sphere was

solved by Thomson [4]. Also, a solution published by Mie [5] became widely known

as theoretical Mie scattering for sphere diffraction. After that, much simpler and more

compact mathematical formulation have been developed to solve the above canonical

scattering problems, and they are introduced in some textbooks, for example, [1], [6]–[9].
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1.2 Research Background

In recent years, wireless communication in metropolitan area has been studied and im-

proved continuously to suffice the quantity and quality demand of device connection. A

representative example is that the researchers and developers are creating new equipment

and techniques, ready for the era of 5G (the fifth generation technology standard for broad-

band cellular networks) with a huge number of devices connected at high speed. One of

the most important aspects is the research on the radio wave behavior with the existence

of the objects in the urban environment. In fact, the radio waves are strongly affected by

the walls and windows of high-rise buildings. Here, window apertures can be considered

as the primary communicating path for indoor-outdoor mobile radio wave propagation

while building walls cause reflection for almost all of the high frequency signals. Accu-

rately estimating these effects will lead to stable and higher-speed wireless communication

services. Moreover, window scattering analyses help mobile service providers to determine

base station arrangement and plan a suitable communication frequency.

A suitable electromagnetic wave scattering calculation method plays the main role in

the efficiency of a wave prediction model. The aperture scattering problem has been

approached by various calculation methods that depend on the corresponding applica-

tion. An eigenfunction expansion solution in terms of Mathieu functions [10] has been

applied by Morse and Rubinstein, while Kobayashi Potential (KP) method with Weber-

Schafheitlin discontinuous integrals [11] has been given by Nomura and Katsura to analyze

the scattering characteristic by an infinitely thin slit. The KP method is also an effective

solution in more complicated cases of the two-dimensional thick conducting slits [12], [13]

or three-dimensional hole [14]. To analyze the thickness effect, Wiener-Hopf and general-

ized matrix technique [15], and Fourier transform technique [16], [17] may also be applied.

Nevertheless, the above results have mainly considered relatively narrow slit apertures.

The exact solution is desirable everywhere. An exact solution of the aperture scattering

problem may be represented in the form of wave equation eigenfunction series. However,

when the aperture width is electrically large, the rate of series convergence is slow which

leads to difficult numerical evaluation. Considering the feasibility, approximation methods

have been used widely to solve various problems. Finite Difference Time Domain (FDTD),

Finite Element Method (FEM), Method of Moment (MOM), Finite Difference Method

3



Figure 1.1: Outdoor-indoor electromagnetic wave propagation model with effect of build-

ing windows and walls.

(FDM) are among the famous numerical methods. Some numerical methods are developed

to estimate the scattering by the objects of small size compared with wavelength [18]–

[24]. However, these numerical methods may have a problem applying for the scattering

by electrically large objects because of unrealistic execution time and heavy memory

requirement. Additionally, the numerical solutions cannot provide qualitative, physical

insight into the basic mechanisms of scattering and diffraction.

Besides, asymptotic high frequency methods also provide powerful and fast ability in

analyzing a wide variety of electromagnetic scattering problems of electrically large ob-

jects. These approaches can be grouped into two categories. One is the ray optical

methods group containing Geometrical Optics (GO), Geometrical Theory of Diffraction

(GTD) and Uniform version of the GTD, which is further divided into UTD and UAT.

There is another group using the wave optical method, in which we can list the Physical

Optics (PO) and the Physical Theory of Diffraction (PTD). Around 1883, Kirchhoff had

generalized the integral representation of equivalent source. This integral representation

of equivalent source is later known as Kirchhoff approximation (KA) or physical optics

approximation which serves well the derivation of scattering integral using incident wave.

The high frequency asymptotic solution obtained from this scattering integral represents

the diffracted waves. The GO ray field consists of direct, reflected and diffracted rays.

The method describes reflection and refraction of high frequency EM waves but not the

diffraction of waves around edges and smooth objects. Meanwhile, the wave-based physi-

cal optics approach finds the scattered field by directly integrating currents induced when

4



a metallic body is illuminated by external electromagnetic source. GTD is an upgraded

version of GO and it overcame the failure of GO in the shadow region; and it illustrates

nicely the mechanism of radiation and scattering.

For practical applications of indoor-outdoor mobile radio wave propagation through

windows, one has to pay attention that the window dimension is large with respect to

the wavelength. Then the numerical methods and eigenfunction methods are not efficient

for this scenario, high frequency asymptotic techniques may be more suitable. Clemmow

solved the problem of scattering of electromagnetic plane waves by an infinite slit con-

structed from two perfectly conducting semi-infinite coplanar screens of zero thickness

for the special case of normal incidence using asymptotic series [26]. Levine extended

the solution for all angles of incidence by applying Wiener-Hopf technique to the inte-

gral equation combined with Taylor’s series [27]. That method was also used in a simple

representation with less algebraic manipulations by Seshadri [28] and with Wu [29] for

both E and H-polarization. Wiener-Hopf technique of higher order asymptotic is also

applied for high frequency diffraction by a strip [30]. However, as mentioned, the above

approaches have only considered infinitely thin slit. More realistic approaches where the

thickness is considered such as Geometrical Theory of Diffraction (GTD) [25]–[33] and

Kirchhoff approximation (KA) method [34] may be convenient to use. GTD is known

to yield accurate results in slit diffraction, if the effect of the multiple edge diffraction is

included [25], [33]. However, GTD may not be applicable for the case of the rectangular

holes, since the accurate diffraction coefficient of the corner is not available yet.

In this study, we utilize the KA method to analyze the plane wave scattering by the win-

dow aperture. KA is one of the representative methods to calculate the scattering fields.

Using KA (sometimes known as PO since there is no clear distinction between them) to

solve the electromagnetic scattering problem, the radiation from equivalent electric and

magnetic currents approximated from incident wave can be represented in the integral

form. This integral form cannot be evaluated analytically. By evaluating by numerical

integral with large value of wave number k, the asymptotic solution for high frequencies

can be obtained. According to this asymptotic evaluation of the integral expression, scat-

tering fields, in general, include the components of incident plane wave, reflected plane

wave from conducting surface and diffracted wave from the object’s edge. As presented

in [35], the KA method is applied to derive scattering fields from a conducting wedge in
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Figure 1.2: Equivalent current sources in the KA method. (a) Electric currents postulated

on the virtual surface on the conducting wedge. (b) Magnetic currents postulated on the

aperture virtual surface.

two ways. The first one is that the scattering field is conducted from the equivalent elec-

tric currents (J) exist on the virtual surface postulated on the conducting wedge surface.

These electric current sources result from the magnetic component of the incident plane

wave. Another way to derive the scattering field is using the equivalent magnetic currents

(M ) exist on the virtual extended surface (the aperture) of the conducting surface. These

magnetic current sources result from the electric component of the incident plane wave.

The latter method is suitable to be utilized in this thesis to derive the scattering fields

at both upper and lower half-space of the slit/hole. The primary scattering fields can

be considered as field radiations from equivalent magnetic current sources postulated on

the closing aperture. In order to obtain the diffracted field from the lower aperture of

the thick slit/hole, conversion into waveguide modes can be used to obtain the internal

waveguide fields inside the slit/hole, and the magnetic current is postulated again at the

lower aperture from them. The numerically obtained results are compared with those of

other methods to evaluate the accuracy of the proposed formulation in different conditions

of the slit/hole dimension. The KA method has great advantages for general scattering

analyses, since the formulation is simpler than that of the GTD, and easy to adapt to

complicated problems. By our analysis, it has been shown that the KA method can be

applied confidently for large aperture cases especially for estimating the main diffraction

beam behavior. Also, the simple formulation leads to a short calculation time. Accord-

ingly, the method has been successfully applied to investigate the plane wave scattering

by complicated and realistic objects such as thick loaded slits which can be considered

as a model of window aperture with glass layers. A further step to study more practical

6



diffraction analysis by three-dimensional rectangular holes in a thick conducting screen

has been established. More realistic aspects are under investigation.

1.3 Thesis Contents

This thesis consists of four chapters.

In Chapter 2, the KA method has been applied to formulate plane wave scattering by

loaded conducting thick slits. This is the model of a two-dimensional window aperture

with a glass layer inserted. Here, the far-field scattering in the upper, lower, and inner

region of the slit has been formulated as field radiations from equivalent magnetic current

sources postulated on the upper and lower apertures. The effect of the loaded layer on

the scattering fields has also been investigated. Both E and H polarization of the incident

wave has been taken into the formulation. Numerical calculations and discussion are

carried out, and the accuracy of the presented method is evaluated by comparison with

the results from reference solutions of GTD and KP methods. Special cases of infinitely

thin slit, as well as empty slit, have also been considered to evaluate the accuracy.

The KA method is extended to solve the plane wave scattering problem from a rect-

angular hole perforated in a thick conducting screen which is the three-dimension of the

building window in Chapter 3. This is a very important step where the KA method is

proved to be able to solve a practical problem of three-dimensional model. Based on

that, more practical problems can be solved using this calculation method. Also, the KA

efficiency can be evaluated since calculation for 3D objects is obviously much more com-

plicated compared with those of 2D objects. The calculation process is similar to which

shown in Chapter 2 where the scattering field can be derived using the equivalent magnetic

current sources. However, the detailed formulation is different since the scattered object

is three-dimensional. Both E and H polarization of the incident wave has been taken

into the formulation. Relation between the above two-dimensional and three-dimensional

scattering formulation has also been shown. Here, conversion equations between 2D and

3D formulations are expressed. This is not only to self-validate the formulation but also

help to estimate the complicated 3D scattering results from the simpler 2D results. Then

the calculation speed is reduced especially when more practical problems are taken into

account. Numerical calculations and discussion are carried out, and the accuracy of pre-
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sented method is evaluated by comparison with the results from reference solution of the

KP method.

Finally, Chapter 4 shows conclusions and discussions on our research. In the following

discussion, the time-harmonic factor e−iωt is assumed and suppressed throughout the text.

8



Chapter 2

Analysis of Plane Wave Scattering

by Loaded Conducting Thick Slits

In this chapter, the KA method has been applied to formulate plane wave scattering by

loaded conducting thick slits. The scattering field can be obtained by the radiation from

equivalent magnetic current sources on the aperture of the slit. Equivalent magnetic cur-

rents are also applied to calculate the penetrating fields inside the slit and the subsequent

transmitted field in the lower region. Both E and H polarized incident plane wave have

been formulated, and formulation of a special case of infinite screen has been derived.

The formulas derived in Sects. 2.1 and 2.2 are used to obtain some numerical results for

the scattering far-fields in Sect. 2.3. The KA method results have been compared with

those of GTD and KP method for validation.

As illustrated in Fig. 2.1, a plane wave with a unit amplitude:

ϕi
y = e−ik(x cos θ0+z sin θ0) (2.1)

impinges upon a slit perforated on an infinitely long perfectly conducting thick screen

with incident angle θ0. The width and thickness of the slit are a and b, respectively, and k

is the free space wavenumber. ϕi
y represents for Ei

y(H
i
y) for E(H) polarization. Inside the

slit, there exists a medium layer of permittivity εr and permeability µr and its thickness is

b2 − b1. In order to determine the scattering contributions ϕs
y, the KA method is utilized

here. Consequently, the scattering fields are obtained as radiations from the equivalent

magnetic current sources on the virtually closed apertures.
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Figure 2.1: Plane wave scattering by a loaded slit in a thick conducting screen.

Figure 2.2: Scattering field at upper and lower regions of the slit (radiation from the

equivalent magnetic current sources at the slit apertures).
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By doing so, there exists a reflected field ϕr due to the reflection from the screen’s

surface at z = 0 in the upper half-space (z > 0) as

ϕr
y =

Er
y

Hr
y

 = ∓e−ik(x cos θ0+z sin θ0), (2.2)

for E and H polarizations. This contribution will be omitted in the following analysis.

2.1 E Polarization

In this case, we have a Transverse Electric (TE) incident plane wave where electric vectors

Ei are perpendicular with the wave propagation direction. Eq. (2.1) becomes

Ei
y = e−ik(x cos θ0+z sin θ0). (2.3)

2.1.1 Primary Upper Scattering Far-field

The equivalent magnetic current sources on the closed upper side of the upper aperture

M+
1 can be expressed in terms of incident electric field as:

M+
1 (x, z = 0+) = Ei

y

∣∣
z=0

ŷ × (+ẑ) = Ei
y

∣∣
z=0

x̂

= e−ikx cos θ0x̂, (|x| < a

2
, z = 0+), (2.4)

where ‘ˆ ’ denotes the corresponding unit vector. With the condition of no equivalent

electric current exists, the scattering E-field Es
1(r) can be expressed in terms of the

equivalent magnetic current M+
1 as

Es
1(r) = −

∫
S′
{M+

1 (r
′)×∇′G}dS ′

= −
∫
S′
M+

1x(r
′)x̂×

(
∂G

∂x′ x̂+
∂G

∂y′
ŷ +

∂G

∂z′
ẑ

)
dS ′

= −
∫
S′
M+

1x(r
′)

(
∂G

∂y′
ẑ − ∂G

∂z′
ŷ

)
dS ′, (2.5)

where S ′ is the aperture (|x′| < a/2, z′ = 0+) on which the equivalent source M+
1 exists,

r is the vector directed to the observation point, r′ is the position vector to the aperture

source point (x′, z′ = 0) on S ′, and G is the two-dimensional half-space Green’s function,

considering the imaging effect of the magnetic current on the boundary

G(x, z;x′, z′) =
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2). (2.6)
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The scattering E-field Es
1(r) has only y component Es

1y[35]

Es
1y =

∫ a/2

−a/2

M+
1x(x

′)
∂

∂z′

{
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=0

}
dx′, (2.7)

where the zeroth-order Hankel function of the first kind H
(1)
0 (χ) for variable x′ is evaluated

by the special integral for variable η with saddle point method as

H
(1)
0 (k

√
(x− x′)2 + (z − z′)2) =

1

π

∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2|z−z′|√
k2 − η2

dη. (2.8)

Then Eq.(2.7) becomes, in case of z > 0, z′ = 0

Es
1y = − i

2π

∫ a/2

−a/2

e−ikx′ cos θ0
∂

∂z′

{∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2(z−z′)√
k2 − η2

∣∣∣∣
z′=0

}
dηdx′

=
−i2

2π

∫ a/2

−a/2

e−ikx′ cos θ0

∫ ∞

−∞
eiη(x−x′)+i

√
k2−η2zdηdx′

=
1

2π

∫ ∞

−∞
eiηx+i

√
k2−η2z

∫ a/2

−a/2

e−i(k cos θ0+η)x′
dx′dη

=
1

2π

∫ ∞

−∞
eiηx+i

√
k2−η2z e−i(k cos θ0+η)x′

−i(k cos θ0 + η)

∣∣∣∣a/2
−a/2

=
1

2π

∫ ∞

−∞
eiηx+i

√
k2−η2z e

i(k cos θ0+η)a/2 − e−i(k cos θ0+η)a/2

i(k cos θ0 + η)

=
−i

2π

∫ ∞

−∞

e(ika cos θ0)/2+iη(x+a/2)+i
√

k2−η2z − e(−ika cos θ0)/2+iη(x−a/2)+i
√

k2−η2z

(k cos θ0 + η)
dη

= I1 + I2. (2.9)

where

I1 =
−i

2π

∫ ∞

−∞

e(ika cos θ0)/2+iη(x+a/2)+i
√

k2−η2z

(k cos θ0 + η)
dη, (2.10)

I2 =
i

2π

∫ ∞

−∞

e(−ika cos θ0)/2+iη(x−a/2)+i
√

k2−η2z

(k cos θ0 + η)
dη. (2.11)

Calculate above integral with saddle point method with

η = k sinω, dη = k cosωdω, x∓ a/2 = ρ± cos θ±, z = ρ± sin θ±,√
k2 − η2 =

√
k2 − k2 sin2 ω = k cosω,

iη(x± a/2) + i
√

k2 − η2z = ik sinωρ∓ cos θ ∓+ik cosωρ∓ sin θ∓

= ikρ∓ sin(ω + θ∓). (2.12)

Then I1, I2 become

12



(a) (b)

Figure 2.3: Saddle point method integral evaluation (upper region).

I1 =
−i

2π

∫
C

e(ika cos θ0)/2+ikρ− sin(ω+θ−)

(k cos θ0 + k sinω)
k cosωdω

=
−i

2π

∫
C

e(ika cos θ0)/2+ikρ− sin(ω+θ−)

(cos θ0 + sinω)
cosωdω, (2.13)

I2 =
i

2π

∫
C

e(−ika cos θ0)/2+ikρ+ sin(ω+θ+)

(k cos θ0 + k sinω)
k cosωdω

=
i

2π

∫
C

e(−ika cos θ0)/2+ikρ+ sin(ω+θ+)

(cos θ0 + sinω)
cosωdω. (2.14)

The position of the pole in the ω plane yields − cos θ0 = sinωp, then

ωp = arcsin(− cos θ0) = − arcsin(cos θ0), (2.15)

θ0 0 π
2

π

ωp −π
2

0 π
2

One can find the saddle point from

∂

∂ω
(ikρ± sin(ω + θ±)) = ikρ± cos(ω + θ±) = 0

cos(ωs + θ±) = 0, ωs + θ± = ±π

2
. (2.16)

Since the observation point is in the upper half-plane, the saddle point in −π
2
< ω < π

2
is

With θ > 0:

ωs =
π

2
− θ±, sinωs = sin

(π
2
− θ±

)
= cos θ±, cosωs = cos

(π
2
− θ±

)
= sin θ±,

ikρ± sin(ω + θ±) ∼ ikρ± sin(ωs + θ±)−
ikρ±
2

sin(ωs + θ±)(ω − ωs)
2,

= ikρ± − ikρ±
2

(ω − ωs)
2. (2.17)
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Then

I1 =
−i

2π
e(ika cos θ0)/2

∫
SDP

eikρ−−ikρ−(ω−ωs)2/2

cos θ0 + sinωs

cosωdω

∼ −i

2π
e(ika cos θ0)/2 · sin θ−

cos θ0 + cos θ−
eikρ−

√
2π

ikρ−

=
−2 sin θ−

cos θ0 + cos θ−

√
1

8πkρ−
· eikρ−+(ika cos θ0)/2+iπ/4, (2.18)

I2 = +
i

2π
e−(ika cos θ0)/2

∫
SDP

eikρ+−ikρ+(ω−ωs)2/2

cos θ0 + sinωs

cosωdω

∼ i

2π
e−(ika cos θ0)/2 · sin θ+

cos θ0 + cos θ+
eikρ+

√
2π

ikρ+

=
2 sin θ+

cos θ0 + cos θ+

√
1

8πkρ+
· eikρ+−(ika cos θ0)/2+iπ/4. (2.19)

If the observation point is sufficiently far, considering the phase only, one gets

ρ± ∼ ρ∓ a

2
cos θ, θ± ∼ θ. (2.20)

Then the scattering E far-field is

Es
1y = I1 + I2

=
2 sin θ

cos θ0 + cos θ

√
1

8πkρ
eikρ+iπ/4

(
e−(ika cos θ0)/2+(ika cos θ)/2 − e(ika cos θ0)/2−(ika cos θ)/2

)
=

−4i sin θ sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

√
1

8πkρ
eikρ+iπ/4

=
−4i sin θ sin {ka(cos θ0 + cos θ)/2}

cos θ0 + cos θ
C(kρ), (2.21)

where

C(kρ) =

√
1

8πkρ
eikρ+iπ/4. (2.22)

On the shadow boundary (θ = π − θ0):

sin θ = sin(π − θ0) = sin θ0,

cos θ = cos(π − θ0) = − cos θ0.
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Then

lim
θ→π−θ0

Es
1y =

√
1

8πkρ
eikρ+iπ/4 lim

θ→π−θ0

−4i sin θ sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

=

√
1

8πkρ
eikρ+iπ/4−4i sin θ cos {ka(cos θ0 + cos θ)/2} ka(− sin θ)/2

− sin θ

∣∣∣∣
θ→π−θ0

= −2ika sin θ C(kρ). (2.23)

2.1.2 Modal Excitation in Slit Region

A part of the incident plane wave penetrates through the upper aperture and propagates

into the slit. This field impinges the loaded medium and eventually leads to the scattering

field in the lower half-space and a secondary contribution in the upper half-space. In the

previous study by GTD [31]–[33], the field in the slit has been considered to be excited

by the aperture edges (x = ±a/2, z = 0), and the exciting waveguide modes have been

derived from the ray-mode conversion method. In this investigation, however, the modal

excitation is given by equivalent magnetic source M−
1 on the closed aperture expressed

as

M−
1 (x, z = 0−) = Ei

y

∣∣
z=0

ŷ × (−ẑ) = −Ei
y

∣∣
z=0

x̂

= −e−ikx cos θ0x̂, (|x| < a

2
, z = 0−), (2.24)

The excited field ϕw = Ew inside a semi-infinitely long (b → ∞) parallel plane waveguide

may be expressed as

Ew
y =

∫ a/2

−a/2

M−
1x(x

′)
∂

∂z′
Gw(x, z;x′, z′ = 0−)dx

′, (2.25)

where Gw is the Green’s function for a parallel plane waveguide considering the imaging

effect for the metal closure at the aperture, namely

Gw(x, z;x′, z′) =
∞∑

m=1

2i

aζm
sin

mπ

a

(
x+

a

2

)
sin

mπ

a

(
x′ +

a

2

)
eiζm|z−z′|, (2.26)

and ζm denotes the wave number in z-direction as

ζm =

√
k2 −

(mπ

a

)2

. (2.27)

The field propagating downward inside the slit may be derived as

Ew
y =

∞∑
m=1

E−
m, (2.28)
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where

E±
m = Fm sin

mπ

a

(
x+

a

2

)
e±iζmz. (2.29)

Here, Fm is the excitation coefficient of the TEm waveguide modal field. Fm can be

calculated by integrating the equivalent source M−
1 over the aperture (|x| ⩽ a/2, z = 0−),

one gets

Fm = − 2mπ

{(mπ)2 − (ka cos θ0)2}

·
{
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

}
. (2.30)

2.1.3 Secondary Upper Scattering Far-field and Lower Scatter-

ing Far-field

The waveguide modes ϕ−
m = E−

m impinge the loaded medium as in Fig. 2.2. Then the

internal field inside the slit may be expressed as:

EL
y = RmE

+
m + E−

m = (Rme
iζmz + e−iζmz)Fm sin

mπ

a

(
x+

a

2

)
, (z > −b1), (2.31)

EL
y = BmE

+
m + CmE

−
m

= (Bme
iζ′mz + Cme

−iζ′mz)Fm sin
mπ

a

(
x+

a

2

)
, (−b1 > z > −b2), (2.32)

EL
y = TmE

−
m = Tme

−iζmzFm sin
mπ

a

(
x+

a

2

)
, (z < −b2), (2.33)

where ζ ′m denote the wave number inside the loaded medium in z-direction as

ζ ′m =

√
εrµrk2 −

(mπ

a

)2

. (2.34)

The corresponding magnetic field in x-direction Hx = −∂Ey/iωµ∂z can be expressed as

HL
x =

ζm
ωµ0

(−Rme
iζmz + e−iζmz)Fm sin

mπ

a

(
x+

a

2

)
, (z > −b1), (2.35)

HL
x =

ζ ′m
ωµ0µr

(−Bme
iζ′mz + Cme

−iζmz)Fm sin
mπ

a

(
x+

a

2

)
, (−b1 > z > −b2), (2.36)

HL
x =

ζm
ωµ0

Tme
−iζmzFm sin

mπ

a

(
x+

a

2

)
, (z < −b2). (2.37)
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Apply boundary condition at z = −b1 and z = −b2 for the above field equations:

EL
y

∣∣
z=−b+1

= EL
y

∣∣
z=−b−1

, (2.38)

HL
x

∣∣
z=−b+1

= HL
x

∣∣
z=−b−1

, (2.39)

EL
y

∣∣
z=−b+2

= EL
y

∣∣
z=−b−2

, (2.40)

HL
x

∣∣
z=−b+2

= HL
x

∣∣
z=−b−2

. (2.41)

One gets the reflection coefficient Rm and the transmission coefficient Tm as

Rm =
(ζ2mµ

2
r − ζ ′2m)2i sin{ζ ′m(b1 − b2)}e2iζmb1

(µrζm + ζ ′m)
2eiζ′m(b1−b2) − (µrζm − ζ ′m)

2eiζ′m(b2−b1)
, (2.42)

Tm =
4µrζmζ

′
me

iζm(b1−b2)

(µrζm + ζ ′m)
2eiζ′m(b1−b2) − (µrζm − ζ ′m)

2eiζ′m(b2−b1)
. (2.43)

In case of empty slit (εr = µr = 1 or b1 = b2), one gets immediately Rm = 0, Tm = 1, and

the internal waveguide field Ew propagates directly down to the lower aperture (z = −b).

In the case of loaded slit, the reflected waveguide modes RmE
+
m bounce back to the

upper aperture and excite there secondary equivalent magnetic current M±
11

M±
11(x, z = 0±) =

∞∑
m=1

RmE
+
mŷ

∣∣
z=0

× (±ẑ)

= ±
∞∑

m=1

RmFm sin
mπ

a

(
x+

a

2

)
x̂,

(
|x| < a

2

)
. (2.44)

Similarly to the primary upper scattering field derivation from equivalent magnetic cur-

rent, the secondary upper scattering field caused by M+
11 at z = 0+ can be expressed

as

Es
11y =

∫ a/2

−a/2

M+
11x(x

′)
∂

∂z′
G(x, z;x′, z′ = 0+)dx

′. (2.45)

Substituting Eqs. (2.6) and (2.44) into Eq. (2.45) and evaluating the integral by the saddle

point method asymptotically, one can derive the secondary scattering far field in the upper

half-space (z > 0) as

Es
11y = 2ika sin θ C(kρ)

∞∑
m=1

RmFmmπ

(mπ)2 − (ka cos θ)2

·
{
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

}
. (2.46)

On the other hand, the transmitted waveguide modes TmE
−
m propagate down to the

lower aperture (z = −b) and excite there scattering fields Es
2 to the lower half-space
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(z < −b). These scattering fields are again calculated from the equivalent magnetic

currents M±
2 on the closed aperture at z = −b, as in Fig. 2. The equivalent magnetic

current M±
2 can be found from

M±
2 (x, z = −b±) =

∞∑
m=1

TmE
−
mŷ

∣∣
z=−b

× (±ẑ)

= ±
∞∑

m=1

TmFm sin
mπ

a

(
x+

a

2

)
eiζmbx̂,

(
|x| < a

2

)
. (2.47)

The radiation field Es
2 in the lower half-space can be derived from the equivalent source

M−
2 in Eq. (2.47) like the primary scattering field Es

1 in Sect. 2.1.1. Es
2 becomes

Es
2y =

∫ a/2

−a/2

M−
2x(x

′)
∂

∂z′
G(x, z;x′, z′ = −b−)dx

′. (2.48)

Once again, the integral in Eq. (2.48) can be evaluated using the saddle point method.

One gets the scattering field Es
2y for θ > π as From Eq. (2.6) in case of z < z′ = −b, the

lower E-field

Es
2y =

∫ a/2

−a/2

M−
2x

∂

∂z′

{
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=−b

}
dx′

= − i

2π

∫ a/2

−a/2

∞∑
m=1

TmFm sin
mπ

a

(
x′ +

a

2

)
eiζmb

∂

∂z′

{∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2(−z+z′)√
k2 − η2

∣∣∣∣
z′=−b

}
dηdx′

= − i2

2π

∫ a/2

−a/2

∞∑
m=1

TmFm sin
mπ

a

(
x′ +

a

2

)
eiζmb

∫ ∞

−∞
eiη(x−x′)+i

√
k2−η2(−z−b)dηdx′

=
1

2π

∫ ∞

−∞

∞∑
m=1

TmFme
iζmbeiηx−i

√
k2−η2(z+b)

{∫ a/2

−a/2

sin
mπ

a

(
x′ +

a

2

)
e−iηx′

dx′

}
dη

=
1

2π

∫ ∞

−∞

∞∑
m=1

TmFme
iζmbeiηx−i

√
k2−η2(z+b)

{
−mπ

a(
mπ
a

)2 − η2

(
cosmπ · e−iηa/2 − eiηa/2

)}
dη

= − 1

2π

∫ ∞

−∞

∞∑
m=1

TmFme
iζmb

mπ
a(

mπ
a

)2 − η2{
cosmπeiη(x−a/2)−i

√
k2−η2(z+b) − eiη(x+a/2)−i

√
k2−η2(z+b)

}
dη
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= I1 + I2. (2.49)

where

I1 = − 1

2π

∫ ∞

−∞

∞∑
m=1

TmFme
iζmb

mπ
a(

mπ
a

)2 − η2
cosmπeiη(x−a/2)−i

√
k2−η2(z+b)dη, (2.50)

I2 =
1

2π

∫ ∞

−∞

∞∑
m=1

TmFme
iζmb

mπ
a(

mπ
a

)2 − η2
eiη(x+a/2)−i

√
k2−η2(z+b)dη. (2.51)

Calculate above integral with saddle point method with

η = k sinω, dη = k cosωdω, x∓ a

2
= ρ′± cos θ±, z + b = ρ′± sin θ±,√

k2 − η2 =
√

k2 − k2 sin2 ω = k cosω,

iη(x± a

2
)− i

√
k2 − η2(z + b) = ik sinωρ′∓ cos θ∓ − ik cosωρ′∓ sin θ∓

= ikρ′∓ sin(ω − θ∓). (2.52)

Then I1, I2 become

(a) (b)

Figure 2.4: Saddle point method integral evaluation (lower region).

I1 = − 1

2π

∫
C

∞∑
m=1

TmFme
iζmbmπ

a

k cosω(
mπ
a

)2 − (k sinω)2
cosmπ · eikρ′+ sin(ω−θ+)dω, (2.53)

I2 =
1

2π

∫
C

∞∑
m=1

TmFme
iζmbmπ

a

k cosω(
mπ
a

)2 − (k sinω)2
eikρ

′
− sin(ω−θ−)dω. (2.54)

The position of the pole in ω plane yields
(
mπ
a

)2 − (k sinωp)
2, then

ωp = arcsin
(mπ

ka

)2

. (2.55)
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One can find the saddle point from

∂

∂ω
(ikρ′± sin(ω − θ±)) = ikρ′± cos(ω − θ±) = 0,

cos(ωs − θ±) = 0, ωs − θ± = ±π

2
. (2.56)

Since the observation point is in the lower half-plane, the saddle point in −π
2
< ω < π

2
is

With θ < 0:

ωs =
π

2
+ θ±, sinωs = sin

(π
2
+ θ±

)
= cos θ±, cosωs = cos

(π
2
+ θ±

)
= − sin θ±,

ikρ′± sin(ω − θ±) ∼ ikρ′± sin(ωs − θ±)−
ikρ′±
2

sin(ωs − θ±)(ω − ωs)
2

= ikρ′± −
ikρ′±
2

(ω − ωs)
2. (2.57)

Then

I1 = − 1

2π

∞∑
m=1

TmFme
iζmbmπ

a
cosmπ

∫
SDP

−k sin θ+(
mπ
a

)2 − (k cos θ+)2
eikρ

′
+−ikρ′+(ω−ωs)2/2dω

= − 1

2π

∞∑
m=1

TmFme
iζmbmπ

a
cosmπ

−k sin θ+(
mπ
a

)2 − (k cos θ+)2
eikρ

′
+

√
2π

ikρ′+

= 2k sin θ+

√
1

8πkρ′+

∞∑
m=1

TmFm
mπ
a
cosmπ(

mπ
a

)2 − (k cos θ+)2
eikρ

′
++iζmb−iπ/4, (2.58)

I2 =
1

2π

∞∑
m=1

TmFme
iζmbmπ

a

∫
SDP

−k sin θ−(
mπ
a

)2 − (k cos θ−)2
eikρ

′
−−ikρ′−(ω−ωs)2/2dω

=
1

2π

∞∑
m=1

TmFme
iζmbmπ

a

−k sin θ−(
mπ
a

)2 − (k cos θ−)2
eikρ

′
−

√
2π

ikρ′−

= −2k sin θ−

√
1

8πkρ′−

∞∑
m=1

TmFm
mπ
a(

mπ
a

)2 − (k cos θ−)2
eikρ

′
−+iζmb−iπ/4. (2.59)

Since we assumed ρ is the distance from observation point (in both upper and lower

half-space) to the origin. Then

ρ = ρ′ + b sin θ. (2.60)

If the observation point is sufficiently far, considering the phase only, one gets

ρ± ∼ ρ∓ a

2
cos θ, θ± ∼ θ. (2.61)
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Then the scattering E far-field from the lower aperture is

Es
2y =I1 + I2

=2k sin θ

√
1

8πkρ

∞∑
m=1

TmFm
mπ
a(

mπ
a

)2 − (k cos θ)2{
cosmπe(−ika cos θ)/2 − e(ika cos θ)/2

}
eikρ+iζmb−iπ/4+ikb sin θ

=2k sin θ

√
1

8πkρ

∞∑
m=1

Tm
−2mπ

(mπ)2 − (ka cos θ0)2

mπ
a
a2

(mπ)2 − (ka cos θ0)2

·
{
cosmπe(−ika cos θ0)/2 − e(ika cos θ0)/2

}
·
{
cosmπe(−ika cos θ)/2 − e(ika cos θ)/2

}
eikρ+iζmb−iπ/4+ikb sin θ

=4ika sin θC(kρ)
∞∑

m=1

Tm
(mπ)2

{(mπ)2 − (ka cos θ0)2}{(mπ)2 − (ka cos θ)2}

·
{
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

}
·
{
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

}
· eiζmb+ikb sin θ. (2.62)

For modal reflection at the lower aperture, one may use the similar formula in Eq. (2.25)

with M+
2x in Eq. (2.47). One finds that the modal coefficients obtained from the equivalent

magnetic current M+
2x become unit values which cancel the reflection coefficients (−1) of

the waveguide modes by closing the lower aperture. Consequently, there is no reflection

at all from the lower aperture by the Kirchhoff approximation. Similarly, the modal

reflection does not also exist at the upper aperture despite the presence of the equivalent

magnetic current M−
11x.

2.1.4 Scattering Far-field from Infinitely Thin Slit

It may be interesting to derive a special circumstance of an infinitely thin slit, one can

take the limit b → 0 in Eq. (2.62), and the transmission coefficient Tm = 1. On the other

hand, the lower scattering field in this case ϕss
2 = Ess

2 can be derived directly from M−
1

in Eq. (2.24) in the similar way of deriving Es
1 in Sect. 2.1.1 with M+

1 replaced by M−
1

in Eq. (2.5). Since M−
1 = −M+

1 , one gets for θ > π

Ess
2y = −Es

1y =
4i sin θ sin {ka(cos θ0 + cos θ)/2}

cos θ0 + cos θ
C(kρ). (2.63)

The comparison of results from these two calculations will be shown in Sect. 2.3.
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Figure 2.5: Plane wave scattering by an infinitely thin slit.

2.2 H Polarization

In this case, we have a Transverse Magnetic (TM) incident plane wave where magnetic

vectors H i are perpendicular with the wave propagation direction. Eq. (2.1) becomes

H i
y = e−ik(x cos θ0+z sin θ0). (2.64)

The corresponding incident electric field components can be derived based on Maxwell’s

equations as:

−iωε0E
i = ▽▽▽×H i =

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

0 H i
y 0

∣∣∣∣∣∣∣∣∣ = x̂

(
− ∂

∂z
H i

y

)
+ ẑ

(
∂

∂x
H i

y

)
. (2.65)

Then

Ei
x = − i

ωε0

∂H i
y

∂z
= −

√
µ0

ε0
sin θe−ik(x cos θ0+z sin θ0), (2.66)

Ei
z =

i

ωε0

∂H i
y

∂x
=

√
µ0

ε0
cos θe−ik(x cos θ0+z sin θ0). (2.67)

22



2.2.1 Primary Upper Scattering Faf-field

The equivalent magnetic current sources on the closed upper side of the upper aperture

M+
1 can be expressed in terms of incident electric field as:

M+
1 (x, z = 0+) = (Ei

xx̂+ Ei
zẑ)

∣∣
z=0

× (+ẑ) = −Ei
x

∣∣
z=0

x̂

=

√
µ0

ε0
sin θ0e

−ikx cos θ0ŷ, (|x| < a

2
, z = 0+). (2.68)

With the condition of no equivalent electric current exists, the scattering H-field Hs
1(r)

can be expressed in terms of the equivalent magnetic current M+
1 as

Hs
1(r) = iωε0

∫
S′
M+

1 (r
′)GdS ′ = iωε0

∫
S′
M+

1y(r
′)GdS ′ŷ. (2.69)

The scattering H-field Hs
1(r) has only y component Hs

1y[35]

Hs
1y = iωε0

∫ a/2

−a/2

M+
1y(x

′)
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=0

dx′

= −k sin θ0
2

∫ a/2

−a/2

e−ikx′ cos θ0H
(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=0

dx′. (2.70)

Then Eq. (2.70) becomes, in case of z > 0, z′ = 0

Hs
1y = −k sin θ0

2

∫ a/2

−a/2

e−ikx′ cos θ0

{
1

π

∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2(z−z′)√
k2 − η2

∣∣∣∣
z′=0

dη

}
dx′

= −k sin θ0
2π

∫ a/2

−a/2

e−i(k cos θ0+η)x′
dx′

∫ ∞

−∞

eiηx+i
√

k2−η2z√
k2 − η2

dη

= −k sin θ0
2π

∫ ∞

−∞

e−i(k cos θ0+η)x′

−i(k cos θ0 + η)

∣∣∣∣a/2
−a/2

eiηx+i
√

k2−η2z√
k2 − η2

dη

= −k sin θ0
2π

∫ ∞

−∞

ei(k cos θ0+η)a/2 − e−i(k cos θ0+η)a/2

i(k cos θ0 + η)

eiηx+i
√

k2−η2z√
k2 − η2

dη

=
ik sin θ0

2π

∫ ∞

−∞

e(ika cos θ0)/2+iη(x+a/2)+i
√

k2−η2z − e(−ika cos θ0)/2+iη(x−a/2)+i
√

k2−η2z

(k cos θ0 + η)
√

k2 − η2
dη

= I1 + I2. (2.71)

where

I1 =
ik sin θ0

2π

∫ ∞

−∞

e(ika cos θ0)/2+iη(x+a/2)+i
√

k2−η2z

(k cos θ0 + η)
√

k2 − η2
dη, (2.72)

I2 = −ik sin θ0
2π

∫ ∞

−∞

e(−ika cos θ0)/2+iη(x−a/2)+i
√

k2−η2z

(k cos θ0 + η)
√
k2 − η2

dη. (2.73)
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Calculate above integral with saddle point method with

η = k sinω, dη = k cosωdω, x∓ a

2
= ρ± cos θ±, z = ρ± sin θ±,√

k2 − η2 =
√

k2 − k2 sin2 ω = k cosω,

iη(x± a

2
) + i

√
k2 − η2z = ik sinωρ∓ cos θ ∓+ik cosωρ∓ sin θ∓

= ikρ∓ sin(ω + θ∓). (2.74)

Then I1, I2 become

I1 =
ik sin θ0

2π

∫
C

e(ika cos θ0)/2+ikρ− sin(ω+θ−)

(k cos θ0 + k sinω)k cosω
k cosωdω

=
i sin θ0
2π

∫
C

e(ik cos θ0)/2+ikρ− sin(ω+θ−)

(cos θ0 + sinω)
dω, (2.75)

I2 = −ik sin θ0
2π

∫
C

e(−ika cos θ0)/2+ikρ+ sin(ω+θ+)

(k cos θ0 + k sinω)k cosω
k cosωdω

= −i sin θ0
2π

∫
C

e(−ika cos θ0)/2+ikρ+ sin(ω+θ+)

(cos θ0 + sinω)
dω. (2.76)

The position of the pole in the ω plane yields − cos θ0 = sinωp, then

ωp = arcsin(− cos θ0) = − arcsin(cos θ0), (2.77)

θ0 0 π
2

π

ωp −π
2

0 π
2

One can find the saddle point from

∂

∂ω
(ikρ± sin(ω + θ±)) = ikρ± cos(ω + θ±) = 0,

cos(ωs + θ±) = 0, ωs + θ± = ±π

2
. (2.78)

Since the observation point is in the upper half-plane, the saddle point in −π
2
< ω < π

2
is

With θ > 0:

ωs =
π

2
− θ±, sinωs = sin

(π
2
− θ±

)
= cos θ±, cosωs = cos

(π
2
− θ±

)
= sin θ±,

ikρ± sin(ω + θ±) ∼ ikρ± sin(ωs + θ±)−
ikρ±
2

sin(ωs + θ±)(ω − ωs)
2

= ikρ± − ikρ±
2

(ω − ωs)
2. (2.79)
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Then

I1 =
i sin θ0
2π

e(ika cos θ0)/2
∫
SDP

eikρ−−ikρ−(ω−ωs)2/2

cos θ0 + sinωs

dω

=
i sin θ0
2π

e(ika cos θ0)/2
1

cos θ0 + cos θ−
eikρ−

√
2π

ikρ−

=
2 sin θ0

cos θ0 + cos θ−

√
1

8πkρ−
eikρ−+(ika cos θ0)/2+iπ/4, (2.80)

I2 = −i sin θ0
2π

e(−ika cos θ0)/2

∫
SDP

eikρ+−ikρ+(ω−ωs)2/2

cos θ0 + sinωs

dω

= −i sin θ0
2π

e(−ika cos θ0)/2
1

cos θ0 + cos θ+
eikρ+

√
2π

ikρ+

= − 2 sin θ0
cos θ0 + cos θ+

√
1

8πkρ+
eikρ+−(ika cos θ0)/2+iπ/4. (2.81)

If the observation point is sufficiently far, considering the phase only, one gets

ρ± ∼ ρ∓ a

2
cos θ, θ± ∼ θ. (2.82)

Then the scattering H far-field is

Hs
1y = I1 + I2

=
2 sin θ0

cos θ0 + cos θ

√
1

8πkρ
eikρ+iπ/4

{
eika(cos θ0+cos θ)/2 − e−ika(cos θ0+cos θ)/2

}
=

4i sin θ0 sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

C(kρ). (2.83)

On the shadow boundary (θ = π − θ0):

sin θ = sin(π − θ0) = sin θ0,

cos θ = cos(π − θ0) = − cos θ0.

Then

lim
θ→π−θ0

Hs
1y =

√
1

8πkρ
eikρ+iπ/4 lim

θ→π−θ0

4i sin θ0 sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

=

√
1

8πkρ
eikρ+iπ/44i sin θ0 cos {ka(cos θ0 + cos θ)/2} ka(− sin θ)/2

− sin θ

∣∣∣∣
θ→π−θ0

= 2ika sin θ0 C(kρ). (2.84)
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2.2.2 Modal Excitation in Slit Region

The modal excitation is given by equivalent magnetic source M−
1 on the closed aperture

expressed as

M−
1 (x, z = 0−) = (Ei

xx̂+ Ei
zẑ)

∣∣
z=0

× (−ẑ) = Ei
x

∣∣
z=0

x̂

= −
√

µ0

ε0
sin θ0e

−ikx cos θ0ŷ, (|x| < a

2
, z = 0−). (2.85)

The excited field ϕw = Hw inside a semi-infinitely long (b → ∞) parallel plane waveg-

uide may be expressed as

Hw
y = iωε0

∫
S′
M−

1 G
wdS ′ = iωε0

∫
S′
M−

1yG
wdS ′. (2.86)

The field propagating downward inside the slit may be derived as

Hw
y =

∞∑
m=0

H−
m, (2.87)

where

H±
m = F̄m cos

mπ

a

(
x+

a

2

)
e±iζmz. (2.88)

Here, F̄m is the excitation coefficient of the TMm waveguide modal field. F̄m can be

calculated by integrating the equivalent source M−
1 over the aperture (|x| ⩽ a/2, z = 0−),

one gets

F̄m = iωε0

(
− iϵm
aζm

)√
µ0

ε0
sin θ0

{∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−ikx0 cos θ0dx′

}

=
ϵmk

aζm
sin θ0

[
−ik cos θ0

(ik cos θ0)2 +
(
mπ
a

)2 {cosmπe(−ika cos θ0)/2 − e(ika cos θ0)/2
}]

= − iϵmk
2a sin θ0 cos θ0

ζm {(mπ)2 − (ka cos θ0)2}
{
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

}
(2.89)

In addition, applying Maxwell’s Equations in the waveguide area, one can derive E-field

components propagating inside the waveguide as

−iωε0E
w = ∇×Hw =

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

0 Hw
y 0

∣∣∣∣∣∣∣∣∣ = x̂

(
− ∂

∂z
Hw

y

)
+ ẑ

(
∂

∂x
Hw

y

)
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Ew
x =

1

iωε0

∂Hw
y

∂z
=

1

iωε0

∞∑
m=0

F̄m cos
mπ

a

(
x+

a

2

)
(−iζm)e

−iζmz

=
∞∑

m=0

F̄mx cos
mπ

a

(
x+

a

2

)
e−iζmz, (2.90)

where

F̄mx = − ζm
ωε0

F̄m, (2.91)

Ew
z = − 1

iωε0

∂Hw
y

∂x
= − 1

iωε0

∞∑
m=0

F̄m

(mπ

a

){
− sin

mπ

a

(
x+

a

2

)}
e−iζmz

=
∞∑

m=0

F̄mz sin
mπ

a

(
x+

a

2

)
e−iζmz, (2.92)

where

F̄mz =
mπ

iωε0a
F̄m. (2.93)

2.2.3 Secondary Upper Scattering Far-field and Lower Scatter-

ing Field

The waveguide modes ϕ−
m = H−

m impinge the loaded medium as in Fig. 2.2. Then the

internal field inside the slit may be expressed as:

HL
y = R̄mH

+
m +H−

m = (R̄me
iζmz + e−iζmz)F̄m cos

mπ

a

(
x+

a

2

)
, (z > −b1), (2.94)

HL
y = B̄mH

+
m + C̄mH

−
m

= (B̄me
iζ′mz + C̄me

−iζ′mz)F̄m cos
mπ

a

(
x+

a

2

)
, (−b1 > z > −b2), (2.95)

HL
y = T̄mH

−
m = T̄me

−iζmzF̄m cos
mπ

a

(
x+

a

2

)
, (z < −b2). (2.96)

The corresponding electric field in x-direction Ex = ∂Hy/iωε∂z can be expressed as

EL
x =

ζm
ωε0

(R̄me
iζmz − e−iζmz)F̄m cos

mπ

a

(
x+

a

2

)
, (z > −b1), (2.97)

EL
x =

ζ ′m
ωε0εr

(B̄me
iζ′mz − C̄me

−iζ′mz)F̄m cos
mπ

a

(
x+

a

2

)
, (−b1 > z > −b2), (2.98)

EL
x = − ζm

ωε0
T̄me

−iζmzF̄m cos
mπ

a

(
x+

a

2

)
, (z < −b2). (2.99)
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Apply boundary condition at z = −b1 and z = −b2 for the above field equations:

HL
y

∣∣
z=−b+1

= HL
y

∣∣
z=−b−1

, (2.100)

EL
x

∣∣
z=−b+1

= EL
x

∣∣
z=−b−1

, (2.101)

HL
y

∣∣
z=−b+2

= HL
y

∣∣
z=−b−2

, (2.102)

EL
x

∣∣
z=−b+2

= EL
x

∣∣
z=−b−2

. (2.103)

One gets the reflection coefficient R̄m and the transmission coefficient T̄m as

R̄m =
(ζ2mε

2
r − ζ ′2m)2i sin ζ

′
m(b1 − b2)e

2iζmb1

(εrζm + ζ ′m)
2eiζ′m(b1−b2) − (εrζm − ζ ′m)

2eiζ′m(b2−b1)
, (2.104)

T̄m =
4εrζmζ

′
me

iζm(b1−b2)

(εrζm + ζ ′m)
2eiζ′m(b1−b2) − (εrζm − ζ ′m)

2eiζ′m(b2−b1)
. (2.105)

In case of empty slit (εr = µr = 1 or b1 = b2), one gets immediately R̄m = 0, T̄m = 1, and

the internal waveguide field Hw propagates directly down to the lower aperture (z = −b).

In the case of loaded slit, the reflected waveguide modes R̄mH
+
m bounce back to the

upper aperture and excite there secondary equivalent magnetic current M±
11

M±
11(x, z = 0±) =

∞∑
m=0

R̄m(E
w
x x̂+ Ew

z ẑ)
∣∣
z=0

× (±ẑ)

= ±
∞∑

m=0

R̄mF̄m cos
mπ

a

(
x+

a

2

)
ŷ,

(
|x| < a

2

)
. (2.106)

Similarly to the primary upper scattering field derivation from equivalent magnetic cur-

rent, the secondary upper scattering field caused by M+
11 at z = 0+ can be expressed

as

Hs
11y = iωε0

∫ a/2

−a/2

M+
11y(x

′)
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=0

dx′. (2.107)

Substituting Eq. (2.106) into Eq. (2.107) and evaluating the integral by the saddle point

method asymptotically as in Sect. 2.1.1, one can derive the secondary scattering far field

in the upper half-space (z > 0) for H polarization case as

Hs
11y = 2ka cos θ C(kρ)

∞∑
m=0

R̄mF̄mζma

(mπ)2 − (ka cos θ)2

·
{
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

}
. (2.108)

On the other hand, the transmitted waveguide modes T̄mH
−
m propagate down to the

lower aperture (z = −b) and excite there scattering fields Hs
2 to the lower half-space
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(z < −b). These scattering fields are again calculated from the equivalent magnetic

currents M±
2 on the closed aperture at z = −b, as in Fig. 2.2. The equivalent magnetic

current M±
2 can be found from

M±
2 (x, z = −b±) = (Ew

x x̂+ Ew
z ẑ)

∣∣
z=−b

× (±ẑ)

= ∓
∞∑

m=0

T̄mF̄mx cos
mπ

a

(
x+

a

2

)
eiζmbŷ,

(
|x| < a

2

)
. (2.109)

The radiation field Hs
2 in the lower half-space can be derived from the equivalent source

M−
2 in Eq. (2.47) like the primary scattering fieldHs

1 withM+
1 in Sect. 2.2.1. Hs

2 becomes

Hs
2y = iωε0

∫ a/2

−a/2

M−
2y(x

′)
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=0

dx′. (2.110)

Once again, the integral in Eq. (2.110) can be evaluated using the saddle point method.

One gets the scattering field Hs
2y for θ > π as

Hs
2y =

i2ωε0
2

∫ a/2

−a/2

M−
2yH

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

∣∣∣∣
z′=−b

dx′

= −ωε0
2π

∫ a/2

−a/2

∞∑
m=0

T̄mF̄mx cos
mπ

a

(
x′ +

a

2

)
eiζmb

·

{∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2(−z+z′)√
k2 − η2

∣∣∣∣
z′=−b

dη

}
dx′

= −ωε0
2π

∫ a/2

−a/2

∞∑
m=0

T̄mF̄mx cos
mπ

a

(
x′ +

a

2

)
eiζmb

∫ ∞

−∞
eiη(x−x′)+i

√
k2−η2(−z−b)dηdx′

= −ωε0
2π

∫ ∞

−∞

∞∑
m=0

T̄mF̄mxe
iζmbeiηx−i

√
k2−η2(z+b)

{∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−iηx′

dx′

}
dη

= −ωε0
2π

∫ ∞

−∞

∞∑
m=0

T̄mF̄mxe
iζmbeiηx−i

√
k2−η2(z+b)

·

{
−iη(

mπ
a

)2 − η2

(
cosmπe−iηa/2 − eiηa/2

)}
dη

=
iωε0
2π

∫ ∞

−∞

∞∑
m=0

T̄mF̄mxe
iζmb η(

mπ
a

)2 − η2

·
{
cosmπeiη(x−a/2)−i

√
k2−η2(z+b) − eiη(x+a/2)−i

√
k2−η2(z+b)

}
dη

= I1 + I2. (2.111)
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Calculate above integral with saddle point method with

η = k sinω, dη = k cosωdω, x∓ a

2
= ρ′± cos θ±, z + b = ρ′± sin θ±,√

k2 − η2 =
√
k2 − k2 sin2 ω = k cosω,

iη(x± a

2
)− i

√
k2 − η2(z + b) = ik sinω · ρ′∓ cos θ∓ − ik cosω · ρ′∓ sin θ∓

= ikρ′∓ sin(ω − θ∓). (2.112)

Then I1, I2 become

I1 =
iωε0
2π

∫
C

∞∑
m=0

T̄mF̄mxe
iζmb k sinω(

mπ
a

)2 − (k sinω)2
cosmπeikρ

′
+ sin(ω−θ+)dω, (2.113)

I2 = −iωε0
2π

∫
C

∞∑
m=0

T̄mF̄mxe
iζmb k sinω(

mπ
a

)2 − (k sinω)2
eikρ

′
− sin(ω−θ−)dω. (2.114)

The position of the pole in ω plane yields
(
mπ
a

)2 − (k sinωp)
2, then

ωp = arcsin
(mπ

ka

)2

. (2.115)

One can find the saddle point from

∂

∂ω
(ikρ′± sin(ω − θ±)) = ikρ′± cos(ω − θ±) = 0,

cos(ωs − θ±) = 0, ωs − θ± = ±π

2
. (2.116)

Since the observation point is in the lower half-plane, the saddle point in −π
2
< ω < π

2
is

With θ < 0:

ωs =
π

2
+ θ±, sinωs = sin

(π
2
+ θ±

)
= cos θ±, cosωs = cos

(π
2
+ θ±

)
= − sin θ±,

ikρ′± sin(ω − θ±) ∼ ikρ′± sin(ωs − θ±)−
ikρ′±
2

sin(ωs − θ±)(ω − ωs)
2,

= ikρ′± −
ikρ′±
2

(ω − ωs)
2. (2.117)

Then

I1 =
iωε0
2π

∞∑
m=0

T̄mF̄mxe
iζmb cosmπ

∫
SDP

k cos θ+(
mπ
a

)2 − (k cos θ+)2
eikρ

′
+−ikρ′+(ω−ωs)2/2dω

=
iωε0
2π

∞∑
m=0

T̄mF̄mxe
iζmb cosmπ

k cos θ+(
mπ
a

)2 − (k cos θ+)2
eikρ

′
+

√
2π

ikρ′+

= 2kωε0 cos θ+

√
1

8πkρ′+

∞∑
m=0

T̄mF̄mx cosmπ(
mπ
a

)2 − (k cos θ+)2
eikρ

′
++iζmb+iπ/4, (2.118)
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I2 = −iωε0
2π

∞∑
m=0

T̄mF̄mxe
iζmb

∫
SDP

k cos θ−(
mπ
a

)2 − (k cos θ−)2
eikρ

′
−−ikρ′−(ω−ωs)2/2dω

= −iωε0
2π

∞∑
m=0

T̄mF̄mxe
iζmb k cos θ−(

mπ
a

)2 − (k cos θ−)2
eikρ

′
−

√
2π

ikρ′−

= −2kωε0 cos θ−

√
1

8πkρ′−

∞∑
m=0

T̄mF̄mx(
mπ
a

)2 − (k cos θ−)2
eikρ

′
−+iζmb+iπ/4. (2.119)

Since we assumed ρ is the distance from observation point (in both upper and lower

half-space) to the origin. Then

ρ = ρ′ + b sin θ. (2.120)

If the observation point is sufficiently far, considering the phase only, one gets

ρ± ∼ ρ∓ a

2
cos θ, θ± ∼ θ. (2.121)

Then the scattering H far-field from the lower aperture is, using Eqs. (2.89) and (2.91)

Hs
2y =I1 + I2

=2kωε0 cos θ

√
1

8πkρ

·
∞∑

m=0

T̄mF̄mx(
mπ
a

)2 − (k cos θ)2

{
cosmπ · e(−ika cos θ)/2 − e(ik cos θ)/2

}
eikρ+iζmb+iπ/4+ikb sin θ

=2ka cos θC(kρ)
∞∑

m=0

T̄mF̄m
−ζma

(mπ)2 − (ka cos θ)2

·
{
(−1)me−ik a

2
cos θ − eik

a
2
cos θ

}
eiζmb+ikb sin θ. (2.122)

For modal reflection at the lower aperture, one may use the similar formula in Eq. (2.86)

withM+
2y in Eq. (2.109). One finds that the modal coefficients obtained from the equivalent

magnetic current M+
2x become unit values which cancel the reflection coefficients (−1) of

the waveguide modes by closing the lower aperture. Consequently, there is no reflection

at all from the lower aperture by the Kirchhoff approximation. Similarly, the modal

reflection does not also exist at the upper aperture despite the presence of the equivalent

magnetic current M−
11x.

2.2.4 Scattering Far-field from Infinitely Thin Slit

Special circumstance of an infinitely thin slit has also been considered for H polarization

case, one can take the limit b → 0 in Eq. (2.122), and the transmission coefficient Tm = 1.
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On the other hand, the lower scattering field in this case ϕss
2 = Hss

2 can be derived directly

from M−
1 in Eq. (2.85) in the similar way of deriving Hs

1 in Sect. 2.2.1 with M+
1 replaced

by M−
1 in Eq. (2.69). Since M−

1 = −M+
1 , one gets for θ > π

Hss
2y = −Hs

1y = −4i sin θ0 sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

C(kρ). (2.123)

The comparison of results from these two calculations will be shown in Sect. 2.3.

2.3 Numerical Results and Discussion

Some numerical results for the scattering far fields by thick loaded conducting slit are

obtained by using the formulas derived in the previous section. The scattering field in the

upper half-space (z > 0) is given by a summation of the primary and secondary upper

scattering field ϕs
1+ϕs

11, and the one in the lower half-space (z < −b) is by ϕs
2. Firstly, the

figures which include numerical results from KA, GTD, and KP method for loaded slit are

shown to validate the formulation obtained by the proposed KA method. After that, the

other aspects of scattering feature analyzed by the KA method have been shown. Special

cases of empty slit (Rm = 0, Tm = 1) and infinitely thin slit has also been investigated.

In the following calculations, a common factor C(kρ) is omitted.

Figures 2.6–2.8 show the scattering far field for fully loaded slits in E polarization.

The aperture widths are set to be ka = 30, the screen thickness is kb = 2, the complex

relative permitivity εr = 3+ i4 represents for the lossy loaded layer, the complex relative

permeability µr = 1, and the incident angle θ0 = 20◦, 50◦, 90◦ are chosen. As can be

seen from the figures, in general, the higher incident angle is, the stronger the scattering

fields become, especially at the main lobe. One observes that the main lobes direct the

corresponding reflected and incident shadow boundary directions. A symmetric pattern

with respect to the normal (z) axis is observed in case of normal incidence. When the

loaded medium has a loss (denoted by the imaginary part in loaded material parameters),

the scattering fields in both half-spaces become weak due to the decay inside the dielectric

material. The effect of the loaded layer inside the slit on the scattering field is given by

comparison with the case of empty slit. For transmitted region (180◦ ⩽ θ ⩽ 360◦),

one sees from the previous section that the scattering fields are given by a summation

of the modal re-radiation fields as in Eq. (2.62). The main transmitted lobe is made
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by the significant modes whose propagation angles are in the vicinity of the incident

angle θ0, and these modal excitation coefficients become large [34]. Figures 2.9–2.11 show

the pattern change when the glass layer becomes lossless with εr = 3. Although one

can not see the attenuation anymore in both upper and lower half-space, the patterns

still slightly change due to the effect of the dielectric-loaded layer characteristic to the

incoming electromagnetic waves. The effect of the loaded layer thickness can be observed

in Figs. 2.12–2.17. As the loaded layer becomes thicker, there are not so many changes

at the upper half-space or in case of lossless load. However, significant decay occurs in

lossy case for the transmitted field, especially when the incident field impinges at low

angles. The KA method is proved that to be more accurate for electrically large aperture

by good agreement with the results derived by the GTD and the KP methods (ka = 30).

However, one also can assess the KA results in case of narrower aperture (ka = 7) from

the comparison shown in Figs. 2.18–2.29. Scattering field features change as the aperture

width decrease. Fewer diffraction lobes are constructed due to the reduced interference

between the radiation fields excited at the edges at x = ±a/2. Also, a clear decrease in

the scattering values at all observation angles can be observed.

The attenuation is reduced in case of partially loaded slit as shown in Figs. 2.30–2.33.

Also, in order to see the effect of the evanescent modal re-radiation, our KA results are

obtained by including the first three evanescent modal re-radiations. Results labeled as

“Empty0” and “Loaded0” with dots and crosses symbols, respectively, are calculated

without the evanescent modal contribution.

The effect of evanescent modal re-radiation has also been shown in Fig. 2.34–2.41 in

case of empty thick slits for both E and H polarization in dB. Here, the aperture widths

are set to be ka = 30, 7, the screen thickness is kb = 2, and the incident angle θ0 = 50◦,

90◦ are chosen. For comparison, the figures also include the results obtained by the

GTD [31], [33], and by the KP method [12]. One can observe that the main scattering

characteristic, in this case, is relatively similar to the case with loaded layer considered.

The main difference is that the transmitted wave to the lower region experiences no

attenuation as they pass through the slit. The main feature of the scattering pattern is

almost the same between E and H polarizations. However, the difference occurs at the

boundary direction at θ = 0◦, 180◦, 360◦ due to the boundary conditions.

The scattering feature in thin slit case should be considered in the next discussion.
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According to the formulation for the lower scattering field, a limit value of the expression

can be obtained for taking a limit of a corresponding infinitely thin case (b → 0), while

one can get a direct formulation for this case by considering the equivalent currents

M±
1 only, without the current M±

2 as in Fig. 2.5. Figures 2.42 and 2.43 shows the

difference between the limit cases in Eqs. (2.62), (2.122) and the direct formulation cases

in Eqs. (2.63), (2.123). Both results are indistinguishable. The scattering patterns with

result calculated by the KA method in this special case are shown in comparison with

those of the KP method. An agreement can be seen, and one can also observe a symmetry

in all scattering patterns with respect to the boundary (x) direction. This feature can be

expected when the screen becomes infinitely thin.

Figures 2.44 and 2.45 show the normalized far-field scattering pattern changes with the

effect of the slit’s thickness. Here, we consider the thickness effect in case of empty slit.

Both E and H polarizations are considered using the KA method with a representative

aperture width parameter of ka = 50 in all figures. Figure 2.44 shows the gradual changes

from an infinitely thin case to the finite thin case. For the upper scattering field (θ <

180◦), the patterns stay similar with different thickness, since no information of the slit’s

thickness kb contained in the primary scattering fields excited by M+
1 . Besides, the

symmetric pattern with respect to the boundary (x) direction for an infinitely thin case

(kb = 0) deteriorates as the thickness parameter increases. This effect occurs even for

relatively thin case in Fig. 2.44(b) for b/a = 0.02, and this thickness effect seems to

be more influential for E polarization. Moreover, Fig. 2.45 shows the pattern changes

for pretty thick cases. Three representative thickness cases are chosen here in order to

show the incident beam splitting clearly. Due to the slit’s thickness, incident plane wave

experiences the reflection at the internal slit wall. Accordingly, the geometrical optic

(GO) beam yields a splitting. A half splitting can be seen in Fig. 2.45(a) for kb = 25/
√
3

where the lower scattering pattern becomes roughly symmetric with respect to the normal

(z) axis. The total GO beam reflection occurs in Fig. 2.45(b) for kb = 50/
√
3, and

the GO beam propagation due to the double bouncing can be observed Fig. 2.45(c) for

kb = 100/
√
3. While the incident plane wave in the slit’s aperture is converted into

the waveguide modes, the original GO beam feature is kept by modal re-radiation field

correctly.

Figure 2.47 shows the far-field scattering pattern comparison between KA and GTD
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methods for the case of aperture width ka = 50 and other thickness of kb = 1. Again,

KA solution predicts well for main diffraction beam directions. When the aperture width

parameter increases to ka = 50 as in this case, the side lobe levels get lower. Accordingly,

the KA accuracy becomes better if one estimates the main feature at the main reflected

of transmitted direction of the diffraction pattern, even the multi-edge effect has not

been considered. When the proposed KA formulation is put in comparison with those by

GTD [31], [33], main difference maybe found in the modal re-radiation field. Since the

KA approximation yields no waveguide modal reflections and couplings at the open end,

modal re-radiation occurs only once at the lower half-plane. Accordingly, one does not

need to solve the matrix equation by GTD method for the successive modal re-radiation

field [31]. Then one can expect fast calculation from simple integral form. By comparing

the CPU time for numerical evaluation, the present method is 1.5 times faster than

the previous GTD formulation [31]. This performs well for wide apertures, since many

waveguide modes will be excited inside the slit, and the modal coupling between them

become involved to compute.
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Figure 2.6: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 20◦.
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Figure 2.7: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 50◦.
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Figure 2.8: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 90◦.
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Figure 2.9: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 20◦.
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Figure 2.10: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 50◦.
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Figure 2.11: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 90◦.
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Figure 2.12: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 20◦.
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Figure 2.13: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 50◦.
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Figure 2.14: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 90◦.
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Figure 2.15: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 20◦.
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Figure 2.16: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 50◦.
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Figure 2.17: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 30, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 90◦.
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Figure 2.18: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 20◦.
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Figure 2.19: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 50◦.
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Figure 2.20: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3 + i4, θ0 = 90◦.
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Figure 2.21: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 20◦.
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Figure 2.22: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 50◦.

 0

 5

 10

 15

 0  60  120  180  240  300  360

S
c
a

tt
e

ri
n

g
 p

a
tt

e
rn

θ [degree]

KA
GTD

KP
Empty

Figure 2.23: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 2, εr = 3, θ0 = 90◦.
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Figure 2.24: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 20◦.
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Figure 2.25: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 50◦.
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Figure 2.26: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3 + i4, θ0 = 90◦.
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Figure 2.27: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 20◦.
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Figure 2.28: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 50◦.
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Figure 2.29: Far-field scattering pattern comparison of KA, KP and GTD methods. E

polarization. ka = 7, kb1 = 0, kb2 = kb = 4, εr = 3, θ0 = 90◦.
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Figure 2.30: Far-field patterns of partially lossless loaded slit. ka = 30, kb1 = kb/3 = 2/3,

kb2 = 2kb/3 = 4/3, εr = 3, θ0 = 40◦.
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Figure 2.31: Far-field patterns of partially lossless loaded slit. ka = 7, kb1 = kb/3 = 2/3,

kb2 = 2kb/3 = 4/3, εr = 3, θ0 = 40◦.
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Figure 2.32: Far-field patterns of partially lossy loaded slit. ka = 30, kb1 = kb/3 = 2/3,

kb2 = 2kb/3 = 4/3, εr = 3 + i4, θ0 = 40◦.
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Figure 2.33: Far-field patterns of partially lossy loaded slit. ka = 7, kb1 = kb/3 = 2/3,

kb2 = 2kb/3 = 4/3, εr = 3 + i4, θ0 = 40◦.
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Figure 2.34: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. E polarization. ka = 30, kb = 2, θ0 = 50◦.
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Figure 2.35: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. E polarization. ka = 7, kb = 2, θ0 = 50◦.
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Figure 2.36: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. H polarization. ka = 30, kb = 2, θ0 = 50◦.
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Figure 2.37: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. H polarization. ka = 7, kb = 2, θ0 = 50◦.

51



-30

-20

-10

 0

 10

 20

 30

 40

 0  60  120  180  240  300  360

S
c
a

tt
e

ri
n

g
 p

a
tt

e
rn

 [
d

B
]

θ [degree]

KA
KA0
GTD

KP

Figure 2.38: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. E polarization. ka = 30, kb = 2, θ0 = 90◦.
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Figure 2.39: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. E polarization. ka = 7, kb = 2, θ0 = 90◦.
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Figure 2.40: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. H polarization. ka = 30, kb = 2, θ0 = 90◦.
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Figure 2.41: Far-field scattering pattern comparison in dB of KA, KP and GTD methods

of empty slit. H polarization. ka = 7, kb = 2, θ0 = 90◦.
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Figure 2.42: Far-field scattering pattern comparison in thin slit case. E polarization.

ka = 30, kb → 0, θ0 = 30◦.
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Figure 2.43: Far-field scattering pattern comparison in thin slit case. H polarization.

ka = 30, kb → 0, θ0 = 30◦.
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Figure 2.44: Normalized far-field scattering pattern change from thin slits in dB. θ0 = 30◦,

ka = 50. (a) kb = 0. (b) kb = 1.0. (c) kb = 2.5.
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Figure 2.45: Normalized far-field scattering pattern change from thick empty slits in dB.

θ0 = 30◦, ka = 50. (a) kb = 25/
√
3. (b) kb = 50/

√
3. (c) kb = 100/

√
3.
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Figure 2.46: Far-field scattering pattern comparison of KA and GTD methods in thick

slit case. ka = 50, kb = 50/
√
3, θ0 = 30◦.
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Figure 2.47: Far-field scattering pattern comparison of KA and GTD methods in thin slit

case. ka = 50, kb = 1, θ0 = 30◦.

57



Chapter 3

Analysis of Plane Wave Scattering

by Rectangular Hole in a Thick

Conducting Screen

In this chapter, KA method has been extended to solve plane wave scattering problem by

a rectangular hole in a thick conducting screen. The scattering field can be resulted from

the radiation from equivalent magnetic current sources assumed on the aperture of the

hole. Equivalent magnetic currents are also applied to formulate the fields penetrating

inside the hole and the subsequent transmitted field to the lower half-space. Both E and

H polarized incident plane wave have been formulated, and formulation of a special case

of infinite screen has been derived. The formulas derived in Sect. 3.1 and 3.2 are used to

obtain some numerical results for the far-field scattering patterns in Sect. 3.4. The KA

method results have been compared with those of KP method for validation. Sect. 3.3

shows the relation between three-dimensional and two-dimensional scattering formulation.

Figure 3.1 shows a plane wave impinging upon a rectangular hole perforated on a thick

conducting screen. The length, width and thickness parameters of the hole are a, b and

c, respectively. Spherical coordinate system has been used where

r̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ, (3.1)

θ̂ = cos θ cosϕ x̂+ cos θ sinϕ ŷ − sin θ ẑ, (3.2)

ϕ̂ = − sinϕ x̂+ cosϕ ŷ. (3.3)
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Figure 3.1: Plane wave scattering by a rectangular hole in a thick conducting screen.

(θ0,ϕ0) denote the angles of incidence.

Figure 3.2: Scattering field at upper and lower regions of the hole (radiation from the

equivalent magnetic current sources at the hole apertures).
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The arbitrary incident plane wave may be decomposed into the transverse electric (TE)

and the transverse magnetic (TM) components with respect to the incident plane as

Ei = (ETMθ̂0 + ETEϕ̂0)e
iki

·r, (3.4)

H i =

√
ε0
µ0

(−ETMϕ̂0 + ETEθ̂0)e
iki

·r, (3.5)

where ‘ˆ’ denotes the corresponding unit vector,

ki = −k sin θ0 cosϕ0 x̂− k sin θ0 sinϕ0 ŷ − k cos θ0 ẑ, (3.6)

r = x x̂+ y ŷ + z ẑ, (3.7)

(with |ki| = k = ω
√
ε0µ0), r, ε0 and µ0 represent the free space incident wave number

vector, the position vector to the observation point, the free space permittivity, and

permeability, respectively. These TE and TM polarizations are independently analyze in

the following derivation.

Accordingy, the KA formulation allows scattering field to be derived from radiations

from the equivalent magnetic current sources exist on the closing apertures, as shown in

Fig. 3.2. There is a reflected field on the upper half-space (z > 0) due to the reflection from

the screen’s surface z = 0. This contribution will be omitted in the following diffraction

analysis.

3.1 E Polarization

When the TE polarized plane wave of a unit amplitude illuminates, Eqs. (3.4) and (3.5)

become

Ei = ϕ̂0e
iki

·r, (3.8)

H i =

√
ε0
µ0

θ̂0e
iki

·r, (3.9)

In the KA derivation, the equivalent magnetic current sources M±
1 exist on the closing

upper aperture (z = 0). The equivalent magnetic currents M±
1 may be given with the

wave number ki as

M±
1 (x, y, z = 0±) =Ei

∣∣
z=0±

× (±ẑ) = eik
i
·rϕ̂0

∣∣
z=0±

× (±ẑ)

=± e−ik(x sin θ0 cosϕ0+y sin θ0 sinϕ0)(cosϕ0 x̂+ sinϕ0 ŷ),(
|x| < a

2
, |y| < b

2
, z = 0±

)
. (3.10)
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3.1.1 Scattering Far-field in Incoming Region (z > 0)

The upper scattering fieldEs
1 resulted from the above equivalent magnetic currentM+

1 may

be obtained from a vector potential F 1 as [36]

Es
1 = − 1

ε0
∇× F 1. (3.11)

Vector potential F1 can be expressed in terms of equivalent magnetic current M+
1 (r

′) by:

F1 =
ε0
2π

∫
S′
M+

1 (r
′)
eik|r−r′|

|r − r′|
dS ′. (3.12)

Considering the far-field derivation, the vector potential F 1 due to the magnetic source

can be approximately given as

F1 ∼ ε0G

∫
S′
M+

1 (r
′)e−ikr′·r̂dS ′ = ε0GD1(θ, ϕ), (3.13)

where

D1(θ, ϕ) =

∫
S′
M+

1 (r
′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ+z′ cos θ)dS ′, (3.14)

and G is three-dimensional half-space Green’s function:

G =
eikr

2πr
. (3.15)

Then

F 1 ∼
ε0e

ikr

2πr

∫
S′
M+

1 (r
′)e−ikr′·r̂dS ′

=
ε0e

ikr

2πr

∫
S′
M+

1 (r
′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ)dS ′, (3.16)

where

r′ = x′ x̂+ y′ ŷ + z′ ẑ, (3.17)

r̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ, (3.18)

and S ′ denotes the hole aperture (|x′| < a/2, |y′| < b/2, z′ = 0+) where the equivalent

magnetic current source M+
1 expressed in Eq. (3.10) exists. r′ is the position vector to

the aperture source point (x′, y′, z′ = 0) on S ′, and r̂ is the unit vector directed to the

observation point. The vector potential F 1 can be derived by analytically executing the

integral in Eq. (3.16). Substituting F 1 into Eq. (3.11), omitting the terms of r−2 due
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to far-field consideration, one obtains the upper scattering field Es
1. First, we derive D1

in Eq. (3.14). For the far reflection field calculation, we only consider the source on the

upper side of the conducting plate. From Eq. (3.10),

M+
1xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ) = cosϕ0e
−ik{x′(sin θ0 cosϕ0+sin θ cosϕ)+y′(sin θ0 sinϕ0+sin θ sinϕ)}

= cosϕ0e
−ik(x′α+y′β), (3.19)

M+
1ye

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ) = sinϕ0e
−ik{x′(sin θ0 cosϕ0+sin θ cosϕ)+y′(sin θ0 sinϕ0+sin θ sinϕ)}

= sinϕ0e
−ik(x′α+y′β), (3.20)

where:

α = sin θ0 cosϕ0 + sin θ cosϕ, (3.21)

β = sin θ0 sinϕ0 + sin θ sinϕ. (3.22)

x and y components of D1 are respectively:

D1x =

∫ b/2

−b/2

∫ a/2

−a/2

M+
1xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ)dx′dy′

= cosϕ0

∫ b/2

−b/2

∫ a/2

−a/2

e−ik(x′α+y′β)dx′dy′

=
cosϕ0

ikα

∫ b/2

−b/2

(eik(aα/2−y′β) − e−ik(aα/2)+y′β)dy′

= −cosϕ0

k2αβ

{
eik(aα/2+bβ/2β) + e−ik(aα/2+bβ/2) − eik(aα/2−bβ/2β) − e−ik(aα/2−bβ/2)

}
= −2 cosϕ0

k2αβ

[
cos

{
k

(
a

2
α +

b

2
β

)}
− cos

{
k

(
a

2
α− b

2
β

)}]
=

4 cosϕ0

k2αβ
sin

(
ka

2
α

)
sin

(
kb

2
β

)
, (3.23)

D1y =
4 sinϕ0

k2αβ
sin

(
ka

2
α

)
sin

(
kb

2
β

)
, (3.24)

where from Eq. (3.13), we derive the components of vector potential F1 in the sphere

coordinates (r, θ, ϕ)

F1r = F1x sin θ cosϕ+ F1y sin θ sinϕ

= ε0G(D1x sin θ cosϕ+D1y sin θ sinϕ), (3.25)

F1θ = F1x cos θ cosϕ+ F1y cos θ sinϕ

= ε0G(D1x cos θ cosϕ+D1y cos θ sinϕ), (3.26)

F1ϕ = −F1x sinϕ+ F1y cosϕ

= ε0G(−D1x sinϕ+D1y cosϕ). (3.27)
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Then

F1r =
2ε0

πk2rαβ
sin θ cos(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr, (3.28)

Fθ =
2ε0

πk2rαβ
cos θ cos(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr, (3.29)

Fϕ =
2ε0

πk2rαβ
sin(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr. (3.30)

Assuming the observation point is sufficiently far away, we ignore the terms of r−2, then

we derive

▽▽▽× F1 =
1

r sin θ

{
∂(F1ϕ sin θ)

∂θ
− ∂F1θ

∂ϕ

}
r̂ +

1

r

{
1

sin θ

∂F1r

∂ϕ
− ∂(rF1ϕ)

∂r

}
θ̂

+
1

r

{
∂(rF1θ)

∂r
− ∂F1r

∂θ

}
ϕ̂

∼ −1

r

∂(rF1ϕ)

∂r
θ̂ +

1

r

∂(rF1θ)

∂r
ϕ̂. (3.31)

From Eqs. (3.11) and (3.31) we derive electric far field components caused by the source

at the upper side of the conducting plate

E1r ∼0,

E1θ ∼
2i

πkrαβ
eikr sin(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
=
2i sin(ϕ0 − ϕ)eikr

πkr

sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}
sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

, (3.32)

E1ϕ ∼− 2i

πkrαβ
eikr cos θ cos(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
=− 2i cos θ cos(ϕ0 − ϕ)eikr

πkr

sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}
sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

, (3.33)
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or

Es
1r ∼0, (3.34)

Es
1θ ∼

2i sin(ϕ0 − ϕ)eikr

πkr
A, (3.35)

Es
1ϕ ∼− 2i cos θ cos(ϕ0 − ϕ)eikr

πkr
A, (3.36)

A =
sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}

sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

. (3.37)

The corresponding magnetic scattering fieldHs can be found by the following relationship

Hϕ =

√
ε0
µ0

Eθ, (3.38)

Hθ = −
√

ε0
µ0

Eϕ. (3.39)

3.1.2 Electromagnetic Field in Hole Region (−c < z < 0)

The proposed model of rectangular hole in a thick conducting screen can be considered as

a three-dimensional rectangular waveguide. Consequently, one can formulate the electro-

magnetic field inside the hole region as the fields propagate inside the waveguide region. If

we assume a pair of electric dipole current J and magnetic dipole current M at the aper-

tures, we can derive the electromagnetic field inside the waveguide (not at the aperture)

caused by that source by using Hertz vectors [37]:

E(r, r′) = ∇×∇× ẑΠ′(r, r′) + iωµ∇× ẑΠ′′(r, r′), (3.40)

H(r, r′) = −iωµ∇× ẑΠ′(r, r′) +∇×∇× ẑΠ′′(r, r′), (3.41)

where Π′,Π′′ are called Herts vectors, expressed by scalar potentials S ′,S ′′ and wave

source Jδ(r − r′),Mδ(r − r′)

Π′(r, r′) =
−1

iωε
J · ∇′ ×∇′ × ẑS ′(r, r′)−M · ∇′ × ẑS ′(r, r′), (3.42)

Π′′(r, r′) = J · ∇′ × ẑS ′′(r, r′) +
−1

iωµ
M · ∇′ ×∇′ × ẑS ′′(r, r′), (3.43)

where ∇′,∇ are operators applied for coordinate (x′, y′, z′) and (x, y, z), respectively. If

we assume that there are electric and magnetic sources inside the waveguide J(x′, y′) =
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Jx(x
′, y′)x̂+ Jy(x

′, y′)ŷ,M (x′, y′) = Mxx̂+Myŷ, we can derive

Π′(r, r′) = (
−1

iωε
J(x′, y′)

∂

∂z′
+M (x′, y′)× ẑ) · ∇′

tS ′(r, r′), (3.44)

Π′′(r, r′) = (ẑ × J(x′, y′) +
−1

iωµ
M (x′, y′)

∂

∂z′
) · ∇′

tS ′′(r, r′). (3.45)

In addition, using eigenmode expansion of the cross section, scalar potential S ′, S ′′ can

be expressed, respectively, as

S ′(r, r′) =
∞∑

m=1

∞∑
n=1

2i

κm,nab
eiκm,n|z−z′|

·
sin mπ

a
(x+ a

2
) sin nπ

b
(y + b

2
) sin mπ

a
(x′ + a

2
) sin nπ

b
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2
)

(mπ
a
)2 + (nπ

b
)2

, (3.46)

S ′′(r, r′) =
∞∑

m=0

∞∑
n=0

ϵmϵni

2κm,nab
eiκm,n|z−z′|

·
cos mπ

a
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2
) cos nπ

b
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2
) cos mπ

a
(x′ + a

2
) cos nπ

b
(y′ + b

2
)

(mπ
a
)2 + (nπ

b
)2

, (3.47)

where the wave number inside the hole,

κm,n =

√
k2 − (

mπ

a
)2 − (

nπ

b
)2, (3.48)

ϵm =

1 (m = 0)

2 (m > 0).

(3.49)

To derive electromagnetic field expression given by Eqs. (3.40) and (3.41), one needs Hertz

vectors in Eqs.(3.44) and (3.45). Those expressions can be written as:

Π′ =
−1

iωε
(Jx

∂(∇′
tS ′)x

∂z′
+ Jy

∂(∇′
tS ′)y

∂z′
) +My(∇′

tS ′)x −Mx(∇′
tS ′)y, (3.50)

Π′′ = −Jy(∇′
tS ′′)x + Jx(∇′

tS ′′)y +
−1

iωµ
(Mx

∂(∇′
tS ′′)x
∂z′

+My
∂(∇′

tS ′′)y
∂z′

). (3.51)

According to Eqs. (3.46), (3.47), we consider the wave propagation along the z-axis neg-

ative direction. Thus, eiκm,n|z−z′| = e−iκm,n(z−z′) and

(∇′
tS ′)x =

∞∑
m=1

∞∑
n=1

2imπ

κm,na2b
e−iκm,n(z−z′)

·
sin mπ

a
(x+ a

2
) sin nπ

b
(y + b

2
) cos mπ

a
(x′ + a

2
) sin nπ

b
(y′ + b

2
)

(mπ
a
)2 + (nπ

b
)2

, (3.52)

(∇′
tS ′)y =

∞∑
m=1

∞∑
n=1

2inπ

κm,nab2
e−iκm,n(z−z′)

·
sin mπ
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2
) sin nπ

b
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2
) sin mπ

a
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2
) cos nπ

b
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2
)

(mπ
a
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b
)2

, (3.53)
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Figure 3.3: Semi-infinite rectangular waveguide with the sources on z = 0

∂(∇′
tS ′)x

∂z′
=

∞∑
m=1

∞∑
n=1

−2mπ
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·
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2
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(x′ + a

2
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b
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, (3.54)

∂(∇′
tS ′)y

∂z′
=
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∞∑
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−2nπ

ab2
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·
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2
) sin nπ
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2
) sin mπ

a
(x′ + a

2
) cos nπ

b
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)

(mπ
a
)2 + (nπ

b
)2

, (3.55)

(∇′
tS ′′)x =

∞∑
m=0

∞∑
n=0

−ϵmϵnimπ

2κm,na2b
e−iκm,n(z−z′)

·
cos mπ

a
(x+ a

2
) cos nπ

b
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2
) sin mπ

a
(x′ + a

2
) cos nπ

b
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2
)

(mπ
a
)2 + (nπ

b
)2

, (3.56)

(∇′
tS ′′)y =

∞∑
m=0

∞∑
n=0

−ϵmϵninπ

2κm,nab2
e−iκm,n(z−z′)

·
cos mπ

a
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2
) cos nπ

b
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2
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a
(x′ + a

2
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2
)

(mπ
a
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b
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, (3.57)

∂(∇′
tS ′′)x
∂z′

=
∞∑

m=0

∞∑
n=0

ϵmϵnmπ

2a2b
e−iκm,n(z−z′)

·
cos mπ

a
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2
) cos nπ

b
(y + b

2
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a
(x′ + a

2
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b
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2
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a
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b
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, (3.58)
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∂(∇′
tS ′′)y
∂z′

=
∞∑

m=0

∞∑
n=0

ϵmϵnnπ

2ab2
e−iκm,n(z−z′)

·
cos mπ

a
(x+ a

2
) cos nπ

b
(y + b
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) cos mπ

a
(x′ + a

2
) sin nπ
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2
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(mπ
a
)2 + (nπ

b
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. (3.59)

In Kirchhoff approximation method, we first assume that there are equivalent magnetic

sources M1 only (no electric sources J) at the upper aperture of the waveguide. In detail,

the sources at the lower side of upper aperture M−
1 with x, y components as follow lead

to the field propagating inside the waveguide.

M−
1 (x

′, y′) = M−
1xx̂+M−

1yŷ. (3.60)

Substuting Eqs.(3.52)∼(3.59) into Eqs. (3.50) and (3.51), one gets:

Π′ =
∞∑

m=1

∞∑
n=1

ᾱ sin
mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,n(z−z′), (3.61)

ᾱ =
2

ab(k2 − κ2
m,n)

{
i

κm,n

M−
1y

mπ

a
cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)

− i

κm,n

M−
1x

nπ

b
sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)}
, (3.62)

Π′′ =
∞∑

m=0

∞∑
n=0

β̄ cos
mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,n(z−z′), (3.63)

β̄ =
ϵmϵn

2ab(k2 − κ2
m,n)

{
− 1
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b
cos
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a

(
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(
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(
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a

2

)
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nπ

b

(
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b

2

)}
. (3.64)

Besides, Eqs. (3.40) and (3.41) can be written as:

E =

(
∂

∂z

∂Π′

∂x
+ iωµ

∂Π′′

∂y

)
x̂+

(
∂

∂z

∂Π′

∂y
− iωµ

∂Π′′

∂x

)
ŷ −

(
∂2Π′
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+

∂2Π′

∂y2

)
ẑ, (3.65)

H =

(
∂

∂z

∂Π′′

∂x
− iωε

∂Π′

∂y

)
x̂+

(
∂

∂z

∂Π′′

∂y
+ iωε

∂Π′

∂x

)
ŷ −

(
∂2Π′′

∂x2
+

∂2Π′′

∂y2

)
ẑ. (3.66)
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One can derive field components in z-direction:

Ez =−
(
∂2Π′

∂x2
+

∂2Π′

∂y2

)
=

∞∑
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∞∑
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)
e−iκm,n(z−z′), (3.67)
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, (3.68)

Hz =−
(
∂2Π′′

∂x2
+

∂2Π′′

∂y2

)
,

=
∞∑

m=0
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n=0

Fm,n cos
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Fm,n =
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. (3.70)

If the incident wave is plane wave, then the equivalent magnetic current components at

the aperture (−a/2 < x′ < a/2,−b/2 < y′ < b/2, z′ = 0−) are derived from Eq. (3.10) as

M−
1x = − cosϕ0e

−ik(x′ sin θ0 cosϕ0+y′ sin θ0 sinϕ0), (3.71)

M−
1y = − sinϕ0e

−ik(x′ sin θ0 cosϕ0+y′ sin θ0 sinϕ0). (3.72)

Taking the integral at the upper aperture, for our assumption, we have only the magnetic

current source M1 and no electric current. Accordingly, one has to consider imaging

effect of the source on the conducting surface, then we derive electromagnetic field in the

waveguide from source at the upper aperture:

Ew
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69



Similarly,
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=
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}
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In addition, according to Maxwell’s equations, one can derive other electric components

Ew
x , E

w
y from magnetic component Hw

z :

Ew
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∂Hw
z

∂y
,Ew

y = − iωµ
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m,n

∂Hw
z

∂x
, (3.77)

Substuting Eqs. (3.75) and (3.76) into Eq. (3.77), we can derive

Ew
x =

∞∑
m=0

∞∑
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Fw
mnx cos
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}
. (3.81)

On the other hand, the equivalent magnetic source M+
2 at the upper side of the lower

aperture (z = −c+):

M+
2 = Ew × ẑ = Ew

y x̂− Ew
x ŷ, (3.82)

and at the lower side (z = −c−):

M−
2 = Ew × (−ẑ) = −Ew

y x̂+ Ew
x ŷ, (3.83)

whereEw is the electric field propagates inside the waveguide calculated in Eqs.(3.78)∼(3.81).
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3.1.3 Scattering Far-field in Transmitted Region (z < −c)

We now derive the electric far-field components in the lower region caused by the sources.

Considering the lower side of the lower aperture, from Eqs. (3.78)∼(3.81) and Eq. (3.83)

x, y components of M−
2 are:
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2x =− Ew

y

∣∣
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∞∑
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∞∑
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. (3.87)

Then, we derive D2 for lower scattering field derivation using

D2(θ, ϕ) =

∫
S′′

M−
2 (r

′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ+z′ cos θ)dS ′′, (3.88)

where S ′′ is the aperture (|x′| < a/2, |y′| < b/2, z′ = −c−) on which the equivalent source

M−
2 expressed in Eqs. (3.84) and (3.86) exists. x, y components of D2 are:

D2x =

∫ b/2

−b/2

∫ a/2

−a/2

M−
2xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=

∫ b/2

−b/2

∫ a/2

−a/2

−
∞∑

m=0

∞∑
n=0

Fw
mny sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)
eiκm,nc

· e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=−
∞∑

m=0

∞∑
n=0

Fw
mny

∫ a/2

−a/2

sin
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

cos
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c
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=−
∞∑

m=0

∞∑
n=0

Fw
mny

−mπ/a

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −ik sin θ sinϕ

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c

=
∞∑

m=0

∞∑
n=0

ϵmϵnk
2ab3m2π2 sin θ0 cosϕ0 sinϕ0

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

· sin θ sinϕ

{(mπ)2 − (ka sin θ cosϕ)2} {(nπ)2 − (kb sin θ sinϕ)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
·
{
(−1)m+1e(−ika sin θ cosϕ)/2 + e(ika sin θ cosϕ)/2

}
·
{
(−1)n+1e(−ikb sin θ sinϕ)/2 + e(ikb sin θ0 sinϕ)/2

}
ei(k cos θ+κm,n)c, (3.89)

D2y =

∫ b/2

−b/2

∫ a/2

−a/2

M−
2ye

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=

∫ b/2

−b/2

∫ a/2

−a/2

∞∑
m=0

∞∑
n=0

Fw
mnx cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)
eiκm,nc

· e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=
∞∑

m=0

∞∑
n=0

Fw
mnx

∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

sin
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c

=
∞∑

m=0

∞∑
n=0

Fw
mnx

−ik sin θ cosϕ

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −nπ/b

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c

=
∞∑

m=0

∞∑
n=0

ϵmϵnk
2a3bn2π2 sin θ0 cosϕ0 sinϕ0

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

· sin θ cosϕ

{(mπ)2 − (ka sin θ cosϕ)2} {(nπ)2 − (kb sin θ sinϕ)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
·
{
(−1)m+1e(−ika sin θ cosϕ)/2 + e(ika sin θ cosϕ)/2

}
·
{
(−1)n+1e(−ikb sin θ sinϕ)/2 + e(ikb sin θ0 sinϕ)/2

}
ei(k cos θ+κm,n)c. (3.90)
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From Eqs.(3.11)∼(3.13) and (3.31), we can calculate electric field Es
2 from D2 as

Es
2 ∼−

{ ik

2πr
(D2x sinϕ−D2y cosϕ)e

ikr
}
θ̂

−
{ ik

2πr
(D2x cos θ cosϕ+D2y cos θ sinϕ)e

ikr
}
ϕ̂. (3.91)

The electric far-field components contributed by the source M−
2 at the lower side of the

lower aperture are:

E2r ∼0, (3.92)

E2θ ∼
ikabeikr

2πr

∞∑
m=0

∞∑
n=0

ϵmϵn sin θ0 cosϕ0 sinϕ0

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

· sin θ {−(kbmπ sinϕ)2 + (kanπ cosϕ)2}
{(mπ)2 − (ka sin θ cosϕ)2} {(nπ)2 − (kb sin θ sinϕ)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
·
{
(−1)m+1e(−ika sin θ cosϕ)/2 + e(ika sin θ cosϕ)/2

}
·
{
(−1)n+1e(−ikb sin θ sinϕ)/2 + e(ikb sin θ0 sinϕ)/2

}
ei(k cos θ+κm,n)c, (3.93)

E2ϕ ∼ikabeikr

2πr

∞∑
m=0

∞∑
n=0

ϵmϵn sin θ0 cosϕ0 sinϕ0

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

· sin θ cos θ sinϕ cosϕ {−(kbmπ)2 − (kanπ)2}
{(mπ)2 − (ka sin θ cosϕ)2} {(nπ)2 − (kb sin θ sinϕ)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
·
{
(−1)m+1e(−ika sin θ cosϕ)/2 + e(ika sin θ cosϕ)/2

}
·
{
(−1)n+1e(−ikb sin θ sinϕ)/2 + e(ikb sin θ0 sinϕ)/2

}
ei(k cos θ+κm,n)c. (3.94)

or

Es
2r ∼0, (3.95)

Es
2θ ∼− iωµ0e

ik(r+c cos θ)

2πr

∞∑
m=0

∞∑
n=0

Fw
mn

k2 − κ2
m,n

eiκm,nc

·
{
(mπkb sinϕ)2 − (nπka cosϕ)2

}
sin θ

· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2

· (−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
, (3.96)
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Es
2ϕ ∼− iωµ0e

ik(r+c cos θ)

2πr

∞∑
m=0

∞∑
n=0

Fw
mn

k2 − κ2
m,n

eiκm,nc

· {(mπkb)2 + (nπka)2} sin θ cos θ sinϕ cosϕ

· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2

· (−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
. (3.97)

where Fw
mn is the excitation coefficient expressed in Eq. (3.76).

3.1.4 Scattering Far-field from Infinitely Thin Screen

It is important to self-validate the above scattering formulation by deriving a special

circumstance of an infinitely thin screen. In KA method, the upper scattering field in

this case stay the same since there are no dependences of upper scattering field Es
1 on the

screen thickness according to Eqs. (3.35) and 3.36. For the lower scattering field, one can

take the limit c → 0 in Eqs. (3.96) and 3.97. On the other hand, the lower scattering field

in this case ϕss
2 = Ess

2 can be derived directly from M−
1 in Eq. (3.10) in the similar way of

deriving Es
1 in Sect. 3.1.1 with M+

1 replaced by M−
1 in Eq. (3.16). Since M−

1 = −M+
1 ,

one gets for θ > π/2

Ess
2y = −Es

1y, (3.98)

or

Ess
2r ∼0, (3.99)

Ess
2θ ∼− 2i sin(ϕ0 − ϕ)eikr

πkr
A, (3.100)

Ess
2ϕ ∼2i cos θ cos(ϕ0 − ϕ)eikr

πkr
A, (3.101)

A =
sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}

sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

. (3.102)

The comparison of results from these two calculations will be shown in Sect. 3.4.
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Figure 3.4: Plane wave scattering by an infinitely thin screen.

3.2 H Polarization

When the TM polarized plane wave of a unit amplitude illuminates, Eqs. (3.4) and (3.5)

become

Ei =θ̂0e
iki

·r, (3.103)

H i =−
√

ε0
µ0

ϕ̂0e
iki

·r, (3.104)

If one starts from H i, the corresponding Ei can be derived based on Ampere’s equation

as in Appendix B. In the KA derivation, the equivalent magnetic current sources M±
1

exist on the closing upper aperture (z = 0). The equivalent magnetic currents M±
1 may

be expressed in terms of the wave number ki as

M±
1 (x, y, z = 0±) =Ei

∣∣
z=0±

× (±ẑ) = eik
i
·rθ̂0

∣∣
z=0±

× (±ẑ)

=± e−ik(x sin θ0 cosϕ0+y sin θ0 sinϕ0)(sinϕ0 cos θ0 x̂− cosϕ0 sin θ0 ŷ),(
|x| < a

2
, |y| < b

2
, z = 0±

)
. (3.105)

3.2.1 Scattering Far-field in Incoming Region (z > 0)

The upper scattering field Es
1 resulted from the above equivalent magnetic current M+

1

can also be obtained from a vector potential F 1 as [36]

Es
1 = − 1

ε0
∇× F 1. (3.106)

76



Vector potential F1 can be derived from equivalent magnetic current M+
1 (r

′) by:

F1 =
ε0
2π

∫
S′
M+

1 (r
′)
eik|r−r′|

|r − r′|
dS ′ (3.107)

With far-field consideration, the vector potential F 1 due to the magnetic source can be

approximated as

F1 ∼ ε0G

∫
S′
M+

1 (r
′)e−ikr′·r̂dS ′ = ε0GD1(θ, ϕ), (3.108)

where

D1(θ, ϕ) =

∫
S′
M+

1 (r
′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ+z′ cos θ)dS ′, (3.109)

and G is three-dimensional half-space Green’s function:

G =
eikr

2πr
. (3.110)

Then

F 1 ∼ ε0e
ikr

2πr

∫
S′
M+

1 (r
′)e−ikr′·r̂dS ′

=
ε0e

ikr

2πr

∫
S′
M+

1 (r
′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ)dS ′, (3.111)

where

r′ = x′ x̂+ y′ ŷ + z′ ẑ, (3.112)

r̂ = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ, (3.113)

and S ′ denotes the aperture (|x′| < a/2, |y′| < b/2, z′ = 0+) where the current M
+
1 given

in Eq. (3.105) exists. r′ is the position vector to the aperture source point (x′, y′, z′ = 0) on

S ′, and r̂ is the unit vector directed to the observation point. The integral in Eq. (3.111)

is analytically solved to obtain F 1. Again, substituting F 1 into Eq. (3.106), considering

far-field condition, one can obtain the scattering field Es
1 in upper region.

First, we derive D1 in Eq. (3.109). For the far reflection field calculation, we only

consider the source on the upper side of the conducting plate. From Eq. (3.105),

M+
1xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ) = sinϕ0 cos θ0e
−ik{x′(sin θ0 cosϕ0+sin θ cosϕ)+y′(sin θ0 sinϕ0+sin θ sinϕ)}

= sinϕ0 cos θ0e
−ik(x′α+y′β), (3.114)

M+
1ye

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ) = − cosϕ0 cos θ0e
−ik{x′(sin θ0 cosϕ0+sin θ cosϕ)+y′(sin θ0 sinϕ0+sin θ sinϕ)}

= − cosϕ0 cos θ0e
−ik(x′α+y′β), (3.115)
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where:

α = sin θ0 cosϕ0 + sin θ cosϕ, (3.116)

β = sin θ0 sinϕ0 + sin θ sinϕ. (3.117)

x and y components of D1 are respectively:

D1x =

∫ b/2

−b/2

∫ a/2

−a/2

M+
1xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ)dx′dy′

= sinϕ0 cos θ0

∫ b/2

−b/2

∫ a/2

−a/2

e−ik(x′α+y′β)dx′dy′

=
sinϕ0 cos θ0

ikα

∫ b/2

−b/2

(eik(aα/2−y′β) − e−ik(aα/2)+y′β)dy′

= −sinϕ0 cos θ0
k2αβ

{
eik(aα/2+bβ/2β) + e−ik(aα/2+bβ/2) − eik(aα/2−bβ/2β) − e−ik(aα/2−bβ/2)

}
= −2 sinϕ0 cos θ0

k2αβ

[
cos

{
k

(
a

2
α +

b

2
β

)}
− cos

{
k

(
a

2
α− b

2
β

)}]
=

4 sinϕ0 cos θ0
k2αβ

sin

(
ka

2
α

)
sin

(
kb

2
β

)
, (3.118)

D1y = −4 cosϕ0 cos θ0
k2αβ

sin

(
ka

2
α

)
sin

(
kb

2
β

)
, (3.119)

where from Eq. (3.108), we derive the components of vector potential F1 in the sphere

coordinates (r, θ, ϕ)

F1r = F1x sin θ cosϕ+ F1y sin θ sinϕ

= ε0G(D1x sin θ cosϕ+D1y sin θ sinϕ), (3.120)

F1θ = F1x cos θ cosϕ+ F1y cos θ sinϕ

= ε0G(D1x cos θ cosϕ+D1y cos θ sinϕ), (3.121)

F1ϕ = −F1x sinϕ+ F1y cosϕ

= ε0G(−D1x sinϕ+D1y cosϕ). (3.122)

Then

F1r =
2ε0

πk2rαβ
sin θ cos θ0 sin(ϕ− ϕ0) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr, (3.123)

Fθ =
2ε0

πk2rαβ
cos θ cos θ0 sin(ϕ− ϕ0) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr, (3.124)

Fϕ =
2ε0

πk2rαβ
cos θ0 cos(ϕ− ϕ0) sin

(
ka

2
α

)
sin

(
kb

2
β

)
eikr. (3.125)
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Assuming the observation point is sufficiently far away, we ignore the terms of r−2, then

we derive

▽▽▽× F1 =
1

r sin θ

{
∂(F1ϕ sin θ)

∂θ
− ∂F1θ

∂ϕ

}
r̂ +

1

r

{
1

sin θ

∂F1r

∂ϕ
− ∂(rF1ϕ)

∂r

}
θ̂

+
1

r

{
∂(rF1θ)

∂r
− ∂F1r

∂θ

}
ϕ̂

∼ −1

r

∂(rF1ϕ)

∂r
θ̂ +

1

r

∂(rF1θ)

∂r
ϕ̂. (3.126)

From Eqs. (3.106) and (3.126) we derive electric far field components caused by the source

at the upper side of the conducting screen in H polarization as

E1r ∼0,

E1θ ∼− 2i

πkrαβ
eikr sin(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
=− 2i cos θ0 cos(ϕ0 − ϕ)eikr

πkr

sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}
sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

, (3.127)

E1ϕ ∼− 2i

πkrαβ
eikr cos θ cos(ϕ0 − ϕ) sin

(
ka

2
α

)
sin

(
kb

2
β

)
=− 2i cos θ0 cos θ sin(ϕ0 − ϕ)eikr

πkr

sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}
sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

, (3.128)

or

Es
1r ∼0, (3.129)

Es
1θ ∼− 2i cos θ0 cos(ϕ0 − ϕ)eikr

πkr
A, (3.130)

Es
1ϕ ∼− 2i cos θ0 cos θ sin(ϕ0 − ϕ)eikr

πkr
A, (3.131)

A =
sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}

sin θ0 cosϕ0 + sin θ cosϕ

· sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

. (3.132)

The corresponding magnetic scattering fields can be derived from electric fields using the

relationship in Eqs. (3.38) and (3.39).
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3.2.2 Electromagnetic Field in Hole Region (−c < z < 0)

The proposed model of rectangular hole in a thick conducting screen can be considered as

a three-dimensional rectangular waveguide. Consequently, one can formulate the electro-

magnetic field inside the hole region as the fields propagate inside the waveguide region.

Using exactly the same derivation process from Eqs. (3.40) to Eq. (3.66) One gets the

field components inside the hole in z-direction for H polarization incidence as

Ez =−
(
∂2Π′

∂x2
+

∂2Π′

∂y2

)
=

∞∑
m=1

∞∑
n=1

Cm,n sin
mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,n(z−z′), (3.133)

Cm,n =
2

abi

{
− 1

κm,n

M−
1y

mπ

a
cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)

+
1

κm,n

M−
1x

nπ

b
sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)}
, (3.134)

Hz =−
(
∂2Π′′

∂x2
+

∂2Π′′

∂y2

)
,

=
∞∑

m=0

∞∑
n=0

Fm,n cos
mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,n(z−z′) (3.135)

Fm,n =
ϵmϵn
2abi

{
− 1

ωµ
M−

1y

nπ

b
cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)

− 1

ωµ
M−

1x

mπ

a
sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)}
. (3.136)

If the incident wave is plane wave, then the equivalent magnetic current components at

the aperture (−a/2 < x′ < a/2,−b/2 < y′ < b/2, z′ = 0−) are derived from Eq. (3.10) as

M−
1x = − sinϕ0 cos θ0e

−ik(x′ sin θ0 cosϕ0+y′ sin θ0 sinϕ0), (3.137)

M−
1y = cosϕ0 cos θ0e

−ik(x′ sin θ0 cosϕ0+y′ sin θ0 sinϕ0). (3.138)

Taking the integral at the upper aperture, for our assumption, we have only the magnetic

current source M1 and no electric current. Accordingly, one has to consider imaging

effect of the source on the conducting surface, then we derive electromagnetic field in the

waveguide from source at the upper aperture:

Ew
z = −

(
∂2Π′

∂x2
+

∂2Π′

∂y2

)
=

∞∑
m=1

∞∑
n=1

Cw
m,n sin

mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,nz, (3.139)
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Cw
m,n =

∫ a/2

−a/2

∫ b/2

−b/2

Cmndx
′dy′

=
2

abiκm,n

{∫ a/2

−a/2

−M−
1y

mπ

a
cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b
sin

(
y′ +

b

2

)

+

∫ b/2

−b/2

M−
1x

nπ

b
sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b
sin

(
y′ +

b

2

)}
=

4

abiκm,n

·

{
− cosϕ0 cos θ0

mπ

a

∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−ik sin θ0 cosϕ0x′

dx′

·
∫ b/2

−b/2

sin
nπ

b

(
y′ +

b

2

)
e−ik sin θ0 sinϕ0y′dy′

+ (sinϕ0 cos θ0)
nπ

b

∫ a/2

−a/2

sin
mπ

a

(
x′ +

a

2

)
e−ik sin θ0 cosϕ0x′

dx′

·
∫ b/2

−b/2

cos
nπ

b

(
y′ +

b

2

)
e−ik sin θ0 sinϕ0y′dy′

}
=

4

abiκm,n

·

{
(− cosϕ0 cos θ0)

mπ

a

−ik sin θ0 cosϕ0

(−ik sin θ0 cosϕ0)2 + (mπ/a)2

· (e−(ika sin θ0 cosϕ0)/2 cosmπ − e(ika sin θ0 cosϕ0)/2)

· −nπ/b

(−ik sin θ0 sinϕ0)2 + (nπ/b)2
(e(−ikb sin θ0 sinϕ0)/2 cosnπ − e(ikb sin θ0 sinϕ0)/2)

+ (sinϕ0 cos θ0)
nπ

b

−mπ/a

(−ik sin θ0 cosϕ0)2 + (mπ/a)2

· (e(−ika sin θ0 cosϕ0)/2 cosmπ − e(ika sin θ0 cosϕ0)/2)

· −ik sin θ0 sinϕ0

(−ik sin θ0 sinϕ0)2 + (nπ/b)2
(e(−ikb sin θ0 sinϕ0)/2 cosnπ − e(ikb sin θ0 sinϕ0)/2)

}

=
4mnπ2k sin θ0 cos θ0

κm,n

· (−1)m+1e−ik(a/2) sin θ0 cosϕ0 + eik(a/2) sin θ0 cosϕ0

(mπ)2 − (ka sin θ0 cosϕ0)2

· (−1)n+1e−ik(b/2) sin θ0 sinϕ0 + eik(b/2) sin θ0 sinϕ0

(nπ)2 − (kb sin θ0 sinϕ0)2
. (3.140)
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Similarly,

Hw
z =−

(
∂2Π′′

∂x2
+

∂2Π′′

∂y2

)
=

∞∑
m=0

∞∑
n=0

Fw
m,n cos

mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,nz, (3.141)

Fw
m,n =

∫ a/2

−a/2

∫ b/2

−b/2

Fmndx
′dy′

=− ϵmϵn
2abiωµ

{∫ a/2

−a/2

∫ b/2

−b/2

M−
1y

nπ

b
cos

mπ

a
(x′ +

a

2
) sin

nπ

b
(y′ +

b

2
)dx′dy′

+

∫ a/2

−a/2

∫ b/2

−b/2

M−
1x

mπ

a
sin

mπ

a
(x′ +

a

2
) cos

nπ

b
(y′ +

b

2
)dx′dy′

}
=− 2ϵmϵn

2abiωµ

·

{
(cosϕ0 cos θ0)

nπ

b

∫ a/2

−a/2

cos
mπ

a
(x′ +

a

2
)e−ik sin θ0 cosϕ0x′

dx′

·
∫ b/2

−b/2

sin
nπ

b
(y′ +

b

2
)e−ik sin θ0 sinϕ0y′dy′

+ (− sinϕ0 sin θ)
mπ

a

∫ a/2

−a/2

sin
mπ

a
(x′ +

a

2
)e−ik sin θ0 cosϕ0x′

dx′

·
∫ b/2

−b/2

cos
nπ

b
(y′ +

b

2
)e−ik sin θ0 sinϕ0y′dy′

}
=− 2ϵmϵn

2abiωµ

·

{
cosϕ0 cos θ0

nπ

b

−ik sin θ0 cosϕ0

(−ik sin θ0 cosϕ0)2 + (mπ/a)2

· (e(−ika sin θ0 cosϕ0)/2 cosmπ − e(ika sin θ0 cosϕ0)/2)

· −nπ/b

(−ik sin θ0 sinϕ0)2 + (nπ/b)2
(e(−ikb sin θ0 sinϕ0)/2 cosnπ − e(ikb sin θ0 sinϕ0)/2)

+ sinϕ0 cos θ0
mπ

a

mπ/a

(−ik sin θ0 cosϕ0)2 + (mπ/a)2

· (e(−ika sin θ0 cosϕ0)/2 cosmπ − e(ika sin θ0 cosϕ0)/2)

· −ik sin θ0 sinϕ0

(−ik sin θ0 sinϕ0)2 + (nπ/b)2
(e(−ikb sin θ0 sinϕ0)/2 cosnπ − e(ikb sin θ0 sinϕ0)/2)

}
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=

√
ε0
µ0

ϵmϵnπ
2(n2a2cos2 ϕ0−m2b2 sin2 ϕ0)sin θ0 cos θ0

ab

· (−1)m+1e−ik(a/2) sin θ0 cosϕ0 + eik(a/2) sin θ0 cosϕ0

(mπ)2 − (ka sin θ0 cosϕ0)2

· (−1)n+1e−ik(b/2) sin θ0 sinϕ0 + eik(b/2) sin θ0 sinϕ0

(nπ)2 − (kb sin θ0 sinϕ0)2
. (3.142)

Here, Cw
m,n and Fw

m,n are the excitation coefficients of the TEmn and TMmn modal field.

In addition, according to Maxwell’s equations, one can derive other electric components

Ew
x , E

w
y from magnetic component Hw

z :

Ew
x =

iωµ

k2 − κ2
m,n

∂Hw
z

∂y
,Ew

y = − iωµ

k2 − κ2
m,n

∂Hw
z

∂x
, (3.143)

Substuting Eqs. (3.141) and (3.142) into Eq. (3.143), we can derive

Ew
x =

∞∑
m=1

∞∑
n=1

αw
1 cos

mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,nz,

+
∞∑

m=0

∞∑
n=0

βw
1 cos

mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,nz, (3.144)

where

αw
1 =− 2ik

k2 − κmn

sin θ0 cos θ0

(mπ

a

)2 nπ

b

· ab

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
, (3.145)

βw
1 =− ϵmϵnik

2(k2 − κmn)
sin θ0 cos θ0

nπ

b

{
−
(nπ

b
cosϕ0

)2

+
(mπ

a

)2
}

· ab

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
. (3.146)

Ew
y =

∞∑
m=1

∞∑
n=1

αw
2 sin

mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,nz,

+
∞∑

m=0

∞∑
n=0

βw
2 sin

mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,nz, (3.147)
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where

αw
2 =− 2ik

k2 − κmn

sin θ0 cos θ0
mπ

a

(nπ
b

)2

· ab

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
, (3.148)

βw
2 =

ϵmϵnik

2(k2 − κmn)
sin θ0 cos θ0

mπ

a

{
−
(nπ

b
cosϕ0

)2

−
(mπ

a
sinϕ0

)2
}

· ab

{(mπ)2 − (ka sin θ0 cosϕ0)2} {(nπ)2 − (kb sin θ0 sinϕ0)2}

·
{
(−1)m+1e(−ika sin θ0 cosϕ0)/2 + e(ika sin θ0 cosϕ0)/2

}
·
{
(−1)n+1e(−ikb sin θ0 sinϕ0)/2 + e(ikb sin θ0 sinϕ0)/2

}
. (3.149)

On the other hand, the equivalent magnetic source M+
2 at the upper side of the lower

aperture (z = −c+):

M+
2 = Ew × ẑ = Ew

y x̂− Ew
x ŷ, (3.150)

and at the lower side (z = −c−):

M−
2 = Ew × (−ẑ) = −Ew

y x̂+ Ew
x ŷ, (3.151)

where Ew is the electric field propagates inside the waveguide calculated in Eqs.(3.144)

and (3.147).

3.2.3 Scattering Far-field in Transmitted Region (z < −c)

We now derive the electric far-field components in the lower region caused by the sources.

Considering the lower side of the lower aperture, from Eqs. (3.144), (3.147) and Eq. (3.151)

x, y components of M−
2 are:

M−
2x =− Ew

y

∣∣
x=x′,y=y′,z=−c

=−
∞∑

m=1

∞∑
n=1

αw
2 sin

mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
e−iκm,nz,

−
∞∑

m=0

∞∑
n=0

βw
2 sin

mπ

a

(
x+

a

2

)
cos

nπ

b

(
y +

b

2

)
eiκm,nc, (3.152)
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M−
2y =Ew

x

∣∣
x=x′,y=y′,z=−c

=
∞∑

m=1

∞∑
n=1

αw
1 cos

mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
e−iκm,nz,

+
∞∑

m=0

∞∑
n=0

βw
1 cos

mπ

a

(
x+

a

2

)
sin

nπ

b

(
y +

b

2

)
eiκm,nc. (3.153)

Then, we derive D2 for lower scattering field derivation using

D2(θ, ϕ) =

∫
S′′

M−
2 (r

′)e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ+z′ cos θ)dS ′′, (3.154)

where S ′′ is the aperture (|x′| < a/2, |y′| < b/2, z′ = −c−) on which the equivalent source

M−
2 expressed in Eqs. (3.152) and (3.153) exists. x, y components of D2 are:

D2x =

∫ b/2

−b/2

∫ a/2

−a/2

M−
2xe

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=

∫ b/2

−b/2

∫ a/2

−a/2

−

{
∞∑

m=1

∞∑
n=1

αw
2 sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)
eiκm,nc

+
∞∑

m=0

∞∑
n=0

βw
2 sin

mπ

a

(
x′ +

a

2

)
cos

nπ

b

(
y′ +

b

2

)
eiκm,nc

}
· e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=−
∞∑

m=1

∞∑
n=1

αw
2

∫ a/2

−a/2

sin
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

cos
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c

−
∞∑

m=0

∞∑
n=0

βw
2

∫ a/2

−a/2

sin
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

cos
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c

=−
∞∑

m=1

∞∑
n=1

αw
2

−mπ/a

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −ik sin θ sinϕ

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c

−
∞∑

m=0

∞∑
n=0

βw
2

−mπ/a

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −ik sin θ sinϕ

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c.

(3.155)
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D2y =

∫ b/2

−b/2

∫ a/2

−a/2

M−
2ye

−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=

∫ b/2

−b/2

∫ a/2

−a/2

{
∞∑

m=1

∞∑
n=1

αw
1 cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)
eiκm,nc

+
∞∑

m=0

∞∑
n=0

βw
1 cos

mπ

a

(
x′ +

a

2

)
sin

nπ

b

(
y′ +

b

2

)
eiκm,nc

}
· e−ik(x′ sin θ cosϕ+y′ sin θ sinϕ−c cos θ)dx′dy′

=
∞∑

m=1

∞∑
n=1

αw
1

∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

sin
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c

+
∞∑

m=0

∞∑
n=0

βw
1

∫ a/2

−a/2

cos
mπ

a

(
x′ +

a

2

)
e−ik sin θ cosϕx′

dx′

·
∫ b/2

−b/2

sin
nπ

b

(
y′ +

b

2

)
e−ik sin θ sinϕy′dy′ei(k cos θ+κm,n)c

=
∞∑

m=1

∞∑
n=1

αw
1

−ik sin θ cosϕ

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −nπ/b

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c

+
∞∑

m=0

∞∑
n=0

βw
1

−ik sin θ cosϕ

(−ik sin θ cosϕ)2 + (mπ/a)2
(e(−ika sin θ cosϕ)/2 cosmπ − e(ika sin θ cosϕ)/2)

· −nπ/b

(−ik sin θ sinϕ)2 + (nπ/b)2
(e(−ikb sin θ sinϕ)/2 cosnπ − e(ikb sin θ sinϕ)/2)ei(k cos θ+κm,n)c.

(3.156)

From Eqs.(3.11)∼(3.13) and (3.31), we can calculate electric field Es
2 from D2 as

Es
2 ∼−

{ ik

2πr
(D2x sinϕ−D2y cosϕ)e

ikr
}
θ̂

−
{ ik

2πr
(D2x cos θ cosϕ+D2y cos θ sinϕ)e

ikr
}
ϕ̂. (3.157)

The electric far-field components contributed by the source M−
2 at the lower side of the

lower aperture are:

Es
2r ∼0, (3.158)

86



Es
2θ ∼

−ieik(r+c cos θ)

2πr

∞∑
m=0

∞∑
n=0

(ka)2(kb)2 sin θ

k2 − κ2
m,n

eiκm,nc

·
[
ωµ0

{(mπ

ka

)2

sin2 ϕ−
(nπ
kb

)2

cos2 ϕ

}
Fw
m,n − κm,n

mπ

ka

nπ

kb
Cw

m,n

]
· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2

· (−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
, (3.159)

Es
2ϕ ∼−ieik(r+c cos θ)

2kπr

∞∑
m=0

∞∑
n=0

Fw
m,ne

iκm,nc

· (ka)2(kb)2 sin θ cos θ sinϕ cosϕ

· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2

· (−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
. (3.160)

where Cw
m,n and Fw

m,nis the excitation coefficient expressed in Eqs. (3.140) and (3.142).

3.2.4 Scattering Far-field from Infinitely Thin Screen

It is important to self-validate the above scattering formulation by deriving a special

circumstance of an infinitely thin screen. In KA method, the upper scattering field in

this case stay the same since there are no dependences of upper scattering field Es
1 on

the screen thickness according to Eqs. (3.130) and (3.131). For the lower scattering field,

one can take the limit c → 0 in Eqs. (3.159) and (3.160). On the other hand, the lower

scattering field in this case ϕss
2 = Ess

2 can be derived directly from M−
1 in Eq. (3.10) in

the similar way of deriving Es
1 in Sect. 3.1.1 with M+

1 replaced by M−
1 in Eq. (3.16).

Since M−
1 = −M+

1 , one gets for θ > π/2

Ess
2 = −Es

1, (3.161)

or

Ess
2r ∼0, (3.162)

Ess
2θ ∼

2i cos θ0 cos(ϕ0 − ϕ)eikr

πkr
A, (3.163)

Ess
2ϕ ∼2i cos θ0 cos θ sin(ϕ0 − ϕ)eikr

πkr
A, (3.164)

A =
sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}

sin θ0 cosϕ0 + sin θ cosϕ

sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

. (3.165)
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The comparison of results from these two calculations will be shown in Sect. 3.4.

3.3 Relation between Three-dimensional and Two-

dimensional Scattering Formulation

As a validation step, the scattering field relation between three and two-dimensional

formulation is discussed in this section to validate the previous derivation, not only for

rectangular hole scattering derivation but also that of the slit. Based on this assessment,

one can be confident to apply the proposed KA method for more practical problems in

the future. Here, the final three-dimensional formulation of scattering by rectangular

hole in a thick conducting screen is expressed again in a special case that is close to

two-dimensional problem and then compared with the formulation of scattering by thick

conducting empty slits. If one restricts that the incident plane wave and the observation

point P are both located in x-z (y = 0) plane for the three-dimensional formulation, the

cross-sectional configuration becomes exactly the same as two-dimensional thick empty

slit. In this section, the 3D-2D relation has been shown for E polarization case. A similar

procedure can be applied for the H polarization. Since the relation between 2D and 3D

formulation is shown, one can estimate the scattering field by practical three-dimensional

object by using less complicated equations. It plays an important role in analyzing and

calculation time reduction. A related 2D-3D conversion has been used for estimating 3D

radar cross section from 2D analytical results [38], [39].

According to previous sections, the upper scattering field from the three-dimensional

rectangular hole in a thick conducting screen is

Es
1θ ∼

2i sin(ϕ0 − ϕ)eikr

πkr
A, (3.166)

Es
1ϕ ∼− 2i cos θ cos(ϕ0 − ϕ)eikr

πkr
A, (3.167)

A =
sin {ka(sin θ0 cosϕ0 + sin θ cosϕ)/2}

sin θ0 cosϕ0 + sin θ cosϕ

sin {kb(sin θ0 sinϕ0 + sin θ sinϕ)/2}
sin θ0 sinϕ0 + sin θ sinϕ

. (3.168)

The lower scattering field from the three-dimensional rectangular hole in a thick conduct-
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ing screen is

Es
2θ ∼− iωµ0e

ik(r+c cos θ)

2πr

∞∑
m=0

∞∑
n=0

Fw
mn

k2 − κ2
m,n

eiκm,nc

·
{
(mπkb sinϕ)2 − (nπka cosϕ)2

}
sin θ

· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2
(−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
,

(3.169)

Es
2ϕ ∼− iωµ0e

ik(r+c cos θ)

2πr

∞∑
m=0

∞∑
n=0

Fw
mn

k2 − κ2
m,n

eiκm,nc

· {(mπkb)2 + (nπka)2} sin θ cos θ sinϕ cosϕ

· (−1)m+1e−ik(a/2) sin θ cosϕ + eik(a/2) sin θ cosϕ

(mπ)2 − (ka sin θ cosϕ)2
(−1)n+1e−ik(b/2) sin θ sinϕ + eik(b/2) sin θ sinϕ

(nπ)2 − (kb sin θ sinϕ)2
.

(3.170)

where Fw
mn is the excitation coefficient expressed in Eq. (3.76).

The upper scattering field from the two-dimensional conducting thick empty slit (loaded

layer reflection coefficient Rm = 0, transmission coefficient Tm = 1 ) is

Es
1y =

−4i sin θ sin {ka(cos θ0 + cos θ)/2}
cos θ0 + cos θ

C(kρ), (3.171)

C(kρ) =

√
1

8πkρ
eikρ+iπ/4. (3.172)

The lower scattering field from the two-dimensional conducting thick empty slit is

Es
2y =4ika sin θC(kρ)

∞∑
m=1

(mπ)2

{(mπ)2 − (ka cos θ0)2}{(mπ)2 − (ka cos θ)2}

·
{
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

}{
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

}
· eiζmb+ikb sin θ. (3.173)

By setting ϕ0 = 0, ϕ = (0, π), r = ρ, ϑ0 = π/2− θ0, ϑ = π/2∓ θ (0 < |ϑ| < π/2), and re-

placing the three-dimensional half-space Green’s function eikr/(2πr) by the corresponding

two-dimensional half-space one eikρ+iπ/4/
√
2πkρ = 2C(kρ), one can see from Eq. (3.166)

that the three-dimensional Es
1θ(ϕ = ϕ0 = 0, π) component equals to 0, Es

2θ(ϕ = ϕ0 = 0, π)

component also equals to 0 due to the following derivation
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i) In case of n ̸= 0:

The excitation coefficient

Fw
m,n =

ϵmϵnπ
2k(m2b2 + n2a2) cosϑ sinϕ0

abωµ0

· (−1)m+1e(−ika cosϑ0)/2 + e(ika cosϑ0)/2

(mπ)2 − (ka cosϑ0)2
(−1)n+1e(−ikb cosϑ0 sinϕ0)/2 + e(ikb cosϑ0 sinϕ0)/2

(nπ)2 − (kb cosϑ sinϕ0)2

=0. (3.174)

Then

Es
2θ

∣∣∣
n̸=0

= Es
2ϕ

∣∣∣
n̸=0

= 0. (3.175)

ii) In case of n = 0:

F s
m,0 =

−iϵmπ
2m2b

aωµ0

(−1)m+1e(−ika cosϑ0)/2 + e(ika cosϑ0)/2

(mπ)2 − (ka cosϑ0)2
. (3.176)

Then

Es
2θ

∣∣∣
n=0

=− ωµ0e
ikc sinϑ2C(kρ)

∞∑
m=0

Fw
m,0

k2 − κm,0

eiκm,0c

· (mπkb sinϕ)2(± cosϑ)

· (−1)m+1e(−ika cosϑ)/2 + e(ika cosϑ)/2

(mπ)2 − (ka cosϑ)2
±2i sin

(
kb
2
cosϑ sinϕ

)
−(kb cosϑ sinϕ)2

=− ωµ0e
ikc sinϑ2C(kρ)

∞∑
m=0

Fw
m,0

k2 − κm,0

eiκm,0c

· (mπkb)2

· (−1)m+1e(−ika cosϑ)/2 + e(ika cosϑ)/2

(mπ)2 − (ka cosϑ)2
2i sin

(
kb
2
cosϑ sinϕ

)
−(kb)2 cosϑ

=0. (3.177)

On the other hand, Es
ϕ(ϕ = ϕ0 = 0, π) component may be related to the two-dimensional

Es
y component as following derivation. The derivation is established separately in 4 quad-

rants. One notes that Fw
0,0 = 0 then Es

2ϕ

∣∣∣
m=n=0

= 0.

i) In the first quadrant: Set ϕ = 0, ϑ = π
2
− θ (ϑ < π

2
), then one gets sin θ = cosϑ,

cos θ = sinϑ. Scattering field in the first quadrant becomes

Es
1ϕ =

−4ib sinϑ sin {ka(cosϑ0 + cosϑ)/2}
cosϑ0 + cosϑ

C(kρ) (3.178)

→bEs
1y,

(
Es

1y in Eq. (3.171)
)
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ii) In the second quadrant: Set ϕ = π, ϑ = π
2
+ θ (π

2
< ϑ < π), then one gets

sin θ = − cosϑ, cos θ = sinϑ. Scattering field in the second quadrant becomes

Es
1ϕ =

4ib sinϑ sin {ka(cosϑ0 + cosϑ)/2}
cosϑ0 + cosϑ

C(kρ) (3.179)

→− bEs
1y,

(
Es

1y in Eq. (3.171)
)

iii) In the third quadrant: Set ϕ = π, ϑ = π
2
+ θ (π < ϑ < 3π

2
), then one gets

sin θ = − cosϑ, cos θ = sinϑ. Scattering field in the third quadrant becomes

Es
2ϕ =Es

2ϕ

∣∣∣
m ̸=0,n=0

=− iωµ0e
ikc sinϑ2C(kρ)

∞∑
m=1

Fw
m,0

k2 − κm,0

eiκm,0c

· (mπkb sinϕ)2(− cosϑ) sinϑ sinϕ(−1)

· (−1)m+1e(−ika cosϑ)/2 + e(ika cosϑ)/2

(mπ)2 − (ka cosϑ)2
2i sin

(
kb
2
(− cosϑ) sinϕ

)
−(kb(− cosϑ) sinϕ)2

,

lim
ϕ0→0
ϕ→π

Es
2ϕ =− 4ikab sinϑC(kρ)

∞∑
m=1

(mπ)2

{(mπ)2 − (ka cosϑ0)2}{(mπ)2 − (ka cosϑ)2}

·
{
(−1)me(−ika cosϑ0)/2 − e(ika cosϑ0)/2

}
·
{
(−1)me(−ika cosϑ)/2 − e(ika cosϑ)/2

}
· eiκm,0c+ikc sin θ. (3.180)

→− bEs
2y,

(
Es

2y in Eq. (3.173)
)
,

κm,0 =ζm =

√
k2 −

(mπ

a

)2

. (3.181)

iv) In the fourth quadrant: Set ϕ = 0, ϑ = π
2
− θ (ϑ > 3π

2
), then one gets sin θ = cosϑ,

cos θ = sinϑ. Scattering field in the fourth quadrant becomes

Es
2ϕ =Es

2ϕ

∣∣∣
m ̸=0,n=0

=− iωµ0e
ikc sinϑ2C(kρ)

∞∑
m=1

Fw
m,0

k2 − κm,0

eiκm,0c

· (mπkb sinϕ)2(− cosϑ) sinϑ sinϕ(−1)

· (−1)m+1e(−ika cosϑ)/2 + e(ika cosϑ)/2

(mπ)2 − (ka cosϑ)2
2i sin

(
kb
2
(− cosϑ) sinϕ

)
−(kb(− cosϑ) sinϕ)2

,
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lim
ϕ0→0
ϕ→0

Es
2ϕ =4ikab sinϑC(kρ)

∞∑
m=1

(mπ)2

{(mπ)2 − (ka cosϑ0)2}{(mπ)2 − (ka cosϑ)2}

·
{
(−1)me(−ika cosϑ0)/2 − e(ika cosϑ0)/2

}
·
{
(−1)me(−ika cosϑ)/2 − e(ika cosϑ)/2

}
· eiκm,0c+ikc sin θ. (3.182)

→bEs
2y,

(
Es

2y in Eq. (3.173)
)

(3.183)

In conclusion, one gets Es
1,2ϕ = bEs

1,2y for the first and fourth quadrants (ϕ = 0), and

Es
1,2ϕ = −bEs

1,2y for the second and third quadrants (ϕ = π). The difference is only the

longitudinal (y-direction) hole’s width b.

3.4 Numerical Results and Discussion

Some representative numerical results of the far-field scattering by rectangular hole in

a thick conducting screen have been obtained using the previously obtained formulas.

The contribution of the reflected plane wave is omitted in the following results. Firstly,

the figures which include numerical results from both KA and KP methods are shown

to validate the formulation obtained by the proposed KA method. After that, the other

aspects of the scattering feature analyzed by the KA method have been shown.

Figures 3.5, 3.6 and 3.8 show the far-field scattering patterns for a square hole (a = b) in

the incident plane for TE and TM polarizations, respectively. The field component Eϕ(Eθ)

represents the co-polarization component for the scattering field in case of TE(TM) polar-

ized incidence. In this observation plane, there are no contributions of corresponding cross-

polarization components according to the formulation. For the comparison with results

obtained by the KP method, the hole width parameters are chosen to be ka = kb = 30, 10,

kc = 2 is for the thickness, and the angles of incidence are set as (θ0 = 30◦), (ϕ0=0◦, 45◦).

As revealed in those figures, the larger ka and kb parameters are, the higher and sharper

the scattering patterns can be obtained especially at the main lobe directions. Also,

more diffraction lobes are formed as a result of the interference between the radiation

fields excited at the hole’s edges. One can observe that the main lobes direct the corre-

sponding reflected and incident shadow boundary directions near (θ, ϕ)=(30◦, 180◦) and
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(θ, ϕ)=(150◦, 180◦) in Fig. 3.5, (θ, ϕ)=(30◦, 225◦) and (θ, ϕ)=(150◦, 225◦) in Figs. 3.6, 3.8.

The above results include corresponding patterns derived by the KP method [14] for the

comparison. As mentioned before, the eigenfunction expansion KP method is known to

be an effective solution for small apertures, while the proposed KA method is effective in

a high frequency regime for large aperture objects such as the building windows. How-

ever, our KA results show agreement with those of the KP method particularly at the

main lobe directions in all considered cases of the aperture width. One still finds some

differences in the figures at some low angle side lobes. This difference can be explained

by the fact that the KA solution does not satisfy the boundary condition [35], and the

multiple edge diffraction terms have not been considered. The TE and TM polarization

difference occurs at the vicinity of boundary direction at θ = 90◦ due to the boundary

conditions.

The scattering far-fields in the cross-section which is perpendicular to the incident

plane for TE and TM polarizations are shown in Figs. 3.7 and 3.9, respectively. In

this perpendicular cross-section, the scattering patterns are found to be symmetric with

respect to the normal z-axis. Since the thickness (kc = 2) can be considered to be pretty

thin, one can observe that the scattering patterns become roughly symmetric with respect

to the boundary (x-y) plane, as mentioned before. It is also a similarity of scattering

features between patterns shown in Figs. 3.6, 3.8 and Figs. 3.7, 3.9.

For the effect of the conducting screen thickness, one can observe the change of the

scattering patterns in the transmitted region, for example in case of ka = kb = 30 for

TE polarization, in Fig. 3.10. The pattern in the upper region is independent of the

screen’s thickness since the upper scattering fields excited by M+
1 contain no information

on the screen’s thickness kc in the KA method. Two representative thickness parameters

are chosen here to show clearly the incident beam reflection through the hole on the

conducting wall. The incident plane wave partly impinges in the hole and experiences the

internal reflection at the internal hole’s wall. Here, one may trace the internal bouncing by

geometrical optics (GO) beams to predict the reflection direction. In case of kc =
√
6ka,

the single GO beam reflection occurs in Fig. 3.10(a), and the double bouncing GO beam

propagation can be observed in Fig. 3.10(b) for kc = 2
√
6ka. The single and double

bouncing phenomenon also occurs at various screen thicknesses depend on the incident

angle. The incident plane wave in the hole’s aperture is changed into the waveguide
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modes according to the KA derivation, the lower scattering patterns confirm that the

modal re-radiation field correctly illustrates the GO beam bouncing prediction. However,

in the other arbitrary thickness values, the transmitted fields are more complicated due

to the waveguide mode summation which is difficult to predict by simple GO beams.

Figure 3.11 shows the pattern change, for both TE and TM polarization incidences, in

co-polarization cross section by the aperture shape transition from a symmetric aperture

(ka = kb = 30) to a un-symmetric one (ka = 60, kb = 15). As can be assessed from the

scattering field coefficient A in Eq. (3.37), it is a multiplication of sinc functions of x and

y variables, each of which has periodical nulls as the aperture size a or b becomes large.

The maximum value of A is

Amax =
k2ab

4
, (3.184)

as the dominator of A becomes zero. This maximum value occurs at the forward scattering

direction. Because of the same area (k2ab = 900) between two apertures, the scattering

peaks accordingly describe the same maximum value. However, due to the characteristic

of sinc functions in the coefficient A in Eq. (3.37), the pattern has more nulls and rapid

oscillation when the aperture is a rectangular (a ̸= b). These scattering patterns are nearly

symmetric with respect to the screen due to pretty thin value of the screen thickness (kc =

2), as mentioned before. Figure 3.12 shows the pattern change of the cross-polarization

component in the plane normal to the incident plane. The symmetricity with respect to

z-axis deteriorates as the aperture is changed from a symmetric aperture (a = b) to an

un-symmetric one (a ̸= b).

A consideration of the scattering fields in a special circumstance of an infinitely thin

screen is necessary to self-check the KA formulation accuracy. For this case, the scattering

field Ess
2 in the lower half-space can be derived directly from M−

1 in Eq. (3.10) for E

polarization and in Eq. (3.105) for H polarization in similar way of deriving Es
1. As a

result, one does not need to consider the thickness of the screen. Consequently, one finds

for θ > π/2

Ess
2 = −Es

1. (3.185)

Based on this result, the scattering patterns are exactly symmetric with respect to the

screen for the infinitely thin screen. Besides, one can also take a limit of the finite thickness
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c of our lower scattering field Es
2 formulation in Eqs. (3.96), (3.97), (3.159) and (3.160).

Figure 3.13(a) shows the far-field pattern comparison between Ess
2 (infinitely thin case)

and Es
2 (limit case) for Eϕ in θ variation. Although the equivalence between them has

not been analytically shown, a very good agreement has been observed. These values are

similar for most observation angles and a symmetry with respect to the ground plane can

also be seen in the three-dimensional view of Fig. 3.13(b).

Figure 3.14 shows the change of scattering pattern peak value and its direction due

to the change of aperture width. One can observe the peak value in the result of co-

polarization scattering pattern in the incident plane (ϕ = ϕ0, π + ϕ0). In KA method,

there are no upper limitations for the positive value of aperture width ka, kb. However,

a representative value of ka = kb = 50 which reveals that the aperture hole is quite large

compared with the wavelength (a = b ≈ 8λ) is chosen to be the maximum value. Screen

thickness kc is chosen to be a finite value of kc = 2. The black solid line and red dashed

line, respectively, shows the value in dB of the scattering peak at the upper and lower

half-space which are scaled by the vertical axis on the left. Their corresponding θ direction

in degree denoted by blue dot line and green cross line are measured by the vertical axis

on the right. For their ϕ direction, according to previous results, the scattering peak

always lies on the forward direction of ϕ = 225◦. As can be seen in the figure, the values

of both upper and lower scattering peak increase as the aperture width become larger as

mentioned in previous results. Considering the far-field pattern at lower half-space, the

lower scattering fields are calculated using summation of the successive waveguide mode

m and n as in Eq. (3.97). When ka = kb < 4.5, there exists only mode m = 0 and n = 0

which leads to zero value of scattering fields. For the peak direction, the peaks direct the

corresponding reflected and incident shadow boundary directions near (θ, ϕ)=(30◦, 225◦)

and (θ, ϕ)=(150◦, 225◦) for ka = kb > 5. In cases of smaller values of ka the scattering

peaks tend to direct to higher angles near normal direction. This can be explained by the

contribution of radiation fields excited at the hole’s edges. One can base on this result

to choose an applicable value of aperture width to apply KA method for scattering field

calculation.

The change of scattering pattern peak value and its direction due to the change of

screen thickness is shown in Fig. 3.15. One mentioned that the upper scattering field

does not depend on the thickness parameter, thus only lower scattering peak values are
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shown here. A large value of aperture width ka = kb = 30 is chosen which is the main

reason for the peak value range from 50dB to 58dB. It becomes more difficult to predict

exactly the peak direction of the transmitted fields by general geometrical optics due

to the complicated summation of waveguide fields contribution as the screen thickness

becomes larger. Then the θ direction of the peak, in this case, cannot be exactly equal

to 135◦. Also, depending on a certain value of screen thickness, the waveguide internal

reflection occurs differently which leads to ϕ direction of the peak equals to 45◦ or 225◦

as analyzed in Fig. 3.10.

96



-20  0  20  40  60
90 deg. 90 deg.

0 deg.

180 deg.

dB

φ = 0φ = π

KA
KP

(a)

-20  0  20  40  60
90 deg. 90 deg.

0 deg.

180 deg.

dB

φ = 0φ = π

KA
KP

(b)

Figure 3.5: Co-polarization far-field scattering pattern comparison by KA and KP meth-

ods (Eϕ) in θ variation for TE polarization in the incident plane (ϕ = ϕ0, π+ϕ0), θ0 = π/6,

ϕ0 = 0, kc = 2. (a) ka = kb = 30. (b) ka = kb = 10.
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Figure 3.6: Far-field scattering pattern comparison (Eϕ) in θ variation for TE polarization

in different observation planes. θ0 = π/6, ϕ0 = π/4, kc = 2. (a) ka = kb = 30. (b)

ka = kb = 10.
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Figure 3.7: Cross-polarization far-field scattering pattern comparison (Eθ) in θ variation

for TE polarization in the plane normal to the incident plane (ϕ = π/2 + ϕ0, 3π/2 + ϕ0),

θ0 = π/6, ϕ0 = π/4, kc = 2. (a) ka = kb = 30. (b) ka = kb = 10.
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Figure 3.8: Co-polarization far-field scattering pattern comparison by KA and KP meth-

ods (Eθ) in θ variation for TM polarization in the incident plane (ϕ = ϕ0, π+ϕ0), θ0 = π/6,

ϕ0 = π/4, kc = 2. (a) ka = kb = 30. (b) ka = kb = 10.
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Figure 3.9: Cross-polarization far-field scattering pattern (Eϕ) in θ variation for TM

polarization in the plane normal to the incident plane (ϕ = π/2+ϕ0, 3π/2+ϕ0), θ0 = π/6,

ϕ0 = π/4, kc = 2. (a) ka = kb = 30. (b) ka = kb = 10.
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Figure 3.10: Far-field scattering pattern comparison (Eϕ) in θ variation of the thick screen

cases for TE polarization in the incident plane (ϕ = ϕ0, π + ϕ0), θ0 = π/6, ϕ0 = π/4,

ka = kb = 30. (a) kc =
√
6ka. (b) kc = 2

√
6ka.
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Figure 3.11: Co-polarization far-field scattering patterns by KA method in the incident

plane from a rectangular aperture (ka/2 = 2kb = 30) and a square aperture (ka = kb =

30). θ0 = π/6, ϕ0 = π/4, kc = 2. (a) Eϕ for TE polarization. (b) Eθ for TM polarization.
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Figure 3.12: Cross-polarization far-field scattering patterns by KA method in the plane

normal to the incident plane from a rectangular aperture (ka/2 = 2kb = 30) and a square

aperture (ka = kb = 30). θ0 = π/6, ϕ0 = π/4, kc = 2. (a) Eθ for TE polarization. (b) Eϕ

for TM polarization.
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Figure 3.13: Far-field scattering patterns by KA method (Eϕ) in θ variation (infinitely

thin screen). TE polarization, θ0 = 30◦, ϕ0 = 45◦, ka = kb = 30. (a) Cross sectional view

in the incident plane (ϕ = ϕ0, π+ ϕ0). Comparison between an infinitely thin and a limit

(c → 0) cases. (b) Three-dimensional view.
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Figure 3.14: Peak value and peak direction of co-polarization far-field scattering pattern
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Figure 3.15: Peak value and peak direction of co-polarization far-field scattering pattern

in the incident plane (ϕ = ϕ0, π + ϕ0) at lower half-space in screen thickness variation.

TE polarization, ka = kb = 30, θ0 = 30◦, ϕ0 = 45◦.
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Chapter 4

Concluding Remarks

Kirchhoff approximation - a high frequency approximation method to analyze the electro-

magnetic plane wave scattering by aperture on conducting screen has been proposed. This

method is based on assumption that scattering fields can be considered as field radiations

from equivalent magnetic current sources postulated on the closing apertures.

Firstly, the plane wave scattering by a two-dimensional aperture model of loaded con-

ducting thick slits has been formulated using the KA method in Chapter 2. The scatter-

ing fields result from the equivalent magnetic current sources exist on the slit’s apertures.

Scattering characteristics in many aspects such as various aperture width, slit’s thickness,

incident wave’s direction, incident wave’s polarization, and glass layer effect has been an-

alyzed. The agreement between numerical results derived by the proposed KA method

with those from GTD and KP method in most circumstances ensures the KA formulation

accuracy. The accuracy is also confirmed by analytical assessment in special circumstance

(infinitely thin slit) and in relation with the corresponding results of three-dimensional

analysis in Chapter 3. The validation is important to extend the KA method to solve

more practical scattering problem.

In Chapter 3, the KA method has been successfully extended to solve more complicated

scattered object of three-dimensional rectangular hole perforated in a thick conducting

screen. The scattering fields can also be obtained from equivalent magnetic current sources

on the hole apertures in both E and H polarization cases of the incident plane waves.

Since the analytical derivation process for three-dimensional scattering fields in the KA

method is lengthy and complicated, the final results have been checked by those from

the KP method in many circumstances of aperture width, screen thickness, polarization,
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incident angles, and observation angles. A relation between KA three-dimensional and

two-dimensional formulation has also been shown to confirm the accuracy.

The efficiency of the KA method in aperture scattering high frequency analysis has

been shown in the thesis. Based on the obtained results, one can confidently extend

our formulation to more practical scattering prediction, such as multiple apertures, in-

verse scattering problems to estimate the physical parameters. This study is directed

to build an effective wave propagation model to predict the outdoor-indoor transmitted

signals accurately. KA method could be an effective tool for examining radio propagation

characteristics through building windows in outdoor-indoor environment.
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