# 合成開ロレーダと光学センサの統合解析による 津波浸水域抽出手法の開発

都市環境学専攻 支倉一磨

## Developing a new method to detect tsunami inundation area by integrating optical satellite image and SAR data

Civil and Environmental Engineering Kazuma HASEKURA

Key Words : the 2011 Great East Japan Earthquake, synthetic aperture radar, optical image

### 1. 序論

2011年3月11日に発生した東北地方太平洋沖地震津波 では、北海道から千葉県にいたる太平洋沿岸部に津波 が浸水し、その面積は約561km<sup>3</sup>に及んだ<sup>1)</sup>. このような広 域に及ぶ津波浸水域を発災後早期に把握するためには、 リモートセンシング技術が有効である.

特に合成開口レーダー(Synthetic Aperture Radar: SAR)は、水域においてマイクロ波が鏡面反射すること により、他の地域に比べ低い後方散乱係数を示す.こ の特性を生かし、SAR強度画像から洪水や津波浸水域を 抽出する手法が数多く提案されてきた.例えば、リュ ウら(2012)は、被災前後のSAR強度画像から差分処理 による津波浸水域抽出手法を開発した<sup>2)</sup>.また、郷右近 ら(2014)は、被災後に撮影されたSAR強度画像を使用 し、閾値処理による津波浸水ラインの半自動抽出ツー ルを開発した<sup>3</sup>.

これらの既往研究により,SAR強度画像による浸水域 の抽出精度は被災地に滞留する水の有無に依存するこ とがわかった.すなわち,冠水域は高精度で抽出でき るが,観測時に水が引いてしまった地域においては抽 出が困難であること.また,建物が存在する地域では, 床上床下浸水のように比較的軽度な建物被害では抽出 が困難なことである.これらの既往研究により、SAR強 度画像のみによる解析からは、浸水域を全て網羅する ことは難しいことがわかった。そこで本研究では,SAR 強度画像と光学画像を組み合わせることにより,これ らの地域における浸水域を高精度に抽出する手法を開 発することを目的とする.

#### 2. 津波浸水域抽出手法の概要

#### (1) 使用データと前処理

本研究では、2011年3月11日に発生した東北地方太平 洋沖地震津波によって甚大な被害を受けた宮城県仙台 市の沿岸部を対象とする(図-1(A),(B)).対象地域 は主に田畑と建物から構成されている.

使用するデータは、2011年3月11日(UTC)に撮影さ れた空間分解能0.5mの光学衛星画像(WorldView-II)と、 2011年3月12日(UTC)に撮影された空間分解能1.25mの 高分解能SAR画像(TenaSAR-X)である(図-1(C)、 (D)).各画像には共一次内挿法による平滑化処理を施 した.また同時に、SAR画像は光学画像と同じ0.5m分解 能にリサンプリングした.その後、株式会社ゼンリン の建物輪郭データ<sup>4</sup>を使用し、対象地域を田畑地域と建 物地域に分割した.



図-1 (A), (B)解析対象領域, (C)対象領域光学画像(World View-II), (D)対象領域SAR画像(TerraSAR-X)





#### (2) 田畑地域浸水抽出手法

まず,田畑地域から浸水抽出基準を作成するための サンプル地域を選定する.本研究では,浸水域外田畑, 浸水域内非冠水田畑,浸水域内冠水田畑の3種類の田畑 をサンプル地域として選定した(図-2).

次にサンプル地域を対象に,SAR画像から浸水域と浸 水域外の後方散乱係数の頻度分布を比較する(図-3).

その結果-21dB以下であれば,浸水域のみを抽出可能な ことがわかった.そこで,本研究では後方散乱係数が-21dB以上の地域を対象に,光学画像による再判定を行 った.

光学画像では、機械学習のアルゴリズムにより、浸 水域抽出の新しい分類基準を構築した.説明変数とし て、R,G,B,NIRの4種類の画素値、独立変数として「浸 水あり」、「浸水なし」の2種類を使用した.学習には、 ニュージーランドのワイカト大学が開発した機械学習 用フリーソフトWEKA<sup>5</sup>のC4.5アルゴリズムを使用し、 最も精度が高くなるように抽出基準を作成した. C4.5は WEKAに実装された決定木作成のためのアルゴリズムで ある.

最後に、作成された浸水域抽出基準を田畑地域全域 に適用する.しかし抽出はピクセル単位で行われるた め、細かい誤抽出が多く存在する.そこで平滑化処理 を行い、これらの誤抽出を除去する.平滑化処理には、 25×25のピクセルウィンドウを使用し、500ピクセル

(80%)以上が浸水している場合のみ浸水と判定した. 平滑化後,面積が小さい浸水域を除去することで抽出 精度を高めた.



**図-4** サンプル地域 : (A)浸水域外建物, (B)浸水域内無被害・中破以下建物, (C)浸水域内全壊・流失建物



図-5 津波浸水域抽出結果: (A) 提案手法,

#### (3) 建物地域浸水抽出手法

田畑地域と同様に、いくつかのサンプル地域を選定 し、画素値の頻度分布を調べた(図-4). その結果、建 物地域では、浸水の有無や被害の程度によって画素値 の頻度分布に大きな違いはみられなかった. 特に、浸 水域内に存在し、比較的被害が軽度な建物においては 目視による浸水判読も困難であった.

そこで本研究では、標高、海岸からの距離をパラメ ータとし、既に抽出を行った田畑地域を対象に浸水抽 出基準を作成した.まず、田畑地域に50 m間隔でポイン トデータを作成し、次に海岸線に沿ってラインデータ を作成した.そして、ポイントデータの位置における 標高とラインデータまでの最短距離を計算し、これら の説明変数に関する情報と、独立変数に関する浸水の 有無の情報を一つのテーブルデータ上に整理した.

標高データは,経済産業省と米国航空宇宙局が共同 整備した30m分解能のASTER全球3次元地形データを使 用した.使用の際には,分解能を10mにリサンプリング し,共一次内挿法による平滑化を行った. (B) SAR画像の閾値処理のみによる手法

作成したテーブルデータを学習データとして,WEKA による機械学習を行い,浸水抽出基準を作成した.そ の結果,海岸からの距離が約3,900 m以内であれば浸水 している傾向が強いことが分かった.対象地域は仙台 平野に位置し,高低差がそれほど大きくないため,標 高値は説明変数には組み込まれなかったと考えられる.

そして,得られた結果を建物地域全域に適用し,浸 水域の抽出を行った.

#### (4) SAR画像の閾値処理手法との比較

今回,本手法の効果を検証するため,SAR画像単体で 抽出を行った場合との比較を行った.SAR画像単独で抽 出する際には,郷右近ら(2014)を参考に-17 dBを閾値 として,それ以下の後方散乱係数を持つ画素を,浸水 域として抽出した.そして25×25のピクセルウィンドウ を使用し,大多数フィルタによる平滑化を行った.最 後に浸水面積が小さいものを誤抽出部分とし,除去し た.

#### 3. 抽出結果と考察

田畑地域,建物地域における抽出結果を統合し,対 象地域における浸水域を抽出した.得られた結果を図-5 に示す.そして,国土地理院が公開している実際の浸 水域と比較し,面積ベースで抽出精度を算出した.抽 出精度には,抽出した浸水域のうち正しく抽出できた 割合を示すユーザー精度(U.A.)と実際の浸水域のうち抽 出できた割合を示すプロデューサー精度(P.A.)を算出し た.

提案手法における抽出精度は,田畑地域において 90.8 % (U.A.), 80.0 % (P.A.),建物地域において86.8 % (U.A.),97.5 % (P.A.),対象地域全域において88.9 % (U.A.), 86.9 % (P.A.)であった.田畑地域では,浸水域内の土壌が 完全に乾いた田畑や植生地域において抽出が出来ず, P.A.が低下したと考えられる.一方で,建物地域では実 際の浸水域よりも内陸側を浸水条件としたため,U.A.と 比べ, P.A.が高くなったと考えられる.

またSAR画像の閾値処理における抽出精度は,田畑地 域において100.0 % (U.A.), 43.1% (P.A.), 建物地域におい て100.0 % (U.A.), 2.2 % (P.A.), 対象地域全域において 100.0 % (U.A.), 34.9 % (P.A.)であった. U.A.に比べ, P.A.が 低い場合,被害を過小評価する傾向が強いといえる. 既往手法では,冠水域は高精度に抽出できるが,建物 や既に水が引いてしまった部分に関しては全く抽出で きていない. そのため,提案手法に比べ,U.A.は高く, P.A.は著しく低くなったと考えられる.

一方で提案手法では、SAR画像の閾値処理では抽出でき なかった地域において、抽出精度の向上が確認できた. 特に建物地域では、田畑における浸水抽出結果から津 波がどこまで到達したかを高精度に把握することでき た.しかし、田畑地域では、浸水域外において誤抽出 が目立った.これは光学画像を使用することにより、 ビニールハウスや自衛隊の飛行場などサンプルとして 取得した田畑とは異なる画素値を示す地域において抽 出ができなかったためと考えられる(図-6).本研究で は、建物輪郭データを使用し対象地域の分割を行った が、土地の利用分類に応じてより詳細な分割を行うこ とで、これらの誤抽出は減らすことができると考えら れる.



#### 4. 結論

本研究により得られた結論を以下にまとめる.

(1) 光学画像を用いることで,課題とされてきた観 測時に水が引いてしまった地域において,浸水域を良 好に抽出することができた. (2) 田畑地域における抽 出結果から津波の到達域を推定し,建物地域における 浸水域を高精度に抽出することができた. (3) 本手法 を対象領域全域に適用することで,UA 88.9%,PA. 86.9%の精度で浸水域を抽出できた.また,対象地域を 土地利用分類に応じて分割することで,より高精度な 解析が可能であると考えられる.

#### 参考文献

- 国土地理院:津波による浸水範囲の面積(概略値) について(第5報), 2011.
- 2) リュウ・ウェン、山崎文雄、郷右近英臣、越村俊 一:高解像度 SAR 画像を用いた東北地方太平洋沖地 震における津波湛水域と建物被害の抽出、日本地震 工学会論文集第 12 巻第 6 号(特集号), pp.73-85, 2012.
- 3) 郷右近英臣,越村俊一,松岡昌志:合成開口レーダ 一画像による津波浸水ラインの半自動抽出ツールの 開発,土木学会論文集 B2(海岸工学)第70巻第2号 (海岸工学), pp.1486-1490, 2014.
- 4) 株式会社ゼンリン:住宅地図データベース(Zmap-TOWNII)(オンライン),(平成 23 年 4 月 1 日参照) http://www.zenrin.co.jp/product/gis/zmap/zmaptown.html
- Hall,M., E.Frank, G.Holmes, B.Pfahringer, P.Reute-mann, Ian H.Witten : The WEKA data min-ing software:An Update;ACM SIGKDD Explorations Newsletter, Vol.11, Issue1, pp.10-18, 2009.