河川増水における橋梁上部構造流出に関する信頼性の検討 A study on the reliability of the bridge superstructure outflow in rivers swollen

16N3100034G 光永 憲弘 (設計工学研究室) norihiro MITSUNAGA/ Design Lab.

Key Words : superstructure, fluid force, probability density function, fracture probability

1. はじめに

近年,全国各地で前線や台風などに起因する異常な 集中豪雨により、河川の増水が発生している、気象庁 のアメダス観測点の観測結果より近年の集中豪雨の発 生回数は増加傾向にあることがわかっている.

我が国の河川は急勾配で短距離という特徴を持つた め大雨が降ると洪水になりやすい. 河川増水時には, 河川に架かる橋梁の上部構造の流出,橋脚の洗掘・折 損といった被害¹⁾が発生している. 今後, 河川増水時に は上部構造流出等の橋梁被害の発生が危惧される.

鉄道橋・道路橋への被害は交通機能に影響を及ぼし, 多くの利用者の生活に支障をきたす.また、橋梁の上 部構造流出による二次災害なども考えられる. このこ とから河川増水による橋梁への被害の評価や検討が必 要となる. そこで本研究では、今後流出の危険性があ る橋梁を評価対象とし上部構造流出被害を評価する. 具体的には、橋梁の上部構造流出に関して確率論を用 いた信頼性の検討を行い、流出被害を軽減させるため の合理的な橋梁設計を検討する.また本研究は、橋軸 直角方向のみの力を想定し検討を進めている.

2. 評価対象地域·橋梁

対象とする地域の選定にあたり,アメダス観測点デ ータを用いて都道府県ごとで再現期間100年の確率降水 量を算出した. その結果, 上位3県が奈良県・三重県・ 高知県となった.この3県に関して地形に着目すると、 三重県には大台ケ原山が存在し、そこは太平洋側から の湿った風の影響で多雨地帯となる事が分かっている. その結果、大台ケ原山の下流側に位置する三重県内の 宮川水系では多くの雨水が流れ込み、河川が増水する 可能性が高いと考えられる.また,過去発生した上部 構造流出被害を受けた橋梁は、河川上・中流部に位置 するものが多く、この宮川水系の土地利用を見ると、 河川上・中流部が多く存在する事が分かる.以上の事 から、対象地域は三重県の宮川水系とする、宮川水系 の位置は図-1²に示す.

宮川水系内に架かる橋梁の中で、対象橋梁の種類と して鋼製の道路橋を対象とし、その中で橋長30.0m以上

図-1

対象橋梁の形式・	・完工年・	寸法
----------	-------	----

表-1 対象橋梁の形式・完工年・寸法						
橋梁名	完成年次 [西暦]	径間毎の 桁長[m]	総桁長 [m]	桁幅[m]	支承の種類	構造形式
桧原橋①3	1021	19.4	71.1	7.2	線支承	
桧原橋②	1981	30.2	/1.1 /.2	線支承		
野又橋①	1962	31.9	31.9	3.5	線支承	
新薗井橋①	1966 <u>39.9</u> 19.9	39.9	60.1	60	ピン支承	合成桁橋
新薗井橋②		19.9	0.0	ピン支承		
本眞橋①③	1065	10.0	26.0	6.5	線支承	
本眞橋②	1905	16.0	36.0	0.5	線支承	
荻原橋①	1956	95.7	95.7	6.0	線支承+ピン支承	逆ランガー桁橋
尾合橋①	1971	75.0	75.0	7.5	ピン支承	ランガー桁橋
藤橋①	1967	36.1	36.1	5.9	支承板支承	
寺浦橋①②	1974	20.5	40.9	6.5	線支承	
新横輪橋①	1980	31.0	31.0	7.5	支承板支承	本 武佐塔
新橋123	1971	20.0	61.5	6.5	線支承	口从们们
-之瀬橋①③	1965	16.5	52.1	7.0	支承板支承	
- 之瀬橋②		19.1	52.1 7.0	52.1	支承板支承	

~150.0m以下·幅員3.0m以上~7.5m以下·径間数3以下 という条件の下で橋梁をピックアップし、さらにその 中で詳細な図面が得られた表-1の計11橋梁を評価対象と した.表中の橋梁名に記載されている①②③の数字は、 橋梁を径間毎で分類するための数字であり、例として 図-2に桧原橋の一般図を示す.また、宮川水系内の対象

橋梁の位置は図-3に示す.

3. 流体力・抵抗力式の設定

(1) 上部構造に水位が達する時に作用する流体力

本研究で評価する上部構造水没時の流体力Sは、水位 が徐々に増加し、橋桁の全面と背面とでの水位を同程 度と見做すことで、上部構造に作用する流体力Sは式(1) で表わされる3).

ここに、 ρ_w :水の密度[kg/m³]、v:流速[m/s]、 C_d :抵抗係 数, A:構造物を流れ方向に投影した面積[m²].

また,抵抗係数Caは式(2)の条件から求める⁴.

 $C_d = 2.1 - 0.1 \left(\frac{B}{D}\right) \qquad 1 \le \frac{B}{D} < 8$ 式(2) ここに, B:桁の総幅員[m], D:桁の総高[m].

(2) 上部構造に水位が達する時に作用する抵抗力

流体力 S が上部構造に作用することで生じる抵抗力 R は、支承部において上部構造の重量と摩擦係数をかけ た摩擦による抵抗力と支承部の構造的要因による抵抗 力との和とし、式(3)で表わす.

ここに、 μ最大摩擦係数(0.6)、 W.上部構造重量[N]、 U.上 部構造に生じる浮力[N], R_b:支承部の構造的要因による 抵抗力INI.

支承部の構造的要因による抵抗力とは、上部構造が 流体力を受け橋軸直角方向へ移動する際、それを妨げ るような支承構造のせん断力の事である.対象橋梁の 支承の種類は線支承・ピン支承・支承板支承の3種類に 分けられ、それぞれの支承で図4に示した箇所でのせん 断力を計算し、線支承に関してはアンカーボルトと下 沓凸部のせん断力の和を, ピン支承と支承板支承に関 しては図-4で挙げた各部材ごとのせん断力で一番小さい 値を支承部の構造的要因による抵抗力とし、線支承を 式(4)でピン支承と支承板支承を式(5)で表わす.

$$R_{b} = 0.7\sigma_{1}a_{1}N_{1}N_{2} + 0.7\sigma_{2}a_{2}N_{2} \qquad \vec{x}(4)$$
$$R_{b} = -\begin{bmatrix} 0.7\sigma_{1}a_{1}N_{1}N_{2} \\ 0.7\sigma_{2}a_{2}N_{2} \end{bmatrix} \vec{x}(5)$$

ここに、 σ_1 :ボルトの降伏耐力[N/mm²]、 σ_2 :下沓凸部の 降伏耐力[N/mm²], a₁:ボルトの断面積[mm²], a₂:下沓 凸部の断面積[mm²], N₁:1 支承当たりのボルトの数, N₂:1径間当たりの支承の数.

4. 流体力・抵抗力の計算

本研究では上部構造水没時の流速と支承部の摩擦係 数及びボルト部もしくは下沓凸部の降伏耐力を確率密 度関数として計算することで、流体力Sと抵抗力Rに変

図-3

対象橋梁位置図

。 下部ボルトせん断力 下沓凸部せん断力

支承の種類と抵抗力

宮川水系モデル化

動性を与えた. 流体力の確率密度関数を作成する為の 流速データは, 貯留関数法を用いて各対象橋梁地点に 発生する流量を算出し、それを流速へ変換する方法で 収集した.まず各対象橋梁地点での流量を算出する為 に、図-5のように宮川水系を流域・河道ブロックに分け モデル化し、ブロックごとに計算を行い流量を算出し た. 貯留関数法に入力データとして用いる降水量は, 宮川水系内もしくは近傍に存在しデータ欠損の少ない7 つのアメダス観測点のデータを用いた. 降水量データ の期間は1982年から2016年までの35年間分の時間降水

量を用いた. 貯留方程式は貯留量と流出量との間に一 価の線形関係があるものと仮定し、式(6)と式(7)で表わ す.

$$s = kq$$
 $\vec{x}(6)$

$$\frac{ds}{dt} = r_e - q \qquad \qquad \vec{x}(7)$$

ここに, s貯留量[mm], kパラメータ, q流出高[mm/h], r_{e} :有効降雨強度[mm/h].

ここで、流出による貯留量のパラメータkと有効降雨 強度r。はそれぞれ式(8)と式(9)で表わす.

$$k = 2.5 \left(\frac{n}{\sqrt{i}}\right)^{0.66} A^{0.24}$$
 $\vec{x}(8)$

$$r_e = fr \qquad \qquad \vec{\mathbf{x}}(9)$$

ここに, n:等価粗度, i:斜面勾配, A:流域面積[km²], f流 出率(0.7), r.流域平均降雨強度[mm/h].

次に、計算流量Qの式は式(10)で表わされる.

ここに、 Q_b :基底流量[m³/s].

貯留関数法により求めた流量は,洪水伝播速度式で あるKleitz=Sedon式においてManning式を用いて流速に変 換する. 求めた流速は式(1)に代入し流体力を算出する. 流速の変換式を式(11)に示す.

ここに、0:計算流量[m³/s], B:河川断面を矩形水路と仮 定した時の川幅[m], n:マニングの粗度係数, i:河床勾配.

抵抗力に関して、支承部の摩擦係数とボルト・下沓 凸部の降伏耐力の値は、摩擦係数に関してはRabbatらの 実験結果を参考に、ボルトの降伏耐力はSS400材を想定 し、下沓凸部の降伏耐力はFC250材を想定し、変動性を 与えた.

5. 確率密度関数の作成

流体力の確率密度関数を作成するにあたり算出した 値は35年間分の35個の年最大流体力をとし、その値に 対し確率紙で分布形の当てはめを行った. 確率紙は Gumbel 確率紙と対数正規確率紙にプロットした. その 結果,各橋梁で当てはまる分布形を表-2に示し,各橋梁 の確率密度関数を対象橋梁の中から7つ選び図-6に示す. また、抵抗力の確率密度関数は図-7に示す.

6. 破壊確率の計算

流体力Sと抵抗力Rの確率密度関数から上部構造の破 壊確率を算出した.破壊確率の算出には非正規分布を 正規分布として裾野近似するRackwitz=Fiessler法を用いて 算出した.算出した破壊確率を条件付き破壊確率とす る. この理由として,算出した流体力の確率密度関数 表-2

A 1500 1811		7 11
谷橋梁か当	てはま	る分仇形

橋梁名	従う分布形	R二乗值
桧原橋	対数正規分布	0.98
野又橋	Gumbel分布	0.97
新薗井橋	Gumbel分布	0.99
本眞橋	Gumbel分布	0.98
荻原橋	対数正規分布	0.98
尾合橋	対数正規分布	0.99
藤橋	Gumbel分布	0.95
寺浦橋	対数正規分布	0.96
新横輪橋	Gumbel分布	0.98
新橋	Gumbel分布	0.98
一之瀬橋	Gumbel分布	0.99

抵抗力の確率密度関数

は,発生する流量の関係で水位が上部構造に達してい ない場合でも一様に達するとした条件の下で算出して いる為である. そこで次に、1年間で水位が上部構造ま で到達する確率を求め、それを条件付破壊確率に乗じ た破壊確率を算出した.1年間で水位が上部構造まで到 達する確率を算出するにあたり、各橋梁地点での水位 一流量曲線を導く必要がある.その導出は既往研究⁵に より提案されている式(12)を用いて算出する事にした.

$$Q_i = \rho_i (H_i + w_i)^2 \qquad \qquad \vec{x}(12)$$

ここに, Q:流量[m³/s], H:水位[m], ρ·w:未知パラメー タ.

未知パラメータ ρ ・wは任意の流量と水位,ここでは Q_1, Q_2, H_1, H_2 とした時,式(13)と式(14)で表わされる.

以上より,算出した水位一流量曲線から1年間で水位 が上部構造まで到達する確率を求め,条件付き破壊確 率に乗じたものを破壊確率として表-3に示す.但しこの 確率は,水位が上部構造まで達さずに桁下を通り過ぎ る可能性は考慮したが,水位が上部構造水没にまで達 し,河道から溢水した後の事象を考慮できていない. つまり流体力を実現象よりも過大評価してしまってい る可能性がある.その為,橋梁によっては破壊確率が 大きな値をとると考えられる.

7. おわりに

本研究では三重県の宮川水系内に架かる橋梁を対象 とし、河川増水に起因する上部構造流出被害に関して、 破壊確率の計算を行った.まず1年間の条件付き破壊確 率を見ると、図-5のように桧原橋や荻原橋のような宮川 水系の主河道上に位置する橋梁は、発生流量が増大し、 破壊確率の増大が見られる.一方で、藤橋や新横輪橋 など主河道上に位置していない橋梁でも大きな破壊確 率が見られる.これは、広い流域面積による発生流量 の増大、且つ抵抗力も比較的小さいため破壊確率の増 大に繋がったと考えられる.

次に水位が上部構造に達さずに桁下を通り過ぎる事 象を加味した1年間の破壊確率を見る.まず荻原橋に着 目すると,荻原橋地点では河川断面が大きく,上部構 造に水位が到達する確率が低い事から,条件付き破壊 確率で約43%あった確率が約4%にまでに低減している. その結果,新横輪橋よりも破壊確率が低い結果となっ た.次に桧原橋に着目すると,同じ橋梁でも径間毎で 破壊確率に約15%もの差が出ていることが分かる.これ は図-2に示すように流速に直接効いてくる投影面積,ま た,支承数の違いがこのような差を生んだと考えられ る.

以上より破壊確率の変動は,発生流量に大きく左右 され,特に主河道上や流域面積が大きい地点・河川断 面が小さい地点での破壊確率が大きくなる.また橋梁 構造側から見て破壊確率は,支承数が多いほど有効的 に減少し,また,投影面積が小さいほど有効的に減少

各橋梁の1年間の破壊確率

表-3

橋梁名	信頼性指標 β	1年間の条件付 き破壊確率[%]	1年間の水位上部 構造到達確率[%]	1年間の破壊確率 [%]
桧原橋①3	2.98	0.145	25.714	0.037
桧原橋②	0.67	25.114	60.000	15.068
野又橋①	2.65	0.406	57.143	0.232
新薗井橋①	3.54	0.020	0.000	0.000
新薗井橋②	7.65	0.000	97.143	0.000
本眞橋①③	5.21	0.000	0.000	0.000
本眞橋②	5.19	0.000	0.000	0.000
荻原橋①	0.18	42.884	8.571	3.676
尾合橋①	8.62	0.000	36.364	0.000
藤橋①	1.54	6.125	0.000	0.000
寺浦橋①②	4.46	0.000	0.000	0.000
新横輪橋①	1.60	5.505	94.286	5.191
新橋123	4.00	0.003	100.000	0.003
ー之瀬橋①③	4.90	0.000	0.000	0.000
一之瀬橋②	4.91	0.000	0.000	0.000

※1年間の破壊確率は溢水後を考慮できていない.

する事が分かった.また表-3の結果からは,橋梁毎で孕 んでいるリスクの分類ができる.例えば新橋では,上 部構造に流体力が作用し流出するリスクは低いが,上 部構造が水没するリスクは極めて高い.一方で荻原橋 に着目すると,上部構造に流体力が作用し流出するリ スクは極めて高いが,上部構造が水没するリスクが低 いことが分かる.つまり表-3より,条件付き破壊確率が 大きい橋梁は,流体力に対し弱い構造を持つ橋梁.水 位上部構造到達確率が大きい橋梁は,洪水時に上部構 造が水没し易い位置に存在する橋梁.破壊確率が大き い橋梁は,これらを加味した上で上部構造流出の危険 性が高い橋梁.この様に橋梁の危険性を分類すること ができる.その結果,橋梁毎で必要とされる対策が打 てるようになると言える.

今後の課題としては、今回求めた破壊確率は、6章で 述べた通り溢水後の事象が考慮できておらず、流体力 を実現象よりも過大評価してしまっている可能性があ る点.そして、流体力の作用方向として橋軸直角方向 のみを考慮しており、鉛直上向き方向に働く力、また それに伴い上部構造に発生するモーメント作用の考慮 ができていないなど、より実現象に近づけた評価を行 う必要がある.

参考文献・出典

- 玉井信行,石野和男ら:豪雨による河川橋梁 災害-その原因と対策-,技報堂出版,2015年
- 三重河川国道事務所 宮川流域図 http://www.cbr.mlit.go.jp/mie/river/river_area.html
- 3) 津波による橋梁構造物に及ぼす波力の評価に 関する調査研究委員会報告書,土木学会,2013年
- 道路橋示方書・同解説 共通編,日本道路協会, 2002年
- 5) 田村隆雄ら:雨量・水位データと流出モデルを用いた水位流量曲線作成法の実用性,土木学会論文 集B1, Vol.69, No.4, 2013年