市街地ストリートセルにおける電磁波伝搬推定

EM Wave Propagation Estimation in Urban Street Cells

電気電子情報通信工学専攻 鶴田 浩平 Kohei TSURUTA

1. はじめに

近年,スマートフォンやタブレット端末の急速な発達, 普及に伴い,いつでも,どこでも安定して通信ができる 環境が高いレベルで求められている.こうした環境を整 えるためには,基地局や,公衆無線LANスポットを効率 的に配置することにより広範囲に高強度の電波を届ける ことが有効な手段である.これを実現するため,実際に アンテナを設置し実測したデータをもとに検討すること も可能だがコストと手間がとても掛かるため,電磁波伝 搬の様子を可視化することが有効な手段である.

移動体通信に用いられる高周波帯の電磁波伝搬の解析 には、電磁波を光線近似に考える手法が有効であり、代 表的な伝搬解析には光線追跡法 (レイトレース法) がある. 光線追跡法では送信点から放射される電磁波を光線 (レ イ)とみなし、反射回数、透過回数、回折回数により幾何 光学理論に基づき送信点から受信点へ到達する光線を追 跡することにより伝搬損失、遅延時間、出射方向、到来 方向を算出し、電磁波伝搬推定を行う.光線追跡法は、経 路探索のアルゴリズムの違いにより SBR(Shooting and Bouncing Rays) 法とイメージング法の 2 種類に分類でき る.本研究では散乱体の数が多く、その形状が複雑になっ た場合でも計算時間において有利である SBR 法を用いた 電磁波伝搬解析を行っていく [1].

SBR 法を用いた過去の電磁波伝搬解析の研究としては, ストリートセル環境での伝搬解析と実測値との比較検証 [2] や回折を考慮した三次元 SBR 法による電磁波伝搬解 析 [4],多重エッジ回折波の寄与を考慮したアルゴリズム [5] 等が行われ,SBR 法に多くの機能を付加するとともに その妥当性についての検証が行われてきた.他研究室で は市街地における建物の形状を変えずオブジェクトを結 合することにより解析時間の短縮を図る研究 [6],レイト レース法の高速処理を実現するためのアルゴリズムの提 案と有効性の検証を行った研究などが行われている [7].

そこで筆者は,SBR 法を用いて銀座やすすきのといっ た市街地にある大きな通りで電波がどのように減衰して いくのか調査し,集めたデータからストリートにおける 電波の伝搬損失を推定する式を提案する研究を行った.

2. SBR法

SBR 法は図1のように、送信点から光線放射刻み角 $\Delta \theta$ 毎に光線を放射して追跡し,直径 a の大きさを持つ受信 領域に到達した光線の強度を伝搬距離、経路情報から計 算する方法である.放射された光線をその都度追跡して いくので、 散乱体の数が多い場合にイメージング法に比 べ計算量が少なくなることから広域での電磁波伝搬解析 に適している.一方,定められた角度まで,角度 $\Delta \theta$ ごと に有限数の光線を放射することから、送信点からの距離 が遠くなるにつれて光線がサンプル領域を通過しなくな るため、光線放射刻み角 $\Delta \theta$ や、サンプル領域の直径 a、 サンプル間隔b,光線追跡間隔cなどのパラメータを定め る際には注意が必要である.また,光線を複素振幅加算 で足し合わせる際にはサンプル領域の大きさによっては 正しい位相を用いた計算ができなくなり、誤差が生じて しまうことから、サンプル領域の大きさは波長と比べて 十分に小さくする必要がある.

図 1: SBR 法の概念図

市街地ストリートセルでの回折波 の寄与の検証

まず市街地のストリートモデルを解析する条件を決定 するために,計算時間に大きな影響を与える回折波の寄 与の検証を行う. 伝搬解析の対象とするモデルは図2に 示すような銀座四丁目交差点を含む晴海通りである. 基 本的な解析条件は表1に示す.

図 2: 銀座 4 丁目晴海通り

表	1:	パ	ラメ	ータ
~ ~	- ·			

使用アンテナ	無指向オムニアンテナ
周波数	$1.5\mathrm{GHz}$
波長	$0.2\mathrm{m}$
送信電力	$30\mathrm{dBm}$
解析領域	縦 150 pixel × 横 1000 pixel
送信アンテナ座標	$x=0 \mathrm{m}, \ y=75 \mathrm{m}$
建物の比誘電率	7.0 - j 0.8
地面の比誘電率	15.0 - j 0.047
観測面	地上1m
散乱回数	反射 10 回,1 次回折波の反射 10 回

市街地ストリートセルにおける電磁波伝搬推定をする 際に, 電波を観測する高さは人間が携帯電話を使用する高 さを想定し,観測面を地上1mとして解析を行う.また, 送信アンテナの高さは一番低い高さで地上1mとするた め,送信アンテナから $0^{\circ} < \theta < 90^{\circ}$ の範囲で放射される 電波は建物の屋上面のエッジでの回折波以外は観測面を 通らず上空に抜けていく. そこで屋上面エッジでの回折 波の寄与を調査し,その寄与が小さいと分かれば電波の 放射範囲を $90^\circ \le \theta \le 180^\circ$ と制限することができる.送 信アンテナを地上 10 m に設置し,電波を 0° < φ < 360°, $0^{\circ} \leq \theta \leq 180^{\circ}$ に放射し屋上面での回折を考慮する解析と, 電波を送信アンテナから下方面すなわち $0^{\circ} \leq \phi \leq 360^{\circ}$, 90° < θ < 180° に放射且つ屋上面エッジでの回折は考慮 しない条件で解析を行い,得られた結果から道幅20m分 の電力値の平均を x = 0 m から x = 500 m 抽出し, その 結果を図3に示し、計算時間の比較を表2に示す。グラ フから屋上面エッジでの回折波の寄与が小さいことが分 かる.次に建物壁面エッジでの回折の寄与を検証するた めに,直接波,多重反射波のみの解析と1次回折波も考 慮した解析を比較した結果を図2に示し,計算時間の比 較を表4に示す. グラフの結果から回折波の寄与は小さ いことが分かる.見通し内での電波伝搬では回折波の影 響が少なく,直接波と反射波が重要であることが言える.

図 3: 屋上面エッジでの回折波の寄与の検証

表 2: 屋上面エッジでの回折の考慮による計算時間比較

	$0^\circ \le \theta \le 180^\circ$,	$90^\circ \le \theta \le 180^\circ$,
	屋上面での回折考慮	屋上面での回折考慮なし
計算時間	$544.4\mathrm{min}$	$473.9\mathrm{min}$

図 4: 建物壁面エッジでの回折波の寄与の検証

表 3: 建物壁面エッジでの回折波				
	回折波無し	回折波考慮		
計管時間	$287.4 \mathrm{min}$	473 9 min		

市街地ストリートセルでの伝搬解 析

銀座の晴海通り,池袋のサンシャイン通り,新宿の靖 国通り,札幌のすすきの通りを対象のモデルとしてスト リートセルでの伝搬解析を行い,本要旨ではすすきの通 りの結果について考察する.解析領域と地理情報につい て表4に示す.SBR 法による解析での反射回数は30回 まで考慮する.観測面の高さ $h_r = 1$ mで送信アンテナの 高さ $h_t = 10$ mとした時のSBR法による解析結果と二波 モデルの結果の比較を図5に示す.また, $h_t = 1$ m,5m, 10mの3パターンでの解析結果を直線なグラフとして見 るために方対数グラフで示した結果を図6に示す.そし て方対数グラフでのそれぞれのグラフのブレークポイン ト[8]から2倍の距離から遠方の近似直線を最小二乗法に より求め,その式を表5に示す.ブレークポイント d_b は

$$d_b = \frac{4h_t h_r}{\lambda} \tag{1}$$

で表される.図5を見ると、ブレークポイント d_b までは 二波モデルの計算結果に近い値をとり、ブレークポイン ト d_b から遠方ではなだらかな減衰が生じ、二波モデルの 値から離れていく.次に表5を見ると、 $h_t = 1$ mの時は、 $h_t = 5$ m、10mの時に比べて、傾きが大きく異なってい る.これは送信アンテナの高さと観測面の高さが同じで あるため、送信アンテナから $\theta = 90^\circ$ 方向に放射された 電波は常に観測面の高さで反射を繰り返して進行してい くため、干渉によって電波が強まることにより伝搬損失 が小さくなるためである.送信アンテナの高さと観測面 の高さが異なる時は、傾きの値が近いことが分かる.

表 4: 札幌 すすきの通り 解析領域

解析領域	縦 180 pixel × 横 2700 pixel
通りの幅	44 m
通りの長さ	$1350\mathrm{m}$

図 5: すすきの 送信アンテナ 10 m

図 6: 送信アンテナの高さによる比較

	直線の式
$h_t = 1 \mathrm{m}$	$y = -10 \times 2.069539 \log_{10} x - 13.305613$
$h_t = 5 \mathrm{m}$	$y = -10 \times 3.078259 \log_{10} x + 21.118877$
$h_t = 10 \mathrm{m}$	$y = -10 \times 3.129312 \log_{10} x + 28.001659$

5. 伝搬推定式の提案

本要旨では割愛しているが銀座や池袋,新宿といった 市街地モデルでの伝搬解析を同様に行い,ブレークポイ ントから2倍の距離から遠方での近似直線を求めた.そ れらの近似直線の傾きの平均値は $a = -10 \times 3.169303$ と なった.送信アンテナの高さに対応するブレークポイン トでの電力値 P_{d_p} を二波モデルから求め,直線をブレー クポイントの座標に平行移動させ,切片をブレークポイ ントでの電力値とすると

$$y = -10 \times 3.169303 \left(\log_{10} x - \log_{10} d_b \right) + P_{d_b} \qquad (2)$$

を得ることができる.すすきのをモデルとして送信アン テナの高さを10mとした時のSBR法による解析結果と 式(2)での計算結果の比較を図7に示す.送信アンテナの 高さが10mの時ブレークポイントは200mとなり2倍の 距離である400mより遠方では2つのグラフは平行であ るが電力値に開きがあることが確認できる.本要旨では 割愛しているが送信アンテナの高さを変えた場合や,他 のモデルでも同様の現象が見られた.そこで,それぞれ の結果から電力値の差を求め,平均誤差2.243325 dBmを 得た.そして平均誤差の値を補正値として式(2)に補正 することで

$$y = -10 \times 3.169303 \left(\log_{10} x - \log_{10} d_b \right) + P_{d_b} + 2.243325 \quad (3)$$

を得ることができる. SBR 法による解析結果と式 (3) で の計算結果の比較を図 8 に示す.提案式 (3) の計算結果 と SBR 法による解析結果はブレークポイントの 2 倍の距 離である 400 m より遠方で電力値が一致することが確認 できた.他のモデルや送信アンテナの高さを変化させて も同様の結果を得ることができた.今回提案した伝搬推 定式 (3) は送信アンテナが見通し内領域であり,送信アン テナの高さと観測面の高さが異なる時,市街地ストリー トセルでの伝搬推定を行う上で有効な式であることがい える.

図 7: 提案式と SBR 法の計算結果の比較

図 8: 補正後の提案式と SBR 法の計算結果の比較

6. 結論

本研究では、まず市街地ストリートセルでの伝搬解析 を行い回折波の寄与を調べ、回折波の寄与が小さいこと を確認することができた.また、日本の市街地をモデル にして SBR 法で伝搬解析を行い、伝搬損失の様子を考察 することによって、市街地ストリートセルにおける伝搬 推定式を提案した.今後は郊外を対象としたストリート セルでの伝搬解析や送信アンテナが見通し外であるとき の伝搬解析を行っていき,それらの条件での伝搬推定式 を提案することが目的となる.

謝辞

本研究を進めるにあたり,熱心にご指導頂いた本学理 工学部電気電子情報通信工学科の白井宏教授に深く感謝 いたします.また,ご相談に乗って下さった本学白井研究 室の皆様に,心から感謝の気持ちとお礼を申し上げます.

参考文献

- [1] 細矢 良雄,"電波伝搬ハンドブック",リアライズ社, (1999-1).
- [2] A. Amornthipparat, H. Shirai, K. Yonezawa, T. inoue, "NLOS Path Loss Evaluation for Street-Cell Environment", Proc. of 2008 IEEE Radio and Wireless Symposium, pp.603–606 (2008–1).
- [3] 山本 泰佑,"回折波を考慮した三次元電磁波伝搬解 析についての研究",中央大学 理工学部 電気電子情 報通信工学科 卒業論文,2009.
- [4] アモンティパラット アモンチャイ,"回折を考慮した 三次元 SBR 法による電磁波伝搬解析",中央大学理 工学研究科修士論文,(2008-3).
- [5] 前田 崇秀, "SBR 法における多重エッジ回折波の計算手法の考案",中央大学大学院理工学研究科 修士 論文, 2014.
- [6] 本吉 正博, 菅原 弘人, 小野 隆志, "オブジェクト 結合によるレイ・ラウンチング法の高速化", 電子情 報通信学会ソサイエティ大会議講演論文集 2007 通信 (1). pp16,2007-08-29.
- [7] 今井 哲郎,藤井 輝也, "レイトレースを用いた屋内 エリア推定システムの高速アルゴリズム",信学論 (B), vol.J83–B, No.8, pp.1167–1177, 2000.
- [8] 唐沢 好男, "改訂 ディジタル移動通信の電波伝搬基 礎", コロナ社, 2016.