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1. Introduction

Outdoor-indoor wireless communication has been
paid attention because of its important role in seeking
reliable channels for recent connection demand. A pri-
mary gate for such outdoor-indoor propagation could
be windows on building walls, since the signal decays
rapidly as it passes through the concrete walls, especially
as the frequency increases. Accordingly, it is essential to
analyze the scattering features of the window.

Classical problem for such aperture diffraction is the
analysis of plane wave diffraction by a slit perforated
on a conducting screen. A slit on an infinitely thin
screen has been considered by Morse and Rubinstein
using an eigenfunction expansion solution in terms of
Mathieu functions [1], and by Nomura and Katsura
using Kobayashi Potential (KP) method with Weber-
Schafheitlin discontinuous integrals [2]. KP method can
also be utilized to solved thick slit problems [3], [4] which
are more complicated than the thin slit case. However,
the above results have mainly considered relatively nar-
row slit apertures.

Since scattering by a window whose large dimension
compared with the wavelength should be formulated to
consider a practical wireless communication situation,
I focus on the study of wide slit rather than narrow
one. For this case, it would be better to apply high-
frequency asymptotic method, such as the Geometri-
cal Theory of Diffraction (GTD) [5],[6] and Kirchhoff
approximation [7], rather than eigenfunction expansion
method [2, 3, 4],[8] which is known to give a reliable re-
sult for relatively narrow aperture case. Besides, using
GTD method to derive diffraction coefficient of the local
scattering feature, difficulties arise in the derivation of
the appropriate coefficients for the corners or dielectric
wedge diffraction. Therefore, in Sect. 2, Kirchhoff ap-
proximation is applied to formulate the scattering far-
field, and the accuracy assessment should be done for
the case which the other solutions are available. In the
formulation, the field propagating in the slit could be
calculated in terms of waveguide modes excited at the
aperture of the slit. Some numerical calculations are
performed and comparisons with other solutions to val-
idate the analysis are given in Sect. 3 with some con-
cluding remarks.

Time harmonic factor e−iωt is assumed and sup-
pressed throughout the context.

Figure 1: Geometry of the problem.

2. Formulation

As illustrated in Fig. 1, an H-polarized plane wave:

Hi
y = H0e

−ik(x cos θ0+z sin θ0) (1)

impinges upon a slit perforated on an infinitely long per-
fectly conducting thick screen with incident angle θ0.
The width and thickness of the slit are a and b, respec-
tively, and k is free space wavenumber. In order to ob-
tain the scattering contribution, the aperture integration
method is utilized. By this method, the scattering fields
are derived as radiations from the equivalent sources on
the virtually closed aperture.

2.1 Scattering in the upper region

On the upper half-space (z > 0), there exists a re-
flected field Hr due to the reflection from the screen’s
surface at z = 0. This contribution will be omitted in
the following analysis. The equivalent magnetic current
sources M±

1 on the closed upper aperture may be ob-
tained from the incident electric field as

M±
1 (x, z = 0) = (Ei

xx̂+ Ei
zẑ)

∣∣
z=0

× (±ẑ), (2)

where ‘∧’ denotes the corresponding unit vector. Then
scattering Hs

1y field from the upper aperture can be ex-

pressed in terms of the equivalent magnetic current M+
1

on the upper side of upper aperture as

Hs
1y = iωε0

∫ a/2

−a/2

M+
1y(x

′)Gdx′, (3)

where ε0 denotes the free space permittivity, G is the
half-space 2D Green’s function, considering the imaging



Figure 2: Scattering field at each region may be con-
sidered as radiation from the equivalent sources at the
apertures.

effect of the magnetic current on the boundary

G =
i

2
H

(1)
0 (k

√
(x− x′)2 + (z − z′)2)

=
i

2π

∫ ∞

−∞

eiη(x−x′)+i
√

k2−η2|z−z′|√
k2 − η2

dη. (4)

Substituting Eq.(4) into (3) and evaluating the integral
with respect to x′ variable first, the saddle point method
may be applied to evaluate the integral with respect to
η variable on the assumption for large k, one can derive
the scattering far-field at the upper half-space (z > 0)
as

Hs
1y =

4iH0 sin θ0 sin
{

ka
2 (cos θ0 + cos θ)

}
cos θ0 + cos θ

C(kρ), (5)

C(kρ) =

√
1

8πkρ
eikρ+iπ

4 , (6)

where C(kρ) is an asymptotic far-field form of Eq.(4).

2.2 Modal excitation inside the slit

A part of the incident plane wave impinges the slit aper-
ture. According to the Kirchhoff approximation, the
field inside the slit can be excited by the equivalent mag-
netic source M−

1 in Eq.(2) on the closed aperture. The
field Hw inside a semi-infinitely long (b → ∞) parallel
plane waveguide may be expressed as

Hw
y = iωε0

∫ a/2

−a/2

M−
1y(x

′)Gwdx′, (7)

where Gw is the Green’s function for parallel plane
waveguide considering the imaging effect for the metal
closure at the aperture, namely

Gw(x, z;x′, z′) =
∞∑

m=0

iϵm
aζm

cos
mπ

a

(
x+

a

2

)
· cos mπ

a

(
x′ +

a

2

)
eiζm|z−z′|, (8)

where

ϵm =

{
1, m = 0

2, m > 0
, ζm =

√
k2 −

(mπ

a

)2

. (9)

It is found that the field propagating downward inside
the slit could be derived as

Hw
y =

∞∑
m=0

Fm cos
mπ

a

(
x+

a

2

)
e−iζmz. (10)

Here, Fm is the excitation coefficient of the TMm waveg-
uide modal field. Fm can be calculated by integrat-
ing the equivalent source M−

1 over the aperture (|x| ≤
a/2, z = 0), one gets

Fm =− iϵmk2aH0 sin θ0 cos θ0
ζm{(mπ)2 − (ka cos θ0)2}

·
{
(−1)m · e(−ika cos θ0)/2 − e(ika cos θ0)/2

}
. (11)

The internal waveguide field Hw propagates down to
the lower aperture (z = −b) and excites there scattering
fieldHs

2 to the lower half-space (z < −b), and the modal
reflection (z > −b). These scattering fields are again
calculated from the equivalent magnetic currents M±

2

on the closed aperture at z = −b, as in Fig. 2, as

M±
2 (x, z = −b) = (Ew

x x̂+ Ew
z ẑ)

∣∣
z=−b

× (±ẑ). (12)

For modal reflection, one may use the similar formula
in Eq.(7) with M+

2y in Eq.(12). After some calculation,
one may find that there is no reflection at all for the
Kirchhoff approximation. In the previous formulation
by GTD [6], there is at least modal reflection and cou-
pling even at the lower aperture, while these effects are
weak.

2.3 Scattering in the lower region

The radiation field Hs
2 in the lower half-space can be

derived from the equivalent source M−
2 in Eq.(12) like

the primary scattering fieldHs
1 in Sect. 2.1. Once again,

the integral in this formulation can be evaluated using
the saddle point method. Finally, one gets the scattering
field Hs

2 as

Hs
2y =2iH0(ka)

3 sin θ0 cos θ0 cos θ · C(kρ)

·
∞∑

m=0

ϵm
{(mπ)2 − (ka cos θ0)2}{(mπ)2 − (ka cos θ)2}

·
{
(−1)me(−ika cos θ0)/2 − e(ika cos θ0)/2

}
·
{
(−1)me(−ika cos θ)/2 − e(ika cos θ)/2

}
· eiζmb. (13)
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Figure 3: Comparison of the far-field patterns (width
variation) of KA, KP [3], and GTD [6] methods . θ0 =
50◦, kb = 2. (a) ka = 30. (b) ka = 7.

3. Numerical results and discus-
sion

I first check the validity of the presented solution by
comparing the numerical results with those obtained
from other methods. In the following calculation, a com-
mon factor C(kρ) is omitted. In the upper half-space
(z > 0), the reflected plane wave exists but is omitted
as mentioned in Sect. 2. Fig. 3 shows the effect of the
aperture width. Fig. 3(a) is for a wide case (ka = 30),
while Fig. 3(b) for a narrow case (ka = 7). The figures
include results obtained from the KP [3] and GTD [6]
methods. GTD method is known to give us accurate
results for large aperture case [6], while KP method is
believed to yield the accuracy of narrow aperture case
[3]. Thickness b of the slit and the incident angle θ0 are
set as kb = 2 and 50◦, respectively. It is found that good
agreement among the present KA and the other results
for the observation angles of the main beam. Though
the multiple edge-diffractions between the edges are not
considered in this calculation, the result matches well
even for narrow aperture case in Fig. 3(b). Scattering
pattern is almost symmetric with respect to the x-axis
(screen) in this thickness condition.
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Figure 4: Comparison of the far-field patterns (thickness
variation) of KA, KP [3] and GTD [6] methods. θ0 =
30◦, ka = 30. (a) kb = 4. (b) kb = 2.

Next, I shall check the accuracy of the thickness vari-
ation of the slit. Fig. 4 shows the far-field patterns for
relatively thick (kb = 4) and thin (kb = 2) cases. Here,
the width of the slit a and the incident angle θ0 are
chosen as 4.47λ (ka = 30) and 30◦, respectively. From
these results, the solution is in good agreement with the
references for both thickness cases.

While the presented formulation is based on the thick
screen, it may be interesting to take a limit case of zero
thickness. Fig. 5 shows a comparison of the scattering
patterns for the infinitely thin case. As reference solu-
tions, the case for a very thin screen is calculated by KA
and KP. One can notice slight differences mainly at the
screen boundary direction (θ = 0◦, 180◦, 360◦).

Fig. 6(a) and (b) show the scattering pattern change
due to the screen thickness. In the upper half-space, the
field Hs

1 which is described in Eq. (5) gives scattering
pattern feature. As can be seen from the equation, the
scattering value does not depend on the thickness value
b, so that the scattering pattern does not change as the
thickness varies. On the other hand, the pattern changes
in diffraction range (lower half-space). The dependence
of the scattering Hs

2 field value on the thickness value b
is described in Eq. (13). When the screen is thin, the
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Figure 5: Comparison of the far-field patterns in thin
slit case. θ0 = 30◦, ka = 30, kb → 0.
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Figure 6: Change of normalized far-field patterns in
dB. θ0 = 30◦, ka = 50. (a) kb = 0, 2.5, 5. (b)
kb = 10, 15, 25.

incident beam truncated by aperture transmits to the
forward direction (θ = θ0 + π). As the screen gets
thicken, the truncated beam experiences its thickness,

and beam split occurs. For the case of the incident an-
gle θ0 = 30◦ and the ratio of thickness and aperture
width b/a = 0.5, main of the truncated beam reflects
at slit’s internal wall and propagates to the direction at
θ = 330◦, as in Fig. 6(b). One may also conclude that
the scattering pattern can be predicted by a simple half
plane solution if the thickness of the screen is less than
0.5λ.
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