ARAI kiyomi

りん光性 Ir 錯体を組み込んだ発光性多孔質材料の合成および発光特性評価 Synthesis and luminescent properties of porous materials containing phosphorescent Ir complexes

1. 緒言

りん光性 Ir 錯体は配位子の選択により発光特 性の制御が可能であることが知られている。こ の発光性 Ir 錯体をリンカーとする有機-金属構 造体 Metal-organic framework (MOF) は多孔性 で高表面積を持つ材料であるので、空孔内に小 さな分子を取り込むことが可能であることか ら、ガス吸着やセンサー、触媒などへの応用が 期待される。しかしながら発光性 Ir 錯体を組み 込んだ MOF の報告例はまだ少ない。これまで に[Ir(ppy)₃] (ppy = 2-phenylpyridine)を基本骨格 とした Ir 錯体を用いた MOF^[3]を用いた酸素セ ンサーが報告されている。

同様に規則的な多孔性を有する材料として 有機メソポーラスシリカ Periodic Mesoporous Organosilica (PMO)^[4]がある。これは界面活性剤 を鋳型としてシリカによって作られたナノス ケールの円柱状空孔を持つ材料である。

Fig.1 多孔質材料 MOF(左)と PMO(右)

本研究では、発光性 Ir 錯体の配位子上のアン カー基により、MOF や PMO 表面を修飾して、 発光性多孔質材料を合成することを目指した。 ここでは、カルボキシル基を末端にもつ Ir 錯体 の合成とその錯体ユニットを埋め込んだ多孔 性でかつ発光性を有する MOF および PMO の作 製、特性評価を検討した。

2. 実験及び考察

2.1 Ir 錯体の合成と発光特性評価

剛直な構造をもつビス(ベンズイミダゾリル)ピ リジン三座配位子の側鎖に、金属イオンと配位 結合可能なカルボキシル 基を末端に導入した Ir 錯 体 1-COOH を合成した。単 結晶 X 線構造解析より両 端のカルボキシル基が直 線上に位置していること が明らかになった。この Ir-COO・錯体が金属イオン を結ぶリンカーとして構 造体を形成した場合には соон ⁺ зэрге зэрге зэрге зэрге зэрге ч соон Fig.2 Ir 錯体 1-COOH の構造

応用化学専攻 新井 喜代美

軸方向の対称性を保持できる。1-COOH は脱プ ロトン体 1-COO との間に溶液中でプロトン移 動平衡が存在する。それぞれの発光特性を Table 1 にまとめた。

Table 1 MeOH 中での Ir 錯体の発光特性

Complex	λem (nm)	τ (μs)	Φ
1-COOH	554, 598(sh), 660(sh)	4.5	0.70
1-COO-	545, 590(sh), 648(sh)	2.7	0.48
1-COOMe	552, 598(sh), 650(sh)	2.9	0.53
[Ir(Mebip) ₂] ³⁺	547, 590(sh), 646(sh)	4.9	0.21

1-COOH は量子収率 0.7 の高発光性を示した が、脱プロトン化状態ではその量子収率は約2/3 に減少した。同様に、発光寿命も脱プロトン化 により約2/3に減少した。また基本骨格である [Ir(Mebip)₂]³⁺と錯体1を比較すると、安息香酸 基の導入により発光波長の長波長シフトおよ び量子収率の向上が見られた。

2.2 Ir-Zr-MOF の合成と発光特性

リンカー基となる **1-COO**を用いて ZrCl₄を金 属イオンのノードとして、DMF・酢酸中で混合 懸濁液を加熱したところ、赤橙色固体 Ir-Zr-MOF を得た。Ir-Zr-MOF の PXRD 測定結 果より、得られた固体は結晶性を持つことがわ かった。しかし、これまでのところ、完全な固 体の構造解析までには至っていない。固体の SEM 像から 1~3 μm の微細針状結晶であるこ とが明らかになった。

Fig.3 Ir-Zr-MOF O PXRD

合成した Ir-Zr-MOF と原料の錯体 1-COOの 発光特性を比較した。Ir-Zr-MOF の発光極大波 長は元の錯体ユニットのものよりも約20 nm 長 波長シフトしていた。また発光量子収率および 発光寿命を比較すると、Ir-Zr-MOF は量子収率 の減少・発光寿命の短寿命化が見られた。これ は MOF の周期構造中に Ir 錯体が組み込まれた ことで Ir 錯体同士の距離が近くなり、T-T 消滅 過程で失活が速くなったためだと考えられる。

Table 2 Ir 錯体と Ir-Zr-MOFの 固体状態での発光特性

Solid	$\lambda_{em} [nm]$	Φ	$\tau_1[ns]$	$\tau_2[ns]$	$\tau_{3}^{1}[ns]$
1 -COO	560, 586, 644 sh	0.033	66.2 (61.8%)	327 (38.2%)	-
Ir-Zr MOF	583 sh, 607, 692 sh	0.007	10.6 (73.9%)	44.2 (20.8%)	272 (5.3%)

2.2 Ir-PMO の合成

Ir-PMO の合成のために、Ir 錯体と構造体との 結合方法として 2 つの異なる合成法を試みた。 Ir 錯体末端のカルボキシル基にシランカップリ ング剤 APTES を結合させ、PMO のシリカ壁中 に Ir 錯体を組み込む方法で合成した(Ir-PMO 1 とする)。第2の方法として、MCM 空孔内部に 露出したアミノ基を持つNH₂-MCM^[5]を合成し、 空孔内部でのアミド結合形成により Ir 錯体を結 合させる方法で合成した(Ir-PMO 2 とする)。

Fig.4 Ir-PMO1・2の合成法

3.2 Ir-PMO の構造と発光特性

Ir-PMO1のXRD測定より2.72°=32.4 Åにピークが見られ、これが空孔の直径であると推測した。また Fig.5 に示した TEM 観察から、実際に球状のIr-PMO1表面に約30 Åの空孔があることが確認できた。Ir 錯体を含まない MCM-41では400 nm 以降に発光は現れなかったが、Ir-PMO1では555 nm に発光極大を持つ1-COO・由来の発光が観測された。Ir-PMOの発光特性を固体状態の1-COO・と比較するとIr-PMO1では量子収率が約10倍、Ir-PMO2でも約7.5倍に向上した。これは凝集していた1-COO・が PMO内および表面上に分散して存在しているために、発光が効率的に起きたと考えられる。

Table 3 Ir 錯体および Ir-PMO の

王	体状	能で	の発	*光	特	性
ы	1441/	1075	$\nabla = \pi$	1 / 1	101 1	

	1 0=	/ / /		
Solid	λ_{em} [nm]	Φ	$\tau_1[ns]$	$\tau_2[ns]$
1 -COO	560, 586, 644 sh	0.033	66.2 (61.8%)	327 (38.2%)
Ir-PMO 1	555, 595, 656 sh	0.33	648 (63.6%)	3962 (36.4%)
Ir-PMO 2	555, 589, 653sh	0.25	462 (84.1%)	2183 (15.9%)

3. 結論

両末端にカルボキシル基を持つビス3座配位 型りん光性 Ir 錯体を用いて Zr 塩と共に MOF の 合成が可能であることを明らかにした。また Ir 錯体を PMO と組み合わせることで、りん光性 多孔質材料の合成に成功した。これらはその多 孔性を応用することで、発光センサーとしての 利用が期待できる。

引用文献

[1] S.Obara, M.Haga, et.al., Inorg. Chem., **2006**, 45 (22)

[2] T.Yutaka, M. Haga, et.al., Inorg. Chem., 2005, 44 (13)

[3] Z. Xie et al., JACS, 2010, 132, 922.

[4] C.T.Kresge et al., Nature, 1992, 359, 22, 710.

[5] A.Wada et al., J. AM. CHEM. SOC. 2009, 131, 5321.

対外発表

(1) 6st ACCC, Australia (2017, July) 他ポスター発表 2 件、口頭1件