二光子励起による光運動材料の精密駆動 Precise Actuation of Photomobile Materials by Two-Photon Excitation

応用化学専攻 佐々木 翔大

SASAKI Shota

1. 緒言

近年,光をエネルギー源として材料自身が変形し, 光-力直接変換が可能な光運動材料に注目が集まっ ている.光運動材料は原理的にデバイスを小型軽量 化できるため,マイクロサイズのアクチュエーター材 料として利用する研究が盛んに行われている.アゾ ベンゼンを組み込んだ架橋液晶高分子フィルムに紫 外光を照射すると,アゾベンゼンのトランス-シス光異 性化を引き金にして,液晶分子の配向変化がフィル ム表面領域のみで誘起される.その結果,表面層が 異方的に収縮し,フィルムが屈曲する.¹

従来の一光子吸収に基づく架橋アゾベンゼン液晶高 分子駆動では、フィルム表面近傍に存在するアゾベ ンゼン分子が光を吸収し変形が起こるため、励起光 が到達しない材料深部のアゾベンゼンを活用した変 形を誘起することはできなかった.一方、分子が同時 に二つの光子を吸収して励起される二光子吸収は、 集光レーザー光の焦点付近という光子密度が極めて 高い空間でのみ起こるため、µm-nmスケールで光化 学反応の領域を三次元空間選択的に制御できる.² 光運動材料中のアゾベンゼンを二光子吸収によりトラ ンス-シス光異性化できれば、材料の任意の位置で 収縮を起こすことが可能となり、光運動を三次元空間 において自在に精密制御できると考えた(図1).

そこで本研究では、二光子吸収に有利な広いπ共役 系を有するアゾトラン分子の二光子吸収特性を解析 し、架橋アゾトラン液晶高分子フィルムの二光子精密 駆動を検討した.

図1. 光屈曲の模式図. (a) 一光子駆動, (b) 二光子駆動.

2. 実験

図2に本研究で用いたアゾトラン液晶モノマー (A9ABT)およびアゾトラン液晶架橋剤(DA9ABT)の 構造式を示す.架橋アゾトラン液晶高分子フィルムは A9ABT(40 mol%), DA9ABT(60 mol%), 熱重合開 始剤の混合物を, 配向処理を施した液晶セルに封入 し, アルゴン雰囲気下, 90 ℃(液晶相温度)で熱重合 することにより得た.

2-1. 二光子吸収断面積測定

励起光にフェムト秒レーザーパルス(波長: 580-900 nm, 半値全幅: 90-150 fs, 繰り返し周波数: 1 kHz, 強 度: 0.05-0.4 mW)を用い, Z-スキャン法²により A9ABT, DA9ABTのトルエン溶液(3 mM)および架 橋アゾトラン液晶高分子フィルムの二光子吸収断面 積を測定した.

2-2. 二光子屈曲挙動観察

フェムト秒レーザーパルス(波長: 650 nm, 半値全幅: 100 fs, 繰り返し周波数: 1 kHz, 強度: 3-5 mW)をシリ ンドリカルレンズ(焦点距離: 100 mm)または対物レン ズ(焦点距離: 1.4 mm)により集光し, 光路上に架橋 アゾトラン液晶高分子フィルム(厚さ: 20 μm)を設置し て屈曲挙動を観察した.

3. 結果と考察

図3にA9ABT, DA9ABTの二光子吸収スペクトル, 表1に波長650 nmにおける二光子吸収断面積を示 す. アゾトランは波長650 nm付近に二光子吸収極大 が存在することが判明した.

図3. アゾトランの二光子吸収スペクトル

表1. アゾ	トランの二光子吸収断面積(650 nm)	
--------	----------------------	--

Compound	$\sigma^{(2)}(GM)$
A9ABT	123 ± 27
DA9ABT	128 ± 21

図4に架橋アゾトラン液晶高分子フィルムの波長650 nmにおける二光子吸光度q₀の光強度依存性,**表2**に 二光子吸収断面積の配向依存性を示す.レーザー パルスの偏光方向と液晶分子の配向が平行の場合 (V),二光子吸収断面積は溶液と比べておよそ2.7倍 程度大きい値が得られたが,垂直の場合(H),ほとん ど二光子吸収は起こらなかった.これは二光子吸収 断面積に分子形状に基づく異方性があり,分子長軸 方向の二光子吸収断面積が大きいためであると考え ている.

図4. 二光子吸光度の光強度依存性

表2. 二光子吸収断面積の配回依存性(650 nm

配向方向	$\sigma^{(2)}(GM)$
V	340 ± 43
Н	5 ± 1

図5に光路上に2枚のフィルムを設置し、シリンドリカ ルレンズにより集光したフェムト秒レーザーパルスを 照射した時の光屈曲挙動を示す. 焦点に設置したフ ィルムは光源に向かって屈曲したが、焦点から離れ た位置に設置したフィルムは屈曲しなかった. 焦点か ら離れた位置では二光子吸収に必要な光強度に達 していないため、焦点に設置したフィルムのみを選択 的に駆動できたと推察している.

図5. (a) 光屈曲挙動, (b) セットアップ模式図.

図6にフェムト秒レーザーパルスを対物レンズにより 集光し、フィルムを裏側近傍が焦点の位置となるよう に設置した時の光屈曲挙動を示す.フィルムは光源 から離れる方向に屈曲した.これはフィルムの裏側近 傍のアゾトランを選択的に光異性化させることができ たためであると考えている.

図6. (a) 光屈曲挙動, (b) 屈曲メカニズム.

4. 結論

アゾトラン分子の二光子吸収特性を測定したところ, 波長650 nmにおいて大きな二光子吸収断面積を持 っこと分かった.また,一軸配向フィルムではアゾトラ ン分子長軸と偏光方向を平行にすることにより,さら に効率よく二光子励起できることが判明した.フィル ムの二光子駆動実験において,空間選択性を駆使し たフィルムの選択駆動や裏側励起を実現することが できた.

参考文献

(1) Y. Yu, M. Nakano and T. Ikeda, *Nature* **2003**, *425*, 145.

(2) M. Pawlicki *et al.*, *Angew. Chem. Int. Ed.* **2009**, *48*, 3244.

論文·学会発表

S. Sasaki *et al.*, *Mol. Cryst. Liq. Cryst.*, in press. 21th International Symposium on ADMD 2017 2017年日本液晶学会討論会 他10件