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1. Introduction 
 
The analysis of the scattering and diffraction by 
canonical obstacles is an important subject in 
electromagnetic theory and radar cross section (RCS) 
studies. Various analytical and numerical methods have 
been developed thus far and the scattering have been 
investigated for a number of two- and three-dimensional 
obstacles. Among a number of analysis methods, the 
Wiener-Hopf technique [1] is known as a rigorous, 
function-theoretic approach for electromagnetic wave 
problems related to canonical geometries.  

The aims of this dissertation are to analyze the 
diffraction by two-dimensional obstacles having various 
physical parameters applying the Wiener-Hopf 
technique. In particular, we shall consider a material 
strip with various physical parameters involving the 
obstacles with arbitrary permittivity and permeability, 
and analyze the plane wave diffraction by a thin material 
via use of the Wiener-Hopf technique.  

In past related research, Volakis [2] analyzed the H-
polarized plane wave diffraction by a thin material strip 
using the dual integral equation approach and the 
extended spectral ray method together with approximate 
boundary conditions [3]. In [2], Volakis first solved 
rigorously the diffraction problem involving a single 
material half-plane, and subsequently obtained a high-
frequency solution to the original strip problem by 
superposing the singly diffracted fields from the two 
independent half-planes and the doubly/triply diffracted 
fields from the edges of the two half-planes. Therefore 
his analysis is not rigorous in the sense of boundary 
value problems, and may not be applicable unless the 
strip width is relatively large compared with the 
wavelength. This problem has been solved more 
recently by Shapoval et al. [4] by using the generalized 
boundary conditions and the singular integral equation.  

In following sections, we shall consider the same 
Volakis’s problem [2], and analyze the plane wave 
diffraction by a thin material strip for both E and H 
polarizations using Wiener-Hopf technique and 
approximate boundary conditions [3]. Analytical details 
are presented only for the E-polarized case, but 
numerical results will be shown for both E and H 
polarizations. Introducing the Fourier transform for the 
unknown scattered field and applying boundary 
conditions [3] in the transform domain, the problem is 
formulated in terms of the Wiener-Hopf equations, 
which are solved exactly via the factorization and 
decomposition procedure. However, the solution is 

formal in the sense that branch-cut integrals with 
unknown integrands are involved. By using a rigorous 
asymptotic method, together with a special function 
introduced by authors [5], we have derived a high-
frequency solution for Wiener-Hopf equations, which is 
described in terms of an infinite asymptotic series. 
Taking the Fourier inverse of the solution in the 
transform domain and applying the saddle point method, 
the scattered far field in the real space is derived. 
Numerical examples of the RCS are shown for various 
physical parameters, and scattering characteristics of the 
strip are discussed in detail. The results of this paper are 
published in Nagasaka and Kobayashi [5, 6]. 

The time factor is assumed to be i te ω−   and 
suppressed throughout this dissertation. 
 
2. Formulation of the Problem 
 
We consider the diffraction of an E-polarized plane 
wave by a thin material strip as shown in Figure 1, where 
the relative permittivity and permeability of the strip are 
denoted by rε  and ,rµ  respectively. Let the total 
electric field ( , )[ ( , )]t t

yEx z x zφ ≡  be 

 ( , ) ( , ) ( , ),t ix z x z x zφ φ φ= +   (1) 

where ( , )i x zφ  is the incident field given by 

 0 0( sin cos )
0( , /0 2) ,k x zii x z e θ θφ πθ− += < <   (2) 

with 1/2
0 0[ ( ) ]k ω ε µ=   being the free-space wavenumber. 

The term ( , )x zφ   is the unknown scattered field and 
satisfies the two-dimensional Helmholtz equation. 

If the strip thickness b  is small compared with the 
wavelength, the material strip is approximately replaced 
by a strip of zero thickness satisfying the approximate 
boundary conditions [3]. On the strip surface, the total 
electromagnetic fields satisfy the approximate boundary 
conditions as given by 
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with 0Z   and 0Y   being the intrinsic impedance and 
admittance of free space, respectively.  
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Figure 1. Geometry of the problem. 

In the following, we shall assume that the medium is 
slightly lossy as in 1 2k kk i= +  with 2 10 .k k<   

Let us define the Fourier transform of the scattered 
field ( , )x zφ  with respect to z  as 

 1/2( , ) (2 ) ( , ) ,zix x z e dzαα π φ
∞−

−∞
Φ = ∫   (6) 

where .iα σ τ= +  Then we see with the aid of the 
radiation condition that ( , )x αΦ  is regular in the strip 

2 0coskτ θ<  of the complex -plane.α  Introducing the 
Fourier integrals as 

 1/2 ( )( , ) (2 ) ( , ) ,z a

a

ix x z e zdαα π φ
±∞−

± ±
Φ = ± ∫    (7) 

it is found that ( , )x α±Φ  are regular in 2 0cos .kτ θ><   
Taking the Fourier transform of the Helmholtz equation 
and solving the resultant equation, we find that 
 ˆ( , ) ( ) ,xx e γα α −Φ = Φ   (8) 
where 2 2 1/2( )kγ α −=  with Re 0,γ >  and 

 
( )

(

0

)

ˆ ( ) [ ( ) ( )] / [2 ( )]

[ ( ) ( )] / ( ), 0

i ia

i i

a

a a

kZ e U e U M

K x

i

e V e V

α α

α α

α α α γ α

α α α

−
− +

−
− +

Φ = − +

>+ <   (9) 
with 

 0( ) 2 ,mK ki Z Rα γ= −   (10) 
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Equation (8) is the scattered field representation in the 
Fourier transform domain. Using the boundary 
conditions, we obtain from (9) that 

 ( )( ) ( ) 2[ ( ) ( )],m
i ia aK J e V e Vα αα α α α−

− +− = +   (18) 
 ( )( ) ( ) ( ) ( ),a a

e
i iM J e U e Uα αα α α α−

− += +   (19) 

where ( )eJ α  and ( )mJ α  denote the Fourier transforms 
of the unknown electric and magnetic surface currents 
on the strip, respectively, and are entire functions. 
Equations (18) and (19) are the Wiener-Hopf equations 
satisfied by the unknown spectral functions. 
 
3. Exact Solution 
 
The kernel functions ( )M α  and ( )K α  defined by (10)
and (11) can be factorized as 
 ( ) ( ) ( ) ( ) ( ),K K K K Kα α α α α+ − + += = −   (20) 
 ( ) ( ) ( ) ( ) ( ),M M M M Mα α α α α+ − + += = −   (21) 
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We multiply both sides of (18)  by / ( )i ae Kα α±



 and 
apply the decomposition procedure with the aid of the 
edge condition. This leads to 
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Equation (26) is the exact solution to the Wiener-Hopf 
equation (18), but it is formal since the branch-cut 
integrals with the unknown integrands , ( )s dv α  are 
involved. Equation (19) can be solved in a similar 
manner. 
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4. High-Frequency Asymptotic Solution 
 
In order to eliminate the singularities of ,

( ) ( )s dV α+  in (26) 
at 0cos ,kα θ=  we introduce the functions 
 , ( ) ( ) ( ).s d α α α+ + − −′ ′ ′Φ = Φ Φ±   (30) 
Applying the asymptotic method [5] developed by the 
second-named author, we can obtain a high-frequency 
asymptotic expansion of  (26) with the result that 
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for ka →∞  , where N   denotes the truncation number 
of the infinite asymptotic series. In (31), several 
quantities are defined by 
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Carrying out some manipulations, we can show the 
unknowns ,vs vd

nf  in (31) are determined by solving the 
matrix equation 

 ,
, , ,

0
~vs vd v vs vd vs vd

m

N

mns d n m
n

f C A f B
=

− ∑   (39) 

for 0,1,2 , ,, Nm =   where 

 
( )

0

( ) ( )
,

!( )!

m p tm
pnv

mn
p

K k k
A

p m p
ξ−

+

=
=

−∑   (40) 

 
( ) ( )

,,

0

( ) ( )
!( )!

m p pm
vs vdvs vd

m
p

K k k
B

p m p
χ−

+

=
=

−∑   (41) 

with 

 ( ) ( )( ) ,
m p

m
m

p

k
pK k d K

d α

α
α

−
+
−

−
+

=

=   (42) 

 ,( )
,

( )
( ) .vs vdp

vs v pd
k

p
k

d
d α

χ α
α

χ
=

=   (43) 

Making use of the above results, we finally arrive at an 
explicit asymptotic solution to the Wiener-Hopf 

equation (18) with the result that 
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as .ka →∞  A similar procedure may also be applied to 
(19) for a high-frequency solution, but the details will 
not be discussed here. 
 
5. Scattered Far Field and Numerical Results 
 
The scattered field in the real space is obtained by taking 
the inverse Fourier transform of (9) with the result that 

 1/ ( 4)2 /ˆ( , ) ( cos ) sin ( ) kik k k e πρφ ρ θ θ θ ρ − −∼ Φ −   (45) 
as .kρ →∞  Equation (45) is uniformly valid for 
arbitrary incidence and observation angles.  

We shall now present numerical results on the RCS 
for both E and H polarizations, and discuss the far field 
scattering characteristics of the strip in detail. The 
normalized RCS per unit length is defined by 

 ( )2
/ lim / ik

ρ
σ λ ρ φ φ

→∞
=   (46) 

with λ  being the free-space wavelength. In computing 
(46), we have used the high-frequency asymptotic 
expressions as given by (44) for ( ) ( ),V α+

−
 where the 

truncation number N for the asymptotic series is 
contained. Let ( )Nσ  and ( 1)Nσ +  be the RCS with the 
truncation numbers being N and N + 1, respectively. In 
numerical computation, we have employed the 
convergence criteria ( 1) ( ) 3| | 10N Nσ σ+ −<−  in order to 
determine the desired truncation number N. By careful 
numerical investigation, we have verified that the choice 
of 3N =  satisfies the aforementioned convergence 
criteria and hence provides sufficiently accurate 
solutions. 

Figure 2 shows the monostatic RCS as a function of 
incidence angle 0 ,θ  where the strip width is 2 10 ,a λ=  
the strip thickness is 1 ,0.0b λ=  and the truncation 
number of the infinite asymptotic series (44) is 3.N =  
As an example of existing lossy materials, we have 
chosen the ferrite [7] with 12.0 0r iε = +  and 

1.4 4.5r iµ = +  in numerical computation. Comparing 
the RCS characteristics for E polarization with those for 
H polarization, we find that the RCS level for H 
polarization is lower than that for E polarization over the 
whole range of the incidence angle 0.θ  

Figure 3 shows the monostatic RCS as a function of 
incidence angle 0θ  for H polarization, where the strip 
width is 2 7 ,1.a λ=  the strip thickness is 1 ,0.0b λ=  and 
the material parameters are 7.4 1.11,r iε = +

1.4 0.672.r iµ = +  In the figure, we have also added the 
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Volakis’s results [2]. It is seen from the figure that our 
results agree with Volakis’s results [2]. 

Figure 4 shows the monostatic RCS as a function of 
incidence angle 0θ  for E polarization and its 
comparison with Shapoval’s results [8]. The strip 
dimension is 2 5 ,a λ=  1 ,0.0b λ=  the material 
parameters are 13.4 10, ,r riε µ= + =  and 3.N =  Wee see 
from the figure that our results agree quite well with 
Shapoval’s results [8]. 

 

 
Figure 2. Monostatic RCS ( ) /Nσ λ  versus incidence 
angle 0θ  for , 0.012 10 , 12.0 0,ra ibλ λ ε = +==  

1.4 4.5,r iµ = +  3.N =  
 

 
Figure 3. Monostatic RCS ( ) /Nσ λ versus incidence 
angle 0θ  for H polarization, 7.4 1.11,r iε = +

1.4 0.672,r iµ = + 2 1.7 , 0.01 ,ba λ λ== 3,N = and its 
comparison with Volakis [2]. 
 

 
Figure 4. Monostatic RCS ( ) /Nσ λ versus incidence 
angle 0θ  for E polarization, 3.4 10, 1,r riε µ= + =
2 5 ,a λ=  0.0 3,1 ,b Nλ == and its comparison with 
Shapoval [8]. 

6. Conclusions 
 
In this paper, we have solved the plane wave diffraction 
by a thin material strip for both E and H polarizations 
using the Wiener-Hopf technique together with 
approximate boundary conditions [3]. Employing a 
rigorous asymptotic method, a high-frequency solution 
for large strip width has been obtained. Illustrative 
numerical examples on the RCS are presented, and the 
far field scattering characteristics of the strip have been 
discussed in detail. Some comparisons with the other 
existing method have also been provided.  
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