洪水規模に応じた降雨流出モデルのパラメータ特性 及びその流出計算への影響分析 Parameter characteristics of rainfall-runoff model according to flood scale and its effect on the result of runoff calculations

19N3100006B 及川 雄真 (河川・水文研究室) Yuma OIKAWA / River Engineering and Hydrology Lab.

Key Words : runoff analysis, parameters, flood scale, peak discharge, dam basin

1. はじめに

平成30年7月豪雨,令和元年東日本台風,令和2年7 月豪雨など,計画規模を超える降雨による甚大な洪水 被害が立て続けに発生している.さらに,気候変動に よる豪雨の激甚化が懸念されており,将来の洪水リス クが増加することが予想されている¹⁾.このような洪水 に対応するための1つの方法として,ダムの洪水調節機 能の有効活用があり,その機能を最大限効率的・効果 的に発揮させるためには,ダムの流入量予測を高精度 に行うことが必要である.ダムの流入量予測手法は,

「降雨流出モデル」と「統計モデル」の2つが挙げられ る.近年では、統計モデルの中でも機械学習を用いて ダム流入量予測を行う研究が多数あり、過去に経験し た洪水に対しては、高精度な流入量予測が可能である ことが示されている.しかし、機械学習に基づく流入 量の予測手法は、学習事例を上回る大規模洪水を予測 することが難しいと考えられており、このことは検証 すべき課題となっている.一方、降雨流出モデルは、 物理機構を反映させたものであるため、これまでに経 験のないような大規模洪水への適用性をもつと考えら れる.したがって、降雨流出モデルに基づく流入量予 測の精度は、外挿領域(過去経験のない規模の洪水) に対し、機械学習による予測よりも高い可能性がある.

一般に降雨流出モデルは,複数のパラメータを持つ. これらのパラメータは,過去の洪水イベントを最も良 く再現できるものを採用する.しかしながら,河川計 画で対象となるような大規模洪水のデータは少ないた め,将来発生しうる大規模洪水を予測する際,採用し た降雨流出モデルのパラメータ値を想定する洪水規模 よりも小さなパラメータで決定しなければならないと いう問題がある².

本研究では、過去の洪水イベントを「小規模」、 「中規模」及び「大規模」という3つの区分に分類し、 それぞれで推定されたパラメータの特性について考察 するとともに、各区分で推定されたパラメータを用い、 過去経験のない規模の洪水に対する再現計算をするこ とにより,降雨流出モデルの外挿領域に対する適用性 について分析を行った.

2. 降雨流出モデルの概要

山田³は,単一斜面に対して幅広矩形断面を想定し, 連続式と運動則を基礎式として,(1)式に示す貯留型の 降雨流出計算手法を導いている.

$$\frac{dq_*}{dt} = a_0 q_*^\beta \left(r(t) - q_* \right) \tag{1}$$

ここに, *q**は流出高[mm/h]である. *r*(*t*)は有効降雨強度 [mm/h]である. また,

$$a_0 = \left(m+1\right)\left(\frac{\alpha}{L}\right)^{\frac{1}{m+1}}, \ \beta = \frac{m}{m+1}$$
(2)

である.ここに,*L*は流出寄与斜面長[m]であり,*a,m* は流域特性を表すパラメータとして,

$$\alpha = \frac{k_s i}{D^{\gamma - 1} w^{\gamma}}, \quad m = \gamma - 1 \tag{3}$$

で与えられる. これらの土壌・地形特性を示す流出パ ラメータ $a \ge m$ の値に関して志村⁴らは,不飽和浸透理 論と Kinematic Wave 法の式展開を比較することにより, (3)式で決定できることを示している. ここに,*i*:斜面勾 配, D:表層土層厚[mm], γ :土壌の透水性を表す無次元 パラメータ, ks: 飽和透水係数[mm/h], w:有効空隙率で あり, $w=\theta s-\theta r(\theta s:$ 飽和含水率, $\theta r.$ 残留含水率)で定義され る. また,抵抗則 mは無次元パラメータであり,aの次 元はmの値に依存する. $w=\theta s-\theta r(\theta s:$ 飽和含水率, $\theta r.$ 残留 含水率)で定義される. (1)式が一般化された単一斜面の 降雨流出の基礎式となる.

山地流域における流出現象では、表面流より中間流 が卓越することが知られている.また、降雨の継続時 間や降雨強度により複雑な流出形態をとる.そこで、 斜面内流れを表面流、鉛直浸透流、飽和・不飽和側方 流と多層流れを考慮した吉見・山田⁵によって提案され ている鉛直浸透機構を考慮した流出計算手法を用いて 解析を行った.以下、その式形と概要を示す.を示す とともに簡単に説明を行う.

2020年度 中央大学大学院理工学研究科都市人間環境学専攻 修士論文発表会要旨集(2021年2月)

表-1 2段3層構造の降雨流出モデルのパラメータ推定を行ったダム流域

水系	ダム名	流域面積	イベント数	(A)計画高水流量	(B)ピーク流入量の最大値	(B)/(A)
		[km ²]		$[m^3/s]$	$[m^3/s]$	[%]
淀川	日吉	290.0	24	1510	1675	110.9
肱川	野村	168.0	44	1300	1594	122.6
吉野川	早明浦	417.0	90	4700	5404	115.0
渡川	中筋川	21.1	102	330	351	106.4
筑後川	下筌	185.0	70	1700	1969	115.8
山国川	耶馬渓	89.0	46	970	994	102.5

図-1 斜面内多層流れを考慮した流出計算手法 (2段3層モデル)の計算過程の概念図

$$\frac{ds_n}{dt} = V_{n-1} - r_{nm} - V_n \tag{4}$$

$$\begin{cases} r_{nm} = 0 & (s_n \le h_{nm}) \\ r_{nm} = a_{nm}(s_n - h_{nm}) & (s_n > h_{nm}) \\ V = b \ s & (6) \end{cases}$$

まず,(4)式は,山腹斜面が複数の層で構成されると考 えた時に,n-1層目からn層目への浸透量V_{n-1},n層目から n+1層目への浸透量V_nと各層における流出に寄与する降 雨量の連続関係を表している.(5)式は,各層における 流出に寄与する降雨量を表しており,土層内水位s_nが各 層の保水力h_mを超えた時点で発生するものとしている. また鉛直方向の浸透量V_nは,(6)式に表すように土層内水 位s_nに比例するものとしている.さらに,(4)式中のr_mを (7)式に示す降雨流出の基礎式に,斜面流出に寄与する 降雨量として与えることで一連の斜面計算が行われる.

$$\frac{dq_{nm}}{dt} = \alpha_{nm} q_{nm}^{\beta_{nm}} (r_{nm} - q_{nm})$$
(7)

ここに、n: タンクの階層, $m: 各タンクにおける側方 流出孔の数である. また, <math>r: 実測降雨強度[mm/h], s_n:$ 各タンクの貯留高[mm], a_{nm} , $b_n: 流出孔, 浸透孔の比 例定数[1/h], <math>h_{nm}:$ 各タンクの流出孔までの高さ[mm], q_{nm} , $q_{Los}(最下層のタンクのみ)=V_n: 各流出孔からの流出 量[mm/h]である. <math>a_{nm}$, β_{nm} は(1)式中のパラメータ a_0 , β に それぞれ対応する. 本研究において, 流出計算では2段

3層構造の降雨流出モデルを用いた.図-1は、その構造の概念図を示しており、1段目1層目は表面流、1段目2 層目は早い中間流、2段目1層目は遅い中間流を表現している.

3. 対象流域

流出計算におけるパラメータに関して、Oda et al.%は、 流域面積が200km²程度であれば、水文特性の空間分布 が降雨流出に与える影響は小さく、流域平均値として の水文諸量を用いれば、流出計算結果に大きな差異が 表れない事を示している.そこで、本研究では次の3つ の条件(①それぞれの河川において最上流に位置する ②水文・水質データベースからデータを取得できる2002 年以降に計画高水流量を上回る洪水が発生③流域面積 が200km²程度)を満たすダム流域を対象とした.対象 のダム流域の諸量を表-1 に示す.

4. 洪水規模に応じたパラメータ特性の分析

(1) パラメータの推定手法

本研究において,流出計算には図-1に示す2段3層モ デルを使用している. それぞれのダム流域において総 雨量 100mm 以上の洪水イベントを対象に, Gauss-Newton 法を用いて,層構造を問わずすべてのパラメータを同 時に推定した.

(2) パラメータの推定結果

図-2にパラメータの最適推定値の箱ひげ図の一例を示 す. hu, hu, hu, huは値にばらつきは見られなかったため, それ以外のパラメータの最適推定値の箱ひげ図を示し ている.この図より,パラメータ値は洪水イベントご とにばらついていることがわかる.したがって,降雨 流出モデルのパラメータは洪水ごとに値が異なってお り,その要因を明らかにすることは大規模洪水の流出 計算に使用するパラメータを適切に決定する上で重要 であるといえる.本研究では、ダムの計画高水流量に 対するピーク流入量の割合をもとに洪水規模を決定し た.ピーク流入量が計画高水流量の25%未満の洪水を小

2020年度 中央大学大学院理工学研究科都市人間環境学専攻 修士論文発表会要旨集(2021年2月)

規模洪水,25%以上50%未満を中規模洪水,50%以上を 大規模洪水と定義し,洪水規模に応じたパラメータ特 性の分析を行った.

図-2より,洪水規模ごとのパラメータの箱ひげ図を比較すると,そのばらつきについては洪水規模ごとに顕著な差は見られない.次に,パラメータの平均値に着目する.図-3に洪水規模ごとのパラメータの平均値を示す.この図より,鉛直浸透成分のパラメータb,b2の平

均値は、小規模洪水と比較して大規模洪水の値が小さい傾向が見られる.これは、大規模洪水では土壌内が 飽和状態となり、浸透能が小さくなることが反映されていると考えられる.さらに、斜面流出の基礎式のパ ラメータall、allの平均値は小規模洪水と比較して大規 模洪水の値が大きい傾向が見られる.以上のパラメー タ平均値の傾向から、小規模洪水のパラメータ平均値 と比較して大規模洪水のパラメータ平均値を用いた場 合にピーク流量が大きくなることが予想される.

5. 外挿領域の大規模洪水における再現性の検証

洪水規模ごとに作成したパラメータの平均値を用い て、大規模洪水に対する再現性の検証を行った.図-4, 図-5にその計算結果の一例を示す.対象洪水で推定した パラメータでの再現結果(黒線)は、ハイドログラフの波 形によらず、立ち上がりから低減部まで精度よく再現 できている.また、表-2に示す通り、いずれの再現計算 結果もNash-Sutcliffe係数>0.7となり、再現性は高いと言 える.

次に、全イベントでの平均値及びそれぞれの洪水規 模におけるパラメータの平均値を用いた場合には、ハ イドログラフの立ち上がりや逓減部、ピーク流量とな る時刻に大きな差は出ていないが、ピーク流量の再現 値に差が出ている. 図-6に使用したパラメータごとのピ ーク流量差率を示す.この図より、小規模、中規模、 大規模の順にピーク流量が大きくなる傾向があること が分かる.これは、使用したパラメータの平均値の差 が流出計算結果に表れていることが示唆され、外挿領 域の計算を行う際には、大規模洪水で推定したパラメ ータを用いた方が再現性が高くなることがわかった.

6. まとめ

本研究では、ダム流域を対象とし、大規模洪水の流 出計算で使用するパラメータに関する検討を行った. 洪水規模ごとに作成したパラメータの平均値から、洪 水規模ごとの流出形態の違いがパラメータに表れてい ることが示唆された.さらに、過去経験のない規模洪 水の再現計算において、大規模洪水で推定したパラメ ータを用いることで、相対的に高い再現性が得られる ことを示した.

参考文献

- 国土交通省国土技術政策総合研究所気候変動適応研究本部:気候変動適応策に関する研究(中間報告),国総研資料749号,II-112-154,2013.
- 2) 立川康人,目野貴嗣,萬和明:洪水規模によらない 降雨流出モデルの検討,水文・水資源学会 2014 年度 研究発表会要旨集, pp.140-141, 2014.
- 3) 山田正:山地流出の非線形性に関する研究,水工学 論文集,第47巻,pp.259-264,2003.
- 4) 吉見和紘、山田正:鉛直浸透機構を考慮した流出計 算手法の長短期流出解析への適用、水工学論文集, 第58巻, pp.367-372, 2014.
- 志村光一,大原憲明,松本浩志,山田正:水理計算に基づ く大規模河道網の洪水流出特性に関する研究,水文・ 水資源学会誌, Vol.14, No.3, pp.217-228, 2001.

表-2 大規模洪水の再現精度(Nash-Sutcliffe係数)

ダム名	Nasn-SutcillTet未致							
	対象洪水	全イベント	小規模	中規模	大規模			
日吉	0.974	0.951	0.963	0.902	0.921			
野村	0.966	0.912	0.910	0.902	0.956			
早明浦	0.928	0.930	0.917	0.945	0.944			
中筋川	0.974	0.944	0.916	0.982	0.990			
下筌	0.947	0.868	0.832	0.890	0.915			
耶馬渓	0.951	0.839	0.809	0.905	0.918			

 K Oda, S Kure, T Yamada, R Ebana, A Watanabe, N Watanabe : Effects of Special Distribution of Hydrolog-ical Characteristics to Runoff, World City Water Forum, CD-ROM, 2009.

2020年度 中央大学大学院理工学研究科都市人間環境学専攻 修士論文発表会要旨集(2021年2月)