圧電性 PVDF フィルムの作成条件が出力電圧に及ぼす影響

Influence of piezoelectric PVDF film create conditions on output voltage

精密工学専攻 58号 山口 裕大

Masahiro Yamaguchi

1. 緒言

エネルギハーベスティング(Energy harvesting, Energy scavenging または Ambient power と呼ばれる)とは,光や 熱,振動,電波,風力,塩分勾配などのエネルギを使用可能 な電気エネルギに変換して,多くの場合バッテリーに大きく 依存するポータブル電気デバイスに電力を供給することで ある.エネルギーハーベストのために利用可能なエネルギ源 には,電磁放射,熱エネルギ,および機械的エネルギが含ま れる.エネルギ源を使用可能な電気エネルギに変換するため に使用される技術には,光起電(PV),熱電,圧電,および 電磁気が含まれる.環境発電技術とも呼ばれる.

本研究は応力やひずみから解析ができる圧電素子に注目 している. 圧電素子とは、ある特定の方向から結晶に向けて 力を加えることで、電気分極が誘起され正負の電荷が発生す る圧電効果を利用した素子である. 圧電素子を電源として使 用するメリットは、電池などとは異なり交換不要で、壊れな ければ半永久的電圧を出力し続けられるという点である. 圧 電料としては、焦電性が優れているチタン酸ジルコン酸鉛 (PZT) が多く用いられてきたが、PZT は鉛を含有することか ら環境負荷が高く, 塑性体であるため非常に延性が低いとい う問題がある. そこで, PVDF や P(VDF/TrFE)等の高分子 圧電材料が注目された. 圧電材料として環境負荷が低く, ま た柔軟性,加工性,機械的特性,化学的特性に優れているた め、従来ではできなかった箇所での発電が可能になる(1).し かし,現状 PZT と比べると出力電圧が小さく,発電効率のよ り高い高分子圧電体の開発が求められている.高分子圧電素 子を作成する際に既製品はTダイ法⁽⁴⁾と呼ばれる射出成型で 作成されている.この射出成型機は非常に大きく高額である ため, Tダイ法を用いずに他の方法で高分子フィルムを作成 する必要がある.本研究ではキャスティンナイフによる溶媒 キャスト法で PVDF フィルムを作成する. 溶媒キャスト法 で PVDF フィルムを作成する場合, PVDF の溶媒としてア セトンを用いることがあるが,アセトンを溶媒にした場合作 成したフィルムは圧電性を持たないⅡ型の分子構造になり やすいことが分かっている(2)~(3).また,圧電性を持たないⅡ 型の構造のフィルムに焼鈍、引っ張り、分極の処理を行うこ とで圧電性をもつI型の構造にすることができることが分 かっている.しかし、その際の焼鈍温度や時間、引っ張りの 荷重や分極の時間などが PVDF フィルムの出力電圧に及ぼ

す影響はまだ詳細な調査はされていない.そこで本研究では 焼鈍の際の一軸延伸と分極条件に着目し, PVDF フィルム の作成条件が出力電圧に及ぼす影響を,正弦波加重を入力す る装置を作成して評価する.

2. 基礎理論

2.1. 圧電素子

圧電体に加えられたひずみにより電位分極が発生し,正負 の電荷が発生することを正圧電効果という,逆に電界を印加 すると圧電体自体が変形することを逆圧電効果という.これ らの効果を生じる素子が圧電素子である.圧電体では,応力 及びひずみ(機械的パラメータ)と電界および電気変位(電 気的パラメータ)とが圧電効果を介して互いに結び合ってい る.

2.2. ポリフッ化ビニリデン

ポリフッ化ビニリデン(PVDF)は-CH2CF2-の繰り返しか らなる高分子で、モノマーあたり分子鎖に垂直方向に7× 10⁻³⁰C·m(約 2Debye)の永久双極子モーメントを持つ. 分子 鎖がトランスコンホメーションを取り擬六方晶に並行パッ キングしたβ決勝では,双極子は全て同一方向を向き大きな 自発分極を形成する.結晶中で,この分子鎖が軸周りに180° 回転することにより強誘電的分極反転が起きる.誘拐結晶か によって得られる PVDF は図にその誘電スペクトルを示し た無極性のα型結晶になる. β型結晶は、α型フィルムを一軸 延伸したり、極めて高い電界でポーリングしたりすることに より得られる.また直接β結晶を得るには、三フッ化エチレ ン(TrFE)あるいは四フッ化エチレン(TeFE)との共重合隊を 作る方法がある.得られる共重合体はランダム共重合体で, VDF 分率が 50~80mol%の VDF/TrFE 共重合体は,結晶化 度が高く, PVDF では観測されないキュリー点を示すことか ら、多くの研究の対象となっている.溶媒から結晶化した資 料はⅢ型(T₃G コンホメーション)を示す. このように簡単に 結晶転移を起こすのは、それぞれのコンホメーションのポテ ンシャルエネルギが 400cal/モノマー単位と、室温における 熱エネルギRT = 600 [cal/mol]と比較しても小さいことに 由来するためと考えられている.

Fig. 1 Crystal structure of PVDF

2.3. 熱処理と結晶形態の変化

金属材料における熱処理の重要性は、容体化処理、焼入れ、 焼きなまし、焼戻しや、焼き鳴らしと言った加熱・冷却の多 様な組み合わせによって、材料の組成の均一化、加工履歴の 消去、残留歪の除去、硬度、強度、伸び、人生の工場調整など を行い、性質を安定化し、指定の機械的・力学的性質を付与 することにある.

一方,高分子材料の熱処理は,基本的に金属の焼きなしに 似て,繊維,フィルムなどの延伸工程で生じた歪みの除去や, 未結晶化部分の再結晶化などを行うことで結晶組織全体を 安定化させ,材料の機械的性質を向上させ得る.このほか,不 織布を作る時の溶融接着などがあるが,金属材料の場合ほど の重要性はない.Fig.2 はゆっくりと加熱,冷却した時の結晶 性高分子の熱分析曲線の模式である.加熱よよって結晶内の 折りたたまれていた分子鎖は次第に解きほぐされ,溶融して 絡み合い状態になる.冷却すると,分子鎖は再びに折り畳ま れ,三次元結晶として固化する.この際の結晶化による熱挙動 は DSC 曲線(a)上で発熱ピークとなって現れ,熱膨張曲線 (b)では非容積減少(すなわち比重の増大)となって現れる.

Fig.2 General thermal behavior of crystalline polymers

3. PVDF フィルムの作成方法

本研究では溶媒キャスト法を参考にした PVDF 圧電素子 の作成法を用いる.作成手順は Fig.3 のような手順で行う. (1)PVDF(KF ポリマー # 1000 クレハ)をアセトンに 16mass%で混合し質量が 12g になるように秤量し混ぜる. (2)約 60℃の熱湯で溶液を湯煎し撹拌する. (3)湯煎した PVDF 溶液をアルミ板に流し込み,フィルムの厚さが 0.06mm になるように調節したキャスティングナイフで溶 液を均す. (4)送風恒温乾燥機(ヤマト科学(株),DKN601)で 焼鈍を行う. (5) フィルムと針の間隔を 250mm 空け,コロ ナ分極を 12kV で 30 分間行う.分極処理後は結晶を安定 化させるために 30 分間間放置する.この5 つの過程でフィ ルムを作成する.

Fig. 3 Procedure for making PVDF firm

4. 実験装置

作成した PVDF フィルムを評価するためには一定の荷重 を加える必要がある.そこで本研究では正弦波荷重を与える 装置を作成し,それによって PVDF フィルムの出力電圧を 評価する.Fig.4 は作成した正弦波荷重試験機の概形を示す. まず,多機能信号発生器で信号を発生し,増幅器で信号を増 幅したものを加振機に入力する.加振機から出力された振動 はアルミ板(Ø10mm×10mm)とステンレス製治具に挟まれた PVDF フィルムに入力される.同時に,出力された振動はロ ードセルで測定する.PVDF フィルムには銅テープを貼り付 けることで電極とし,銅電極間の電圧の時間変化をオシロス コープより測定する.装置には1MΩの抵抗が繋いであり, オシロスコープの内部抵抗は1MΩの直流抵抗である.

Fig. 4 Experimental apparatus outline

5. 焼鈍時の引張荷重の影響

5.1. 実験条件

本実験では焼鈍時の引張荷重が PVDF フィルムの出力電 圧に及ぼす影響について調べる. 試験片にぶら下げる錘の質 量を $W_I = 0$ [g], $W_2 = 100$ [g], $W_3 = 200$ [g], $W_4 = 300$ [g], $W_5 = 400$ [g], $W_6 = 500$ [g], $W_7 = 600$ [g], $W_8 = 700$ [g], $W_9 = 800$ [g], $W_{I0} = 900$ [g], $W_{II} = 1000$ [g]の 11 種類で変 化させ焼鈍する. それぞれ質量に対しの4枚ずつ試験片を作 成する.

5.2. 実験結果と考察

それぞれの錘ごとに、測定した入力荷重 Pin と出力電圧 Voutの結果を Fig.5 に表す. それぞれの図について、上段は P_{in} または V_{out} と時間の関係, 中段は P_{in} または V_{out} をフー リエ解析したものと周波数の関係、下段は Pin または Voutの データを 200 個ごとに平均をとり時間との関係を表したも のである.また Fig.6 は、それぞれの結果から実効値を算出 し、(Pinの実効値)/(Voutの実効値)と錘の質量の関係を表した ものである.この結果から焼鈍時の一軸引張荷重の大きさは 出力電圧に影響しないことがわかった.原因としては,1000g 程度では圧電性を持たないⅡ型からⅠ型へほとんど変換し ないことが考えられる.しかしながら,1000gを超える錘で 一軸引張を行うと、PVDF フィルムがちぎれてしまう.その ため、本実験以上の荷重を加えるには、PVDF フィルムの作 成方法を大きく変える必要があると考えられる.また,各値 のばらつきについて, 900g で大きくなっている. 原因とし ては,900gの試験片荷重と焼鈍により引張方向に伸びたた め,試験片の厚さが一定ではなくなり,ばらつきが発生した と考えられる.このことから本実験で、Ⅱ型からⅠ型へ変換 させるための大きい引張荷重でフィルムが伸びない程度に 引張強度がある PVDF フィルムの作成が必要であることが わかった.

6. 分極時の印加電圧の影響

6.1. 実験条件

分極時の印加電圧が PVDF フィルムの出力電圧に及ぼす 影響について調べる. コロナ放電で使用する電源の設定を V_I = 0 [kV], V_2 = 20 [kV], V_3 = 40 [kV], V_4 = 60 [kV], V_5 = 80 [kV], V_6 = 10 [kV], V_7 = 12 [kV], V_8 = 14 [kV]の 8 種類で 変化させ分極する. それぞれ質量に対しの 4 枚ずつ試験片を 作成する.

6.2. 実験結果と考察

それぞれの結果から実効値を算出し、(Vout の実効値) / (Pin の実効値)と分極電圧の関係をFig.7に示す.分極時の 印加電圧の大きさによって PVDF フィルムの出力電圧が最大 になるのは14kV であり、12kV より小さい印加電圧ではコロ ナ放電の影響がほとんどないことがわかった.原因としては、 印加電圧が6kV以下では針と極板間に十分な電位差が生じず コロナ放電が発生しないことが考えられる.また本実験では 印加電圧の範囲を0kV から14kV と定めたが、14kV 以上を加 えると、より大きい PVDF フィルムの出力電圧を得られるこ とも考えられる.しかしながら、本研究で用いた分極装置で は、14kV を超える印加電圧を加えるとをショートを起こして しまい、コロナ放電を行うことができない.そのため、本実 験以上の印加電圧を加えるには、分極装置の改良が必要であ ると考えられる.

7. 結言

PVDF フィルムの評価をおこなうため、様々な周波数と振 幅の正弦波の荷重を入力し出力電圧を測定できる装置を作 成し、PVDF フィルム作成時の一軸引張荷重と分極の印加電 圧が出力電圧に及ぼす影響を調査した. ここで行った PVDF フィルムの作成条件であれば、一軸引張荷重は0gから1000g の範囲では圧電性を持たないⅡ型から圧電性を持つⅠ型へ ほとんど変換できず,800g程度からPVDFフィルムが伸び や破断してしまうことがわかった.分極の印加電圧は,12kV より小さい印加電圧では分極の影響がほとんどなく、0kVか ら14kVの範囲では14kVで最大の出力電圧を得られること がわかった.本研究で行った実験はどちらもより大きい範囲 で調査する必要があり、そのために PVDF フィルムの引張 強度を大きくするなどが必要である. そのためには、PVDF を溶かす溶媒の種類や添加物や濃度など,条件は多岐にわた る. PVDF フィルムを発電に使うにはより発電量をもつもの が必要になるため、今後はその他の条件についても検証し、 発電量の多い PVDF フィルムの作成を目指す.

参考文献

- (1) 陸田秀実,田中義和,柔軟発電素材を用いた海洋 エネルギーのハーベスティング技術,日本 AEM 学会誌 Vol.22,No3(2014).
- (2) 大城浩徳,佐藤翼,山本雅史,河野昭彦,堀邊英夫, 増永啓康, 團野哲也,松本英俊,谷岡明彦,ポリフ ッ化ビニリデンの溶媒キャスト法による結晶構造 の制御,高分子論文集(Kobunshi Ronbunshu), Vol. 67, No. 11, 2010, pp. 632-639.
- (3) 佐々木保飛,大城浩徳,高橋聖司,河野昭彦,西山 聖,會澤康治,堀邊英夫,溶媒キャスト法により単 一溶媒から作製した PVDF の結晶構造と物性と の相関,高分子論文集(Kobunshi Ronbunshu), Vol. 70, No. 9, 2013, pp. 489-495.
- (4) 古川猛夫,五宝友哉,伊達宗宏,高松俊昭,深田 栄一,コロナ分極したフッ化ビニリデンの圧電
 性,高分子論文集(Kobunshi Ronbunshu), Vol. 39, No. 10, 1979, pp.685-688.

(Result of P_{in} in left hand side, V_{out} in left hand side. Upper, middle and bottom figure are time dependence, DFT and average of 200pieces of data, respectively)

Fig. 6 Relationship between V_{ont} / P_{in} and Tensile load

Fig. 7 Relationship between $V_{\text{ont}}/\,P_{\text{in}}$ and Polarization voltage