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1. Introduction 

Coagulation is an indispensable unit process for treating the 

turbidity and color of the surface water in more than half of the 

water purification plants in Japan. Because the coagulation 

efficiency influences the subsequent flocculation and sand 

filtration processes, its optimization is essential for the 

management of the entire water treatment systems. 

Coagulation is governed by the pH and coagulant dosage. In 

practice, jar tests are usually conducted to determine the 

optimum coagulant dosages; but, the decreasing number of 

professional engineers and experienced operators in the water 

treatment plant have caused some utilities to face difficulties in 

controlling coagulation process using conventional jar tests. 

Coagulation is expressed by complex chemical reactions 

resulting in nonlinear behavior, and obtaining reliable tools for 

coagulant dosage optimization is challenging. Several studies 

have been conducted studies using linear-numerical equations 

and artificial neural networks (ANNs) to predict optimum 

coagulation conditions. But, the long-term applications of 

ANNs-based model to an unprecedented situation or a different 

water basin often fails because ANNs are usually developed 

without a physical understanding of coagulation-flocculation 

process. The current climate changes cause sudden and extreme 

increases in feed water turbidity. Such unprecedented situations 

often render conventional numerical models to be obsolete. 

The primary equation of flocculation is governed by Stokes 

equation, where the floc settling velocity is a function of the size 

and density of floc; here the density of floc is correlated to its 

fractal dimension. The state of coagulation can be assessed by 

extracting certain physical properties from floc images because 

all the parameters related to floc precipitation can be obtained 

based on its physical properties. If novel tools that possess the 

visual extraction are developed, coagulation performance can be 

immediately assessed using floc images, optimal conditions 

could be created and maintained. 

Convolutional Neural Network (CNN) is a well-known deep 

learning architecture inspired by the natural visual perception 

mechanism of the living creatures. CNN has been successfully 

implemented in the broad of computer vision area for decades, 

because of their ability to recognize visual patterns from pixel 

images. CNN have been successfully implemented in computer 

vision field and applied to image classification, and object 

detection tasks. But, CNN implementation in water treatment 

field have never been done. 

Herein, CNN was applied to establish a new approach for 

optimizing the coagulant dosages. Feeding floc images into a 

CNN-based model may enable it to immediately assess the state 

of coagulation. First, applicability of CNN was assessed using 

floc images of artificial surface water. Next, CNN was 

challenged using floc images of natural surface water. CNN-

based models were enhanced to increase its performance. 

Finally, the potential of CNN for controlling the coagulation in 

comprehensive situation was assessed according to one model, 

which incorporated the results from jar tests obtained using 

different water basin samples. 

 

2. Materials and methods 

2.1 Data preparation 

Artificial surface water 

Five types of artificial surface water with variable turbidity 

levels were prepared by mixing humic acid with tap water. The 

Suwanee River humic acid standard III and kaolin were used as 

substitutes for any dissolved organic matter and suspended 

particles, respectively. The characteristics of artificial water are 

presented in Table 1. 

 

Table 1. Artificial water characteristic 

Variety 
Raw water characteristic 

Turbidity (NTU) UV-254 nm (cm-1) 

1 10 0.02 

2 50 0.02 

3 100 0.02 

4 500 0.02 

5 1000 0.02 
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Natural surface water 

Natural water samples were obtained from Yoshimi Water 

Purification Plant, whose intake is the Ara River. Sampling were 

conducted twice per week from December 2018 to September 

2019. Typical seasonal changes were observed with respect to 

the water quality. Further, the turbidity and temperature 

gradually increased from winter season to summer season. From 

December 2018 to April 2019, turbidity and temperature were 

very low with an average value of 3.24 NTU and 9.9°C, 

respectively. From May 2019 to September 2019, turbidity and 

temperature were 25.4 NTU and 20.5°C in average, respectively. 

Extremely high turbidity (1425 NTU) triggered by Hagibis 

typhoon also included in dataset. 

Jar test 

Jar test were conducted using a water cohesion tester. 

Commercial PAC (basicity: 54.5%) was used as the coagulant. 

The usage of 5 mL (2.96 mg Al/L) or 15 mL (8.88 mg Al/L) 

were tested for artificial surface water. For natural surface water, 

four variations of coagulant dosages were tested: 4x, 2x, 1x and 

0.5x of empirically determined ideal dosage. With respect to the 

practical condition, the rotating speed of the paddle was set to be 

150 rpm for the initial 2 min (rapid mixing), 30 rpm for the 

subsequent 10 min (slow mixing), and 0 rpm for the final 10 min 

(settling). After the settling, supernatant was taken at 6 cm below 

from the water surface. The floc formation was continuously 

recorded using a 4K video camera. At the end of the tests, 

supernatants were characterized by their turbidity. 

Recording conditions 

4K digital camera set on handmade aluminum frame was 

used for the recordings. The frame was strictly adjusted to 

ensure a particular region could be captured by the camera. The 

white balance was set to automatic, the focal distance was set at 

F8, the frame rate was set to 30 frames per second (fps), and the 

ISO sensitivity was set to 1000. The camera was manually 

focused on a scale placed beside a beaker. 

Figure 1. Example of floc images 

Each recording was twenty-two minutes long and comprised 

of 39,600 images, more than 1 million images were obtained 

from 30 trials of artificial surface water and 515 trials of natural 

surface water. Further, a 300  300-pixel portion was clipped 

from the upper right part of each image. This part was selected 

to avoid any light reflection and beaker margins, as shown in 

Figure 1 

 

Data classification 

The results of trials were classified into four categories 

according to the turbidity of supernatants. The boundary of each 

category was decided based on a consultation conducted with an 

operator working at the Yoshimi Purification Plant. Specifically, 

a sample with turbidity less than 0.1 NTU was regarded as 

“Class 1A”, which is equivalent to the drinking water standard 

in Japan but generates a considerable amount of sludge. “Class 

2A” denoted samples having a turbidity of 0.1-0.5 NTU, which 

is sufficient for sand filtration but generates more sludges when 

compared with that generated by “Class 3A”, denoting samples 

having a turbidity of 0.5-1.0 NTU. These levels allow sand 

filtration and minimize the production of sludge. Further, “Class 

4A” denoted samples having a turbidity of greater than 1.0 NTU, 

exceeding the allowable level. The optimum coagulant dosage 

was represented as “Class 3A”. 

For natural surface water, all the jar tests could not achieve a 

level of turbidity less than 0.1 NTU even when a considerable 

amount of coagulant was added. Therefore, the data obtained 

using natural water were classified into three groups: 0.1-0.5 

NTU (class 1B), 0.5-1.0 NTU (class 2B), and more than 1.0 

NTU (class 3B). 

Lengths of the jar test recordings 

Models were constructed corresponding to the lengths of the 

video recordings of the jar tests. Short recordings resulted in 

quick assessments, and optimum recording length was 

determined based on the accuracy of the models. 

For artificial waters, six models were constructed. For Models 

1 and 2, the images obtained from the initial 1600 s and 1200 s 

of the recordings were used, respectively, including those during 

rapid mixing, slow mixing and settling. For model 3, the images 

including those obtained during rapid mixing, slow mixing and 

beginning of settling within 800 s, whereas for Models 4 and 

Models 5 the images, including those obtained from rapid and 

slow mixing from initial 400 s and 200 s, whereas the images 

denoting only rapid mixing from the initial 100 s were used for 

Model 6. 

For natural surface water, eight models were constructed for 

every 100 s duration of the video recordings of the jar tests. For 

model 1, the images from 100-200 s of the recordings were used, 

including those during raid mixing. For model 2 to model 6, the 

images every 100 s from 200-700 s were used, including those 

in slow mixing, whereas model 7 and model 8, images every 

100 s from 700-900 s were used, including those in settling. 

2.1 CNN based-model 

CNN architecture 

Initially, the database was fed into a CNN-based model 

having AlexNet architecture1), which is organized into eight 
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learning layers. Subsequently, ResNet-50 architecture2) were 

applied in case of natural surface water. ResNet-50 architecture 

having deeper layers, which is organized into fifty learning 

layers. 

 

Figure 2. CNN model input and output 

The activation function used to construct the neural network 

was rectified linear unit (ReLu), and the weight of the network 

was optimized using Adam Optimizer. The entire datasets were 

divided into (1) training data used to adjust CNN weight (68%), 

(2) validation data used to minimize overfitting (12%), (3) test 

data used to provide unbiased CNN performance dealing with 

new dataset (20%). The CNN models constructed with floc 

images as input and turbidity classification as output (Figure 2). 

All models were trained until 50 epochs (training cycle). 

Data augmentation (Gaussian blur) 

Gaussian blur used as gradient filter in CNN model 

enhancement, it gives effect to reduce the amount of noise and 

remove speckles within the image. 

 

3. Result and Discussion 

The CNN models were initially constructed using artificial 

surface water. The validation accuracy of each model shown in 

Figure 3. All the models exceeded 96% and maximum 

validation accuracy of 99.8% was achieved within 100 s, which 

required only the images of rapid mixing. This result implies that 

the rapid mixing images were sufficient for obtaining a reliable 

model, and the optimum coagulation conditions was already 

determined by the end of rapid mixing. 

 

Figure 3. CNN with artificial surface water 

Further, CNN was challenged using floc images of natural 

surface water with low temperature (4.9C – 14.5C). The 

validation accuracy of all constructed models was lower 

compared to CNN model built by artificial surface water (Figure 

4), longer time (400-500 s) was required to achieve maximum 

accuracy. 

 

Figure 4. CNN with natural surface water (low 

temperature) 

Performance comparison of CNN architecture 

The possible factor causing lower versatility was the diversity 

of floc image patterns. The images taken under low feed water 

turbidity shows loose and unclear which seemed vague. The floc 

density is strongly influenced by water turbidity and unclear 

loose floc is formed when the water turbidity is low enough. 

Initial approach to increase the accuracy were usage of 

different CNN architecture of ResNet-50, which has deeper 

layer compared to AlexNet. Deeper layer enables the extraction 

of intermediate features of floc between the raw images data and 

the classification. As illustrated in Figure 5, changes in 

architecture increased accuracy by less than 1%. 

 

Figure 5. Performance comparison between three 

different methods 

 

 

 

 

Figure 6. Floc images before (left) and after (right) 

Gaussian Blur 

Next approach is enhancing the images character by data 

augmentation called Gaussian blur. Gaussian blur was used in 

reducing the noise in images3) and demonstrated their 

effectiveness in the field of medicine. The filter was applied 

before inputting ResNet-50. Figure 6 illustrated that Gaussian 

filter made floc images more clear even for the low turbidity 
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condition. CNN model constructed by the combination of 

ResNet-50 and Gaussian blur successfully increased validation 

accuracy of around 10% (shown in Figure 5). The result implies 

that application of image filter was a reliable method to increase 

the model robustness, especially when the captured floc was 

vague. Still, there is a possibility that other data augmentation 

methods may have better performance. 

Temperature effect in coagulation process 

Another possible factor influencing the constructing models 

was the water temperature. Previous studies that investigated 

key factors influencing the coagulation denoted the importance 

of water temperature on the floc formation because temperature 

affects chemical reaction rate and floc settling velocity. The 

experiments using artificial surface water carried out under 

constant room temperature (approximately 25C), whereas that 

using natural surface water was fluctuated as shown in Figure 7. 

Temperature differences might cause a difference in floc 

formation speed and provide a distinction at optimum recording 

length between low temperature and high temperature. 

Data taken using natural surface water were divided to three 

categories. For “category 1” including those with temperature 

lower than 10C, “category 2” denoted samples having 

temperature 10-20C, whereas “category 3” including those 

with temperature higher than 20C. The validation accuracy of 

each model was shown in Figure 8. The maximum accuracy in 

every temperature category was achieved within 4-6 minutes of 

recording length. 

The final model was constructed with 4-6 minutes of natural 

surface water floc images. All of images data was pre-processed 

by Gaussian blur filter before trained upon ResNet-50 

architecture. The final model was tested on the data from 

Yoshimi Water Purification Plant (December 2018-September 

2019 data) and the accuracy achieves was 80%, while when the 

final model tested on the data from different water basin which 

is Okubo Water Purification Plant (November 2019 data) the 

accuracy achieves was 71.6%. The result implies that further 

enhancement is required to increase the prediction accuracy. 

Additionally, public safety is the major priority in 

constructing CNN model for water treatment field. In that 

regards, a parameter called safety level () was introduced, as 

shown in Equation (1a), where A is true prediction and B is class 

3B predicted as class 2B. This parameter involved the condition 

were coagulant dosage is not enough to treat feed water into 

allowable level. The maximum value as the final goal is 100%. 

Implementing the safety level () into the final CNN model 

resulting in 94.2% on Yoshimi Water Purification Plant data, 

this implies that more enhancement is required. The safety level 

() of final model on Okubo Water Purification Plant data was 

100%, but it is worth noting that the data tested was limited on 

November 2019 data, therefore more tests are required. 

𝛼(𝑠𝑎𝑓𝑒𝑡𝑦) =
𝛴𝐴

𝛴𝐴+𝐵
× 100             (1a) 

 

Figure 7. Natural surface water temperature 

 

Figure 8. Validation accuracy of natural surface water in 

different temperature 

4. Conclusion 

CNN was implemented for artificial water and natural water 

floc images. The final CNN-based model was implemented 

upon Gaussian blur and ResNet-50, with 4-6 minutes jar test 

length considered as optimum to judge coagulation performance 

on natural surface water. Therefore, more enhancement and tests 

are required to construct more robust and viable model. 
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