レーザポインタ入力型クレーンの偏差の無い軌道追従制御

Path tracking control of crane by laser pointer without position error

1. 諸言

天井走行クレーンをはじめとするワイヤ懸垂系は,重量物 を三次元搬送が簡単にできるため,工場や倉庫などで多く使 われている.しかし,ワイヤ懸垂系では搬送物をワイヤで吊 るすという特性や,操縦空間と操縦位置が別である特性によ り,振り子振動の発生や目標位置に対する行き過ぎが発生し やすいことが問題点として挙げられる.

これらの問題の解決策として、クレーンの自動化によって 振り子振動の抑制した搬送を行う研究がされてきた. 最適レ ギュレータ理論を応用した手法や、最短時間制御を行う手法、 さらに、懸垂物の Jerk と移動テーブルの関係性に着目した制 振移動手法などが提案されてきた.

また、クレーンの操縦はオペレータにより行われており、 安全性はオペレータの感覚に依存する点も問題点といえる. 一方で、常に環境が変化する場面では、人間の経路設計や状 況把握の能力の方が自動化されたシステムよりも優れている.

そこで、本研究ではクレーンの操縦はオペレータが担当す るものとし、振り子振動や目標位置の行き過ぎ、障害物との 衝突防止を自動化することで、オペレータが簡単に操縦でき る遠隔操作システムの開発を目指す.これまでに本研究では、 カメラを用いたワイヤ振れ角センサによる揺れのフィード バック制御と、目標軌道によるフィードバック制御を併用し た2段サーボシステムを開発し、振り子振動と行き過ぎを同 時に防止できるシステムを開発した⁽¹⁾.また、クレーンの移 動テーブルに取り付けたカメラを利用し、レーザ光を認識し て追従するレーザポインタ型インターフェースを開発した ⁽²⁾⁽³⁾.

従来のレーザポインタ型インターフェースにおいては、制 御アルゴリズムが原因となり、レーザ光で設計した経路と、 懸垂物の経路の間に誤差が生じてしまう問題がある。そこで、 本論文では線長パラメータを用いた制御アルゴリズムを提 案し、レーザポインタ型インターフェースに適用した際に、 経路誤差による問題が解決するのか検証し、その有用性を確 認する。

2. 遠隔操縦システムの概要

本研究で開発したクレーンの構成を Fig.1 に示す.この天 井走行クレーンは粗動系により X,Y 軸の二次元平面内で, 自由に移動テーブルを動かすことが可能であり,オペレータ の指令に基づいて懸垂物の搬送を行うことが出来る.また, 搬送される移動テーブルには,微動系,カメラ三台が付いて いる.微動系は外乱の影響によって発生する振り子振動の抑 制を行う.また,発生した振り角の検出を三台のカメラのう ち,二台を用いて行っており,微動系による振り子振動抑制 に利用している.残る一台については,懸垂物や障害物,レ ーザ光を観測するため,地上面に向けて下向きに取り付けら れている.

本論文で用いる操縦法は、下向きのカメラによってレーザ 光を検出している.それにより、自分で照射したレーザ光を 追従するように自由にクレーンを操縦することが出来る. 精密工学専攻 32 号 土屋侑樹 Yuki Tsuchiya

Fig. 1 Configuration of tele-operation system

3. 二段サーボシステムの概要

3.1 クレーンの制御モデル

Fig.1の実験装置のX軸,Y軸の各軸が直交していること, ワイヤの振れ角が非常に小さいと仮定すると,各軸で独立に モデル化することができる.このX軸のモデルをFig.2に示 す.Fig.2の力学モデルを,微動系と粗動系,懸垂物につい て運動方程式で表すと,式(1)~(3)のように表わせる.ただし, 式中のパラメータはFig.2の中に従うものとし,gは重力加 速度とする. F_f , F_c はそれぞれ微動系,粗動系のアクチュエ ータによって発生する力である.

$$F_f = (M_f + m)(\ddot{x}_c + \ddot{x}_f) + \{(2l\ddot{\varphi}_x + l\ddot{\varphi}_x)\cos\varphi_x + (\ddot{l} - l\ddot{\varphi}_x^2)\sin\varphi_x\}$$
(1)

$$F_c = M_c \ddot{x}_c + F_f \tag{2}$$

$$ml^2 \ddot{\varphi}_x = -2mll \dot{\varphi}_x - ml(\ddot{x}_c + \ddot{x}_f \cos \varphi_x) \tag{3}$$

Fig. 2 Simplified dynamic model of crane system

3.2 Jerk を連続とした目標軌道

前節の式(1)~(3)から,振れ角,二次の項が微小である Fig. 2における懸垂物位置と移動テーブル位置の関係は式(4)のように求めることができる.

$$x_g = x_e + \frac{l}{g - \ddot{l}} \ddot{x}_e \tag{4}$$

速度は物理的に連続であるから、クレーンの速度 \dot{x}_g は連続 な関数でなければならない.従って、懸垂物位置、ワイヤ長 の変化の Jerk である \ddot{x}_e , \ddot{i} は連続な関数となる.つまり、目標 軌道を Jerk が連続となる三次関数を用いて加速区間、等速区 間、減速区間に分け、式(4)を満たすような目標軌道が生成さ れる.生成される懸垂物の目標速度の一例を Fig.3に示す. ただし、2T は一つのサンプリング区間において加速、減速に かける時間であり、 V_c は等速区間における速度で、それぞれ アクチュエータの性能やクレーンの最大速度から算出され た値を使用している.

Fig. 3 Desired velocity of suspended object and wire length

レーザポインタ型インターフェース レーザポインタによる目標位置入力

本システムでは輝度により、レーザ光の検出を行っている.

また,懸垂物位置を始点とし,レーザ光が検出された座標を 終点として,軌道生成を行っている.

本システムの操縦方法は、クレーンを搬送したい方向にレ ーザ光を照射するだけである.カメラによって照射されたレ ーザ光を検出し、レーザ光の位置を終点とする目標軌道が生 成され、クレーンが移動する.レーザ光を認識している間は、 現時点の懸垂物中心からレーザ光に向けて軌道が生成され 続けるため、クレーンがレーザ光を追いかけるような形で移 動する.目標位置が変更される度に新たな速度連続軌道が足 しあわされるため、滑らかな目標軌道の生成ができ、さらに レーザ光の手振れによる影響も受けにくい軌道生成を実現 している.

4.2 重ね合わせを用いた懸垂物の目標軌道生成

重ね合わせを用いた目標軌道の生成の概略図を Fig.4 に示 す.実際には、X 軸と Y 軸の二軸、それぞれに対して重ね合 わせを用いて目標軌道生成を行い、クレーンを二次元平面で 動作させる.

Fig.4 の点 P₀を初期位置として、P₃を目標位置としてレー ザポインタで一直線の軌道を描くとする.また、その際にサ ンプリング点として P₁,P₂,P₃を得られたとする.すると、区 間 P₀-P₁を移動するための速度軌道 V_{I} ,区間 P₁-P₂を移動す るための速度軌道 V_{2} ,区間 P₂-P₃を移動するための速度軌道 V_{3} が生成される.そして、それぞれの時間に速度全て(V_{I} - V_{3}) を足し合わせたものが、目標軌道となる.この目標軌道に従 うことで目標位置にタイムロスや行き過ぎの無い搬送が可 能となる.

しかし,時々刻々と重ね合わせることによって,レーザ光 の軌跡と懸垂物の軌跡が一致しない場合がある.レーザ光に よって高速で軌道を描いた際などは,現時点での最終目標位 置に向かって搬送してしまうために,設定経路と軌跡の間に 大きな誤差が発生してしまう.

4.3 線長パラメータを用いた懸垂物の目標軌道生成

前節において,誤差が発生する問題を挙げたが,その原因 となっているのは,二軸に分けて速度算出と重ね合わせを行 っている制御則にある.レーザ光の輝度検出はサンプリング タイム毎に行われているため,レーザ光が照射されている限 り 0.03 秒毎に速度軌道が生成される.

また, 3.2 節で述べてように懸垂物の加速と減速には 2T か かり,現在はT = 1[s]で設計されているため一区間を懸垂物 が移動するためには,距離に関わらず最低でも4秒を要する. よって,懸垂物が一つの区間を移動しくる前に,次のレーザ 光が検出され,重ね合わせによって最新のサンプリング点に 向かってしまう.このとき,搬送物は古いサンプリング点を 短縮して動作していることが,誤差の要因となっている.

そこで、本論文では重ね合わせを用いた制御則に対して、 線長パラメータを適用する新たな制御則を提案する.これに より、これまではある時間に速度を達成するような制御であ ったのが、ある位置においてある速度を達成するような制御 が可能となる.ここで言う線長パラメータとは、目標軌道を 生成する関数に搬送経路を取り組むためのパラメータであ る.この制御によってレーザを速く動かした場合でも、懸垂 物はオペレータがレーザ光の軌跡に追従した搬送が可能に なると期待される.また、軌跡に追従するという特性から手 振れの影響が考えられるが、そこは後の実機検証において検 証する.以下で線長パラメータによる速度制御の立式を行う.

まず線長パラメータsに関して、その増分 Δs をレーザ光のk 番目サンプリングでの増分を($\Delta x_k, \Delta y_k$)として式(9)のように 定義する.また、線長パラメータs_kや世界座標系の点(x_k, y_k) の関係を(5)~(8)のように設定し、座標系における各パラメー タの設定は Fig. 5 の通りである.

Fig. 5 Configurations of each parameter

$\Delta s_k =$	$\Delta x_{\nu}^{2} + \Delta y_{\nu}^{2}$	(5))
- N - I		· ·	۰.

$$s_{k+1} = s_k + \Delta s_k \tag{6}$$

$$x_{k+1} = x_k + \Delta x_k \tag{7}$$

$$y_{k+1} = y_k + \Delta y_k \tag{8}$$

次に,検出された座標(x_k , y_k)に線長パラメータを用いて表現する. そのために,それぞれのサンプリング区間を直線近似することで,各座標をsの関数として式(9),(10)のように表すことができる.式(9),(10)を用いて補完されたサンプリング点はFig.6のようになる.

Fig. 6 Laser trajectory of each simulation

ここで,式(9),(10)よりそれぞれをsに関して偏微分すると クレーンに与えるべき目標速度を式(11),(12)のように決定で きる.式(5)で定義した線長パラメータの増分に対して 3.2節 で述べた Jerk が連続な軌道生成を行い,前節で述べた重ね合 わせを用いた目標軌道を生成することで,Fig.7のように線 長速度が得られる.さらに,その線長速度に係数をかけると X軸,Y軸それぞれが達成すべき目標速度を求められる.

$$\dot{x}_{d} = \frac{\partial x_{d}}{\partial s} = \frac{\Delta x_{k}}{\Delta s_{k}} \dot{s}_{d}$$
(11)
$$\dot{y}_{d} = \frac{\partial y_{d}}{\partial s} = \frac{\Delta y_{k}}{\Delta s_{k}} \dot{s}_{d}$$
(12)

式(11),(12)において,
$$s_d$$
は重ね合わせで生成された目標軌
道であり,係数には k がついていることから,何番目のサンプ
リング区間を走行しているかが重要となる.よって, k を判別
するために搬送物の現在位置を取得し,それをもとに k の値
を切り替えなくてはならない.その k の値を用いて搬送物の
現在位置(X,Y)として線長パラメータを逆算すると,式(13),
(14)のように表せる.

$$s = \frac{\Delta s_k}{\Delta x_k} (X - x_k) + s_k$$
(13)
$$s = \frac{\Delta s_k}{\Delta y_k} (Y - y_k) + s_k$$
(14)

4.4 シミュレーションによる検証

提案手法の有用性についてシミュレータで検証を行う. 本シミュレータは、レーザポインタ入力形インターフェー スを用いての搬送を想定し、その搬送における搬送物、クレ ーンの移動テーブルの軌道や速度、加速度入力、搬送時間を 検証することができる.

4.4.1 シミュレーション条件

従来の重ね合わせによる軌道生成法と、本論文で提案した 線長パラメータを適用した軌道生成法でそれぞれ検証を行 う.その内容と設定を以下に示す.

本研究で開発したシミュレータにおいて設定したクレーンのパラメータを Table 1 に示す.基本的に使用しているパラメータは実験機のものに従って設定しており、レーザ光照射時間とレーザ光の軌跡を表す関数を任意に指定して検証を行う.

	Parameters of crane					
Wire length [m]	1.3					
Suspended mass [kg]	1.0					
Sampling time [s]	0.03					
Acceleration time T [s]	1					
	Large actuator		Small actuator			
Maximum velocity [m/s]	Х	Y	Х	Y		
	0.3	0.3	0.3	0.3		

Table 1 Parameters of simulator

- レーザポインタ入力型インターフェースを使用し、経路誤差の発生しやすい円形経路とする.
 [設定経路] 半径が 1mの円を描く経路
 [経路入力時間] 1.02 秒
 上記の経路について検証を行い、実際のクレーンで実現可能性があるかを、シミュレーションで確認する.
- 3) 4.3 節で述べた,搬送物が走行しているサンプリング 区間の検出に関して,実験機ではエンコーダやカメラに よってリアルタイムで搬送物の位置座標が検出できる が,本シミュレータ上では詳細な座標の取得が困難であ るため,出力されたX軸,Y軸の速度軌道をそれぞれ積 分することで取得する.

4.4.2 結果

従来手法,提案手法でのシミュレーションによる懸垂物の 軌道をそれぞれ Fig.8, Fig.9 に示す.従来手法では,クレー ンの動作に対してレーザ光を速く動かしたため,レーザ光の 軌跡に対して大きな誤差の発生が見られた.対して,提案手 法ではレーザ光に追従した搬送が可能になっており,追従精 度が大きく向上している.しかし,Fig.9より途中から僅か であるがサンプリング点から誤差が見られる.目標位置(0,0) に対して搬送物の到達した位置は(-3.60×10⁻²,1.89×10⁻⁴)であ った.この誤差の原因は4.2節3)で述べたように,搬送物の 位置座標を積分により算出しているため,その際の誤差によ るものであると考えられる.実験機では位置は各軸に取り付 けられたエンコーダにより取得することが出来るため,積分 計算による誤差は発生しない.

実機における検証

5.1 実現可能な指示軌道の生成

実際の環境では、レーザポインタによる入力は手動で行う. その際にやむを得ず手振れが発生してしまう.そのため、手 振れを考慮した経路設計が必要である.

 $P_n = \sum_{i=1}^{n-1}$ (15) 高周波なノイズである手振れを除去するために,指示点 P に 対して式(15)に示す移動平均処理を行う.その処理を行う前 後の比較が Fig. 10 となる.処理前は手振れによる動きが見 受けられる.対して,処理後は手振れによりノイズがなくな っている.そのため,短く,急停止,急発射を起こさない経 路設計が出来る.

Fig. 10 Comparison of indicated trajectories

5.2 搬送実験

5.2.1 実験条件

提案手法が実現可能であることを実機による搬送実験に よって検証する.

本実験を行った際の実験機のパラメータを Table 2 に示す. シミュレーション同様に,従来手法と提案手法の 2 つの実験 を行う.実験経路は搬送経路も同様に,経路誤差が出やすい 円形経路とし,レーザ光を手動で照射することによって描く. しかし,比較実験として 2 つの実験で同じ軌道を追従させた い.そのため,従来実験については提案手法の実験で取得し たレーザ指示点の位置を入力し,追従させている.指示点は 式(15)を用いて補正したものを利用する.実験結果で示した 経路は処理を施した後の指示点で形成された経路である.

また、どちらの手法においても、カメラにより X 軸,Y 軸 から角度を測定して振れ制御を加えている. クレーン軌道は クレーンモータのエンコーダより、ワイヤ振れ角はカメラに より測定した値を比較する.

	Parameters of crane				
Wire length [m]	0.99				
Suspended mass [kg]	1.0				
Sampling time [s]	0.03				
Acceleration time T [s]	1				
	Large actuator		Small actuator		
Maximum velocity [m/s]	Х	Y	Х	Y	
	0.3	0.3	0.3	0.3	
Mating Masters	0.999		-0.0159		
Motion Vector	-0.0247		0.999		

Table 2 Parameters of machine

5.2.2 結果

従来手法,提案手法でのクレーン軌道を Fig. 11,Fig. 12 に 示す.従来手法では指示円に対して大きな誤差が見られた. シミュレーションより軌道が大きいのは入力時間が大きい ためだと思われる.また,揺れ角はX軸方向が最大0.007[rad], Y 軸方向が最大 0.011[rad]となっており,目視ではほとんど 揺れを観測できない.対して,提案手法では指示円に対して ほぼ誤差なく追従できていることがわかり,経路追従機能の 大きな改善が見られる.しかし,最終停止位置に誤差が生じ ている.これは速度分割時に利用する実機軸とカメラ内の軸 を変換する回転行列が要因として考えられる.また,揺れ角 に関しては X 軸方向が最大 0.018[rad], Y 軸方向が最大 0.008[rad]となっており,最大値が増加している.しかし,目 視では揺れの発生はほとんど見て取れなかった.そのため, 実用範囲内には収まっていると考えられる.

Fig. 11 Trajectory by conventional method

Fig. 12 Trajectory by proposed method

6. 結言

本論文では、クレーンを感覚的に操縦できるレーザポイン タ入力型インターフェースにおいて、重ね合わせを用いた目 標軌道生成法に線長パラメータを適用した制御則の提案を 行った.そして、シミュレーションと実機において実験を行 い、従来手法と比較して、線長パラメータを用いた軌道生成 法の有効性を検証した.

この検証を通してレーザポインタの速度に関係なく経路 を再現した軌道により搬送を行うことが出来ることを確認 した.ただし、回転行列に依存する僅かな誤差や、揺れが従 来手法に比べ大きいことなど改善点も見受けられた.

参考文献

- (1) 三浦昭也, 永楽俊吾, 大隅久, "CCD カメラによるワイヤ 振れ角計測と懸垂物の振れ止め制御", 日本機械学会ロ ボティクス・メカトロニクス講演会 2005 講演会論文集, (2005) 1A-N-077.
- (2) 久保雅裕, 矢野詩知, 大隅久, "ワイヤ懸垂系の遠隔操縦 システムの開発―操縦インターフェースの開発―," 日 本機械学会ロボティクス・メカトロニクス講演会 2008 講演会論文集, (2009) 2P1-H06.
- (3) Osumi,H., Kubo,M., Yano,S., Saito,K., "Development of Tele-operation System for a Crane without Overshoot in Positioning, "Proc. 2010 IROS, (2010) pp. 5799-5805.