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I. Introduction 

The prevalence of any developmental disorders 

increased from 12.84% to 16.2–17.8% in 20 years (1997–

2017).[1,2] Among developmental disorders, attention-

deficit/hyperactivity disorder (ADHD) has the highest 

prevalence rate with an increasing trend.[3] ADHD is 

commonly diagnosed based on the behavioral assessment 

using standard guidelines, such as the Diagnostic and 

Statistical Manual of Mental Disorders (DSM) and the 

International Classification of Diseases (ICD). However, 

diagnostic results using two standard guidelines showed 

discrepancies.[4,5] Another perspective of biomarker is 

sought out to diagnose ADHD.  

ADHD is characterized by age-inappropriate 

inattention and/or hyperactivity/impulsivity. Controlling 

executive functions and behaviors has been well known as 

one of brain functions. Thus, measuring brain functions 

may be promising approaches for biomarkers.[6,7] There are 

several intervention-free modalities. However, from the 

perspectives of measurement convenience, spatial-

temporal resolution, and efficiency, functional near-

infrared spectroscopy (fNIRS) is considerably an optimum 

technique to perform pediatric studies. fNIRS measures 

cerebral hemodynamic changes [oxygenated (O2Hb) and 

deoxygenated (HHb) hemoglobin] that are closely 

connected to the brain activity.[8]  

fNIRS was developed for more than 25 years ago,[9] 

and it has also been applied to many fields, such as 

neurology, psychiatry, psychology, and basic research.[10] 

ADHD studies have also been pursued using fNIRS in 

evaluating disorder characteristics and monitoring 

medication effects.[11-14] Those applications should be 

supported by reliable analysis methods. Analysis purposes 

are categorized in removing noises (endogenous[15-18] and 

exogenous[19,20]) and extracting brain function 

information.[21-23] ADHD children measurement 

encounters the heightened risk of motion artifacts. 

Therefore, the development of analysis methods which are 

also able to remove motion artifacts are indispensable. 

 

II. Scope of work 

The objectives of this dissertation are to develop 

fNIRS analysis methods for disordered children 

measurement and to evaluate the applications of those 

methods on seeking ADHD biomarkers. These objectives 

are formulated in three frameworks (III–V).  

First, the development of noise removal method to 

improve the conventional brain activation analysis (i.e., 

averages of signal amplitude during stimuli) and its 

application as a preprocessing step for a study of 

differential diagnostic biomarker. fNIRS measurements 

(Figure 1) are commonly carried out during performances 

of cognitive tasks [e.g., go/no-go (GNG), oddball (OB); 

Figure 2]. Cognitive tasks are designed following the 

block-design paradigm with alternating orders for baseline 

(BS) and stimulus. An epoch is defined as a span consisting 

of pre-stimulus (part of BS), stimulus, and post-stimulus 

(part of BS) intervals. Noisy epochs are conventionally 

rejected or corrected. Straightforward rejection through 

visual judgments will reduce statistical power (1–β); 

corrective methods may lead to overcorrection issues. 

Therefore, a method to reject noisy epochs by considering 

the trade-off between remaining noises and required 

statistical power was approached. This method was then 

applied on a measurement dataset of ADHD and autism 

spectrum disorder (ASD) comorbid ADHD children (i.e., 

disordered children). The noise-free data was analyzed to 

figure out the optimum biomarker for differentiating ASD-

comorbid ADHD children from ADHD children. 

Second, the development of static functional 

connectivity (FC) analysis method for the block-design 

paradigm and the comparisons between activation and 

static FC features for ADHD screening biomarkers. In 

order to improve the robustness, averanging noise-free 
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epochs is done for the activation analysis. However, this 

way is improper for the FC analysis due to the disorganized 

temporal information. Thus, instead of noisy epochs, the 

rejection was performed on noise-affected datapoints. The 

remaining channel-wise datapoints were correlated to each 

other to quantify static FCs. A process to specifically 

analyze BS and stimulus FCs was also developed. 

Differences between typically developing (TD) and 

disordered children were evaluated in BS and stimulus FCs. 

The activation analysis was also conducted in the same 

dataset. Both activation and static FCs features were 

optimized to classify disordered children from TD children. 

Third, the development of dynamic FC analysis 

method for the block-design paradigm and its insights into 

ADHD characteristics. The stationary assumption is 

dismissed; the dynamic concept was introduced as several 

connectivity states were found to alternate across the 

temporal course.[24] The elimination of noisy datapoints is 

inappropriate because the dynamic FC analysis requires 

uninterrupted datapoints. Another analysis procedure was 

developed to support the dynamic FC analysis for children 

measurement data with noise risks. Channel-wise 

datapoints within a short temporal window were correlated 

to each other, and the temporal window was shifted across 

the entire measurement to quantify dynamic FCs. Altered 

connectivity states were hypothesized to be different for 

TD and ADHD children. The findings would be new 

insights into ADHD pathophysiology.   

             

III. Adaptive rejection algorithm and its application 

for a preprocessing step 

The developed method named as the adaptive 

rejection algorithm consisted of two processes – noise 

identification and rejection judgment. In the process of 

noise identification, three noise criteria were set, including 

spikes with recovery failure, baseline shifts, and high inter-

epoch variabilities. Spikes occur due to motion artifacts; 

baseline shifts are commonly caused by recovery failure of 

motion artifacts and/or the physiological noises.[25-27] 

Noise-affected epochs show dissimilarities compared to 

noise-free epochs; noisy epochs result in high variabilities.  

For the process of rejection judgment, the rejection 

rate (i.e., the number of rejected epochs) was initially 

determined. Each criterion was then examined in order. If 

the identified noisy epochs were more than the acceptable 

rejection, the rejection was halted. Otherwise, the rejection 

was executed. The jugdment was continued using other 

criteria on the remaining/non-rejected epochs. After all 

criteria has been evaluated, the rejection was done based 

on how many times epochs were saved from rejections if 

the remaining epochs was more than the rejection rate. 

The adaptive rejection algorithm was confirmed in 

the synthetic and real datasets. By applying this algorithm, 

the hemodynamic response function (HRF) was recovered 

from the noisy synthetic dataset (Figure 3). The real 

datasets had been previously analyzed and reported;[13,14]  

the algorithm application on those datasets rejected noisy 

epochs reproducing all statistical inferences. Previous 

analyses adapted the visual judgement to identify noisy 

epochs. Performances of the adaptive rejection algorithm 

showed similar rejections (69.2–77.0%), activation signals 

(r > 0.7) and values (ρ > 0.69) compared to performances 

of the visual judgment. Through a simulation, it was 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. (A) Exemplary fNIRS measurement setup and (B) probe 
configuration (circles, squares, and numbered circles for emitter, 
detector, and channels, respectively). From [34], adapted with 
permission.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Task design. (A) The block-design paradigm with 3-s 
instructions in between baseline and stimulus. Specific commands 
for baseline (B) and stimulus (C) intervals for the GNG (B1, C1) 
and OB (B2, C2) tasks. From [32], modified with permission. 
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confirmed that rejecting data still brought an adequate 

statistical power (> 0.8) as long as the activation 

phenomenon was profound. 

The adaptive rejection algorithm was then applied on 

a different dataset[28] for a preprocessing step. The 

activation analysis was performed on noise-free epochs. 

Performances of ADHD and ASD-comorbid ADHD 

children were equal during the task (two-sample t-test, p > 

0.05). However, their brain activation were distinct in the 

conditions of naïve and medicated (two-sample t-test, p < 

0.05). Thus, brain-related characteristics were more 

significant than the behavioral-related ones; activation 

values were treated as promising biomarkers to support 

differential diagnosis. After an exhaustive optimization, 

activations in the right middle frontal (MFG), angular 

(ANG), and precentral (PrCG) gyri under the medicated 

condition [methylphenidate (MPH)] were found to be 

optimum biomarkers (82 ± 1.6% cross-validated accuracy). 

ADHD children showed higher activations in those regions 

than ASD-comorbid ADHD children (Figure 4). The 

appropriate preprocessing method is requisite to obtain 

robust and well-performed biomarkers; the current 

findings indicated the successful application of the 

adaptive rejection algorithm.   

 

IV. Static FC features and its benefits over activation 

features for screening biomarkers 

Instead of epoch rejections done by the adaptive 

rejection algorithm, a method to reject datapoints was 

developed. Spikes were identified by the great amplitude 

changes (> 0.1 mM∙mm) within two datapoints. Moreover, 

abnormal amplitudes caused by any noises were detected 

by outlier amplitudes (ΔC·L > μ + 3σ ∨ ΔC·L < μ - 3σ; μ 

and σ are amplitude average and standard deviation of all 

channels). Datapoints associated with spikes or abnormal 

amplitudes were rejected; uniform rejections were done for 

all channels. The remaining datapoints were concatenated 

according to the BS and (OB) stimulus intervals.      

Functionally connected regions are represented by 

high (Pearson’s) correlation coefficients between regions. 

Static FCs were evaluated in each interval (Figure 5). 

Stimulus-evoked FC increases were found to be prominent 

for disordered children in the bilateral intra- and 

interhemispheric FCs. TD children showed more 

preserved FCs even during the baseline interval. Even 

though disordered children experienced the increased right 

MFG FCs during the stimulus interval, the strength was 

still weaker compared to that of TD children (two-sample 

t-test, p < 0.05, t(47–50)= 2.34–3.08).  

Both activation and static FC features were optimized 

using the stepwise-forward method and validated (5-fold) 

to achieve the highest classification accuracy between TD 

and disordered children. Static FC features performed 

better than activation features for training and test subsets 

(75% vs. 86–90% in average, Table 1). FC-based 

biomarkers performed better than the previously reported 

activation-based biomarkers.[29] These results confirmed 

the benefits of static FC features for screening biomarkers. 

The discriminative static FC features were found in the 

bilateral fronto-parietal regions.  

  

V. Distinct dynamic FC characteristics for TD and 

ADHD children 

The dynamic FC analysis commonly performs on the 

resting-state data;[30,31] the current study is the first work of 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. HRF recovery from the noisy synthetic dataset. The 
smooth plot is the ground truth; fluctuated solid and dotted lines are 
results of the adaptive rejection algorithm (β = 0.18) and no 
rejection (β = 0.34), respectively. Patches around plots indicate 
standard deviations. The temporal interval represents the epoch 
interval. From [32], adapted with permission. 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 4. Medicated-evoked activations of the right PrCG against 
the MFG-ANG for ADHD (black bullets) and ASD-comorbid 
ADHD (white bullets) children.The shaded area and lines represent 
the most optimum differentiations using the OR operation [high 
MFG-ANG (attention function) ˅ high PrCG (motor function) for 
ADHD], linear and quadratic discriminants, and support vector 
machine. From [33], modified with permission. 
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the dynamic FC analysis on the task-based fNIRS data. 

During the GNG task, four connectivity states were found 

to alternate (Figure 6). Two connectivity states were 

presumed as the task-related connectivity states due to the 

strongly observed attentive frontoparietal network. Those 

connectivity states dominantly occurred (17–67% 

probability, one-way ANOVA, p < 10-10, χ2
(3,160) = 51.7–

97.5). The task-irrelevant connectivity states, such as 

default mode network and global effects were interpreted 

from the other connectivity states (<17% probability). TD 

children were found to maintain the task-related 

connectivity states in both baseline and stimulus intervals, 

while ADHD children showed decreased occurences of the 

task-related connectivity states in the transition and 

stimulus interval (Wilcoxon rank-sum test, p < 0.05, z = 

−2.76 – −1.96). Furthemore, the occurrence probability of 

task-irrelevant connectivity states were heightened for 

ADHD children (Wilcoxon rank-sum test, p < 0.05, z = 

1.96–3.18).  

 

VI. Conclusion 

Three analysis frameworks were established to 

properly remove noises and analyze brain characteristics 

(i.e., activation, static and dynamic FCs) from the task-

based measurement. The developed adaptive rejection 

algorithm was promisingly used as a substitute for the 

laborious visual judgment.[32] The differential 

diagnostic[33] and screening[34] biomarkers were found by 

supports of those analysis frameworks. Moreover, the 

pathophysiological understanding became clearer. ADHD 

children suffered from impaired FC maintenance and 

connectivity state recruitment during the task.[35] TD 

children’ attention relatively engaged even in the baseline 

interval with the lowest cognitive load.  
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Figure 5. Static FC maps (channel-wise 𝑟̅) in the baseline and 
stimulus intervals for TD and disordered children. Channels are 
categorized following the estimated brain regions (L: left and 
R: right). From [34], modified with permission. 
 

Table 1. Screening performances 
 
 
 
 
 

 
 

Activation Baseline FC Stimulus FC

Training subsets 74.6±3.4% 86.5±2.5% 89.7±2.6%

Test subsets 74.7±14.9% 85.6±7.9% 90.4±9.6%

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Four connectivity states (channel-wise 𝑟̅) Channels are 
categorized following the estimated brain regions (L: left and R: 
right). From [35], modified with permission. 

 


