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Quantal Response Equilibrium vs. Cognitive Hierarchies :  
An Analysis of Initial Responses  

in an Asymmetric All-Pay Auction Experiment

Hironori Otsubo＊

Abstract
Predicting initial responses to novel strategic situations has been a challenge in game theory. People are not as so-

phisticated as players assumed by solution concepts in game theory, and their initial play has a tendency to system-

atically deviate from equilibrium. Several behavioral models of games have been proposed to bridge a gap between 

initial behavior and equilibrium play. This paper fits two one-parameter behavioral models, a quantal response equi-

librium （QRE） and a cognitive hierarchy （CH） model, into the first-round data of the experiment conducted by Ot-

subo （2013）. Estimation results show that the QRE accounts better for deviations from Nash equilibrium play than 

the CH model.
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1　Introduction

In game theory experiments it is a common practice to allow participants to play games repeatedly. 
Repetition obviously generates more data. In addition, it may help participants to understand the struc-
ture of games, learn how others play （via information feedback）, and adjust their own behavior owing to 
experience. Previous experimental studies of learning have attempted to address how current behavior 
shapes future behavior and whether behavior converges to equilibrium play.1

Another behaviorally intriguing question is how people react to novel strategic situations. This ques-

＊Faculty of Global Management, Chuo University. E-mail : otsubo.76t@g.chuo-u.ac.jp
1　See Chapter 6 of Camerer （2003） for a comprehensive survey of the experimental studies of learning.
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tion is of practical importance because real-world strategic interactions are not always repeated but of-
ten played only once. In game theory, a state is in equilibrium if players form correct beliefs of what 
other players do and best respond to their beliefs. Without any prior interaction with other players, 
how could people form correct beliefs of others’ actions? The cognitive requirements for initial respons-
es to be in equilibrium are far more stringent than for learning to converge to equilibrium （Costa-Gomes 

et al., 2009）. Therefore, when people confront novel strategic situations, their initial responses would not 
be in equilibrium.

Several behavioral models of games have been proposed to account for initial responses to un- 
precedented strategic situations. Examples include a non-equilibrium model based on level-k thinking 

（Stahl & Wilson, 1994, 1995 ; Nagel, 1995）, another non-equilibrium model that is closely related to the lev-
el-k model called a cognitive hierarchy （CH） model （Camerer et al., 2004）, and an equilibrium concept 
that relaxes the best response assumption of Nash equilibrium called a quantal response equilibrium 

（QRE） （McKelvey & Palfrey, 1995）. A natural question is to identify experimental games in which these 
models explain initial play well and reasons why they does not in other games.

This paper explores how well the QRE and the CH model account for first-round behavior in an 
asymmetric all-pay auction experiment conducted by Otsubo （2013）.2 In this experiment, participants 
played an identical all-pay auction game 60 times. The game possesses a unique Nash equilibrium in 
mixed strategies, and its implications were tested based on the data of the last 30 rounds so as to re-
duce confounding with any early-round learning and adjustment. Otsubo （2013） confirmed that the be-
havior of participants is consistent with the Nash equilibrium on the aggregate level and that the theo-
retical predictions are well supported by the data. However, participants’ initial behavior was neither 
inquired in detail nor compared with any behavioral models of games.

This paper proceeds as follows. Section 2 gives an overview of the experiment run by Otsubo （2013） 
and summarizes its first-round data. Section 3 discusses the QRE and the CH model. Section 4 reports 
maximum likelihood estimates of their parameters. Section 5 concludes.

2　An Asymmetric All-Pay Auction Experiment

2.1　Game and Equilibrium
Otsubo （2013） ran a laboratory experiment in which participants repeatedly played the following asym-
metric all-pay auction game.3

Two political candidates, an incumbent and a challenger, compete for elected office. Index the incum-
bent by i and the challenger by c. The winner receives a single, symmetrically valued prize r.4 To win 

2　In the literature of contest theory, these models have been fitted to experimental data in an attempt to bridge 
the gap between observed behavior and equilibrium play. See Crawford and Iriberri （2007） and Bernard （2010） 
for the level-k model, Gneezy （2005） and Lim et al. （2014） for the CH model, Anderson et al. （1998）, Rapoport and 
Amaldoss （2004）, Gneezy and Smorodinsky （2006）, Sheremeta （2011）, Chowdhury et al. （2014）, and Lim et al. 

（2014） for the QRE.
3　All-pay auctions （Hillman & Samet, 1987 ; Baye et al., 1996） have been used to model a variety of economic, 

social, and political contests. See Konrad （2009） for a survey of the literature of contests and Dechenaux et al. 
（2015） for a recent survey of experimental research on contests.
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the election, each candidate simultaneously chooses her amount of irrevocable campaign spending （ex-

penditure） ej, j ∈｛i, c｝, from the common set E＝｛0, 1, 2, . . . , l｝, where l is a common spending limit. 
For a candidate to be eligible for winning office, her level of campaign spending has to be at least m.5 
Hereafter, the parameters l, m, and r are assumed to be integer values such that 0 ＜ m ＜ l ＜ r.

In this game these candidates are asymmetric in that ties are always broken in favor of the incum-
bent. This may happen due to, for example, officeholder benefits such as voters’ status-quo bias and 
greater name recognition. The incumbent wins the election if ei ≧ ec and ei ≧ m and loses otherwise. 
The challenger, on the other hand, wins the election if ec ＞ ei and ec ≧ m and loses otherwise. Formal-
ly, the incumbent’s contest success function is :

fi（ei, ec）＝

Similarly, the challenger’s contest success function is :

fc（ei, ec）＝

For j ∈ ｛i, c｝, candidate j’s payoff function is given by

uj（ej, e－j）＝r・fj（ej, e－j）－ej.

It is straightforward to show that there is no Nash equilibrium in pure strategies. Let （pi, pc） be a 
profile of mixed strategies. Otsubo （2013） proved that there exists a unique Nash equilibrium in mixed 
strategies （p＊

i , p＊
c） characterized by

p＊
i（ei）＝� （1）

and

p＊
c（ec）＝� （2）

with associated equilibrium payoffs r－l for the incumbent and 0 for the challenger.6

2.2　Experiment
Table 1 summarizes the experimental design of Otsubo （2013）. There are two independent variables, 
each of which has two levels. The first is the size of the spending limit l : low （l＝8） versus high （l＝

1　if ei ≧ ec and ei ≧ m
0　otherwise

1　if ec > ei and ec ≧ m
0　otherwise

0	 if ei ∈｛0, . . . , m－1｝

	 if ei＝m

	 if ei ∈ ｛m＋1, . . . , l－1｝

1－ 	 if ei＝l

m＋1
r

1
r

l
r

1－ 　if ec＝0

0 if ec ∈｛1, . . . , m｝

if ec ∈｛m＋1, . . . , l｝

l－m
r

1
r

4　This prize can be thought as the amount of benefits that the winner receives during her term of office.
5　Hillman and Samet （1987） discussed theoretical implications of the minimum expenditure requirement in the 

context of all-pay auctions.
6　For the proof, see the supplementary material of Otsubo （2013）.
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13）. The second is the size of the prize r : low （r＝15） versus high （r＝20）. Therefore, the experiment 
has a total of four treatments : LL （l＝8 and r＝15）, HL （l＝13 and r＝15）, LH （l＝8 and r＝20）, and HH （l＝

13 and r＝20）. The sixth and the seventh columns present the expected expenditures under Nash equi-
librium play for the incumbent and the challenger, respectively.

There are two sessions per treatment. Each session consists of 32 participants, sixteen of whom 
played the game as the incumbent and the rest as the challenger. These roles were randomly assigned 
at the beginning of the session, and participants retained their roles throughout the session.

2.3　Initial Responses to the Game
Table 2 presents general statistics of expenditures in the first round by treatment and role. Partici-
pants exhibited a tendency to overspend except challenger-role participants in treatment HL. The 
mean expenditure was fairly close to the expected expenditure under equilibrium play for the incum-
bent, but not for the challenger. A Wilcoxon signed rank test was used to test the null hypothesis of no 
difference between the observed and predicted mean expenditures. For the incumbent, the null hy-
pothesis was not rejected at any conventional levels of significance in all treatments. For the challeng-
er, the null hypothesis was rejected at the 0.1% significant level for treatments LL, HL, and LH.7

Figure 1 displays side by side the relative frequency distribution of expenditures and the probability 
distribution specified by the unique mixed-strategy Nash equilibrium by treatment and role. There are 
eight panels in the figure ; for example, the top-left panel shows the relative frequency distribution of 
expenditures for 32 incumbent-role participants and the equilibrium probabilities in treatment LL. 

7　R package “exactRankTests” （version 0.8.32） was used.

Table 1：Design of the experiment

Treatment Session l r
No. of participants

per session
Nash

Incumbent Challenger

LL 1, 2 8 15 32 5.6667 2.3333

HL 3, 4 13 15 32 7 6

LH 5, 6 8 20 32 6.25 1.75

HH 7, 8 13 20 32 8.5 4.5

Table 2：Summary of general statistics regarding expenditures

Treatment
Incumbent Challenger

Mean Median Mode Std. Dev. Mean Median Mode Std. Dev.

LL 6.2188 7 8 1.8445 4.7188 5 8 2.9538

HL 8.125 8 13 4.0301 3.75 3 0 3.2528

LH 6.5 8 8 1.9177 3.9688 4 0 2.9998

HH 9.1875 10 13 4.2155 5.75 4.5 0 4.7247
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There are two notable findings from the figure. First, not all participants followed equilibrium play. In 
equilibrium, no participant should choose 0 as the incumbent and 1 as the challenger. However, one in-
cumbent-role participant chose 0 whereas 11 challenger-role participants chose 1. Second, the number 
of challenger-role participants choosing 0 is significantly small. In other words, too many challenger-role 
participants “entered” the auction. The equilibrium probabilities of choosing 0 are 0.5333, 0.65, and 0.4 
for treatments LL, LH, and HH, respectively. The corresponding observed relative frequencies are 5, 6, 
and 7. Then, exact p-values for the one-sided binomial test are computed as follows :

where Xt is the number of challenger-role participants choosing 0 in treatment t. A one-sided binomial 
test rejected the null hypothesis of equilibrium play at any conventional levels of significance for treat-

P（XLL ≦ 5）＝ （0.5333）n（1－0.5333）32－n ≈ 1.1847×10－5

P（XLH ≦ 6）＝ （0.65）n（1－0.65）32－n ≈ 1.0823×10－7

P（XHH ≦ 7）＝ （0.4）n（1－0.4）32－n ≈ 2.4822×10－2

5

n＝0

32
n

6

n＝0

32
n

7

n＝0

32
n

0 1 2 3 4 5 6 7 8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Nash
Observed

Incumbent

0 1 2 3 4 5 6 7 8

Nash
Observed

Challenger

LL

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Nash
Observed

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Nash
Observed

HL

0 1 2 3 4 5 6 7 8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Nash
Observed

0 1 2 3 4 5 6 7 8

Nash
Observed

LH

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Nash
Observed

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Nash

HH

Observed

Expenditure

R
el

at
iv

e 
Fr

eq
ue

nc
y

Figure 1：Nash equilibrium and the relative frequency distribution of expenditure
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ments LL and LH and at the 5% significance level for treatment HH.

3　Two Behavioral Models of Games

The Nash predictions account well for the initial behavior of incumbent-role participants, but not for 
that of challenger-role participants. This section introduces two behavioral models of games that have 
been used to explain initial responses to novel strategic situations.

3.1　Quantal Response Equilibrium
The first model is a quantal response equilibrium （QRE） model （McKelvey & Palfrey, 1995）. In a sharp 
contrast to the Nash equilibrium, the QRE does not require that players select the best choice with 
certainty. Instead, players are more likely to select better choices and less likely to choose worse choic-
es, according to a quantal response function that maps expected payoffs into choice probabilities. A 
player’s expected payoffs from different choices are determined by beliefs about the other players’ 
choices, and beliefs must match choice probabilities in equilibrium.

Let （pi,λ, pc,λ） be a strategy profile （i.e., a set of probability distributions）, where for all j ∈ ｛i, c｝

pj,λ＝（pj,λ（0）, pj,λ（1）, . . . , pj,λ（l））.

The probability distribution p－j,λ represents candidate j�s beliefs about the other player －j�s expendi-
ture levels. Given this probability distribution, candidate j computes her expected payoff from each of 
l＋1 expenditure levels. For example, candidate j�s expected payoff from choosing ej is given by

uj（ej, p－j,λ）＝ p－j,λ（e－j）uj（ej, e－j）.

Then, candidate j’s probability of choosing ej is determined by a logistic quantal response function :

pj,λ（ej）＝ ,

where λ is an error parameter that ranges from 0 to ∞. Since there are two players, each of who has 
l＋1 strategies, there are 2（l＋1） logistic quantal response functions. Then, for a given λ, a QRE is 
defined as a strategy profile （p＊

i,λ, p＊
c,λ） such that for all j ∈｛i, c｝

p＊
j,λ（ej）＝ for all ej ∈ E.

Two comments on λ are in order. First, the QRE is a function of λ ; as the value of λ varies, QRE 
probabilities also vary. Second, λ describes the degree of rationality. As λ goes to 0, p＊

j,λ（ej） converges 
to  （i.e., uniform randomization）. On the other hand, as λ approaches ∞, p＊

j,λ（ej） converges to p＊
j（ej） 

（i.e., Nash equilibrium probabilities）. Table 3 presents QRE and Nash equilibrium probabilities in treatment 
LL. The QRE is numerically computed for each of five different values of λ ; λ ∈｛0, 0.1, 0.5, 2, 10｝. 
When λ＝0, the QRE is just a discrete uniform distribution ; both roles choose each strategy with 
equal probability. As λ gets larger （e.g., λ＝10）, the QRE is almost identical with the Nash equilibrium 
of the game.

e－j∈E

exp（λ・uj（ej, p－j,λ））
e∈E exp（λ・uj（e, p－j,λ））

exp（λ・uj（ej, p＊
－j,λ））

e∈E exp（λ・uj（e, p＊
－j,λ））

1
l＋1
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3.2　Cognitive Hierarchy Model
The second model is a non-equilibrium model called a cognitive hierarchy （CH） model （Camerer et al., 

2004）. The QRE requires that players form correct beliefs of what other players do and stochastically 
best respond to these beliefs. In a sharp contrast to the QRE, the CH model assumes that players form 
incorrect beliefs about other players’ actions and best respond to these beliefs.8

The CH model assumes that players are using h steps of reasoning with a frequency distribution of 
steps f（h）. Following Camerer et al. （2004）, the distribution fτ（h） is assumed to be Poisson with mean τ.  
Thus, the frequency of players doing h steps of reasoning is given by

fτ（h）＝ h＝0, 1, 2, . . . .

The CH model also assumes that k-step players have an accurate belief about the relative frequen-
cies of players who are doing less steps of reasoning than they are. For example, 2-step players believe 
that other players are doing either 0 step or 1 step of reasoning.9 Thus, k-step players believe that the 

e－ττh

h!

8　To be precise, players doing 0 step of reasoning do not best respond ; instead, they uniformly randomize over 
the entire strategy space.

Table 3：QRE and Nash equilibrium probabilities in treatment LL

Role Expenditure
QRE （λ）

Nash
0 0.1 0.5 2 10

Incumbent

0 0.1111 0.0765 0.0127 0.0000 0.0000 0.0000

1 0.1111 0.0914 0.0495 0.0716 0.1192 0.1333

2 0.1111 0.0956 0.0577 0.0675 0.0671 0.0667

3 0.1111 0.1006 0.0645 0.0668 0.0667 0.0667

4 0.1111 0.1067 0.0715 0.0668 0.0667 0.0667

5 0.1111 0.1143 0.0809 0.0671 0.0667 0.0667

6 0.1111 0.1240 0.0983 0.0693 0.0667 0.0667

7 0.1111 0.1368 0.1439 0.0848 0.0678 0.0667

8 0.1111 0.1541 0.4208 0.5061 0.4792 0.4667

Challenger

0 0.1111 0.0917 0.1487 0.4123 0.5240 0.5333

1 0.1111 0.0930 0.0992 0.0558 0.0000 0.0000

2 0.1111 0.0965 0.0872 0.0647 0.0628 0.0667

3 0.1111 0.1008 0.0816 0.0663 0.0666 0.0667

4 0.1111 0.1061 0.0803 0.0666 0.0667 0.0667

5 0.1111 0.1126 0.0832 0.0668 0.0667 0.0667

6 0.1111 0.1210 0.0926 0.0677 0.0667 0.0667

7 0.1111 0.1318 0.1175 0.0734 0.0668 0.0667

8 0.1111 0.1465 0.2097 0.1262 0.0797 0.0667
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relative frequency of h-step players follows an upper truncated Poisson distribution given by

gk,τ（h）＝

Suppose that player j is doing k steps of reasoning. Let Pk
j（ej） be the probability that player j doing k 

steps of reasoning chooses pure strategy ej. Then, given the k-step player’s belief about how many 
steps of reasoning other players are doing, gk,τ（0）, gk,τ（1）, . . . , player j�s expected payoff from choosing 
ej is given by

uj（ej, e－j） gk,τ（h）Ph
－j（e－j）

The CH model assumes the following hierarchical process of reasoning :
・Suppose that player j is doing 1 step of reasoning. Player j believes that other players －j are do-

ing 0 step of reasoning. Following Camerer et al. （2004）, it is assumed that the 0-step player 
chooses each strategy with equal probability, i.e., P0

－j（e－j）＝  for all e－j ∈ E. Given g1,τ（0）, the 
1-step player can find the best response to the other players （0-step players）. That is, P1

j（e＊
j）＝1 if 

and only if

e＊
j＝arg max

ej∈E
uj（ej, e－j）g1,τ（0）P0

－j（e－j）

or randomizing equally over strategies that yield the highest expected payoff.
・Suppose that player j is doing 2 steps of reasoning. Player j believes that other players －j are do-

ing either 0 step or 1 step of reasoning. Given g2,τ（0） and g2,τ（1）, player j can find a best response. 
That is, P2

j（e＊
j）＝1 if and only if

e＊
j＝arg max

ej∈E
uj（ej, e－j） g2,τ（h）Ph

－j（e－j）

or randomizing equally over strategies that yield the highest expected payoff.
・Recursively applying this process derives the best responses of players doing different steps of 

reasoning. Since it is implausible to assume that players can exercise infinite steps of reasoning, 
this paper limits the maximum step of reasoning to k＝5.10 Then, the frequency of players doing h 
steps of reasoning is given by :

fτ（h）＝

To get a better picture of how this iterative process works, the following demonstrates how to de-

,　h ≦ k－1

0, h ≧ k.

fτ（h）
fτ（q）k－1

q＝0

e－j∈E

k－1

h＝0

1
l＋1

e－j∈E

e－j∈E

1

h＝0

h＝0, 1, 2, 3, 4

1－ fτ（v）　h＝5

e－ττh

h!
h－1
v＝0

9　This example highlights a major difference between the CH and level-k models. The Level-k model assumes that 
players doing k ≧ 1 steps of reasoning naively believe that others are doing exactly one step below. For example, 
1-step players believe that other players are doing 0 step of reasoning, 2-step players believe that other players 
are doing 1 step of reasoning, and so on.

10　Camerer et al. （2004） reported that assuming a τ value of 1.5 could give reliable predictions for many games. If 
τ＝1.5, the frequency of players doing 5 steps or more is negligibly small ; fτ（5） ≈ 0.014 and fτ（h） is negligibly 
small for h ＞ 5.  k＝5 is reasonably high.
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rive best responses in treatment LL under the assumption of τ＝3.
Step-1 Players : Consider a k＝1 step incumbent. Because g1,3（0）＝1, the incumbent believes that the 
challenger is a 0-step player, that is, the challenger chooses each expenditure with equal probability, P0

c

（ec）＝  for all ec ∈ E. Given this belief, the 1-step incumbent can compute the expected payoff from 
choosing ei, which is given by

ui（ei, ec） .

Table 4 shows expected payoffs for the CH model with τ＝3 in treatment LL. The nine values from the 
third row to the 11th row in the third column of the table represent the 1-step incumbent’s expected 
payoffs from nine different expenditure levels, respectively. The value in bold, 7, is the largest expected 
payoff of the 1-step incumbent, and the corresponding expenditure e＊

i＝8 is the best response （i.e., P1
i（8）

＝1）. Similarly, a k＝1 step challenger believes that the incumbent is a 0-step player, that is, the incum-
bent chooses each expenditure with equal probability. It is straightforward to compute the challenger’s 
expected payoffs, which are presented as the nine values from the 12th row to the 20th row in the 
third column of the table. Choosing e＊

c ＝8 yields the highest expected payoff to the 1-step challenger. 

1
9

ec∈E

×1
g1,3（0）

P0
c （ec）

1
9

Table 4：Expected payoffs for the CH model with τ＝3 in treatment LL

Role Expenditure
Number of Steps of Reasoning （k）

1 2 3 4 5

Incumbent

0 0 0 0 0 0

1 2.3333 －0.1667 7.3333 9.6410 7.4478

2 3 －0.75 6.5294 8.7692 9.6412

3 3.6667 －1.3333 5.7255 7.8974 8.7430

4 4.3333 －1.9167 4.9216 7.0256 7.8448

5 5 －2.5 4.1176 6.1538 6.9466

6 5.6667 －3.0833 3.3137 5.2821 6.0483

7 6.3333 －3.6667 2.5098 4.4103 5.1501

8 7 7 7 7 7

Challenger

0 0 0 0 0 0

1 0.6667 －0.5833 －0.8039 －0.8718 －0.8982

2 1.3333 －1.1667 －1.6078 3.4487 5.4173

3 2 －1.75 －2.4118 2.5769 4.5191

4 2.6667 －2.3333 －3.2157 1.7051 3.6209

5 3.3333 －2.9167 －4.0196 0.8333 2.7226

6 4 －3.5 －4.8235 －0.0385 1.8244

7 4.6667 －4.0833 －5.6275 －0.9103 0.9262

8 5.3333 －4.6667 －6.4314 －1.7821 0.0280
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Thus, the 1-step challenger’s best response is to choose e＊
c＝8 for sure （i.e., P1

c（8）＝1）.
Step-2 Players : Because

g2,3（0）＝ ＝0.25

g2,3（1）＝ ＝0.75

a step-2 incumbent believes that the challenger is a 0-step player with probability g2,3（0）＝0.25 and a 
1-step player with probability g2,3（1）＝0.75. That is, the incumbent believes that P0

c（ec）＝  for all ec ∈ 
E with probability 0.25 and P1

c（8）＝1 with probability 0.75. Given this belief, the 1-step incumbent can 
compute the expected payoff from choosing ei, which is given by

ui（ei, ec） g2,3（h）Ph
c（ec）.

The nine values from the third row to the 11th row in the fourth column of Table 4 represent the 
2-step incumbent’s expected payoffs from nine different expenditure levels, respectively.  The results 
show that the 2-step incumbent’s best response is to choose e＊

i＝8 for sure （i.e., P2
i（8）＝1）. Similarly, a 

2-step challenger believes that the incumbent is a 0-step player with probability g2,3（0）＝0.25 and a 
1-step player with probability g2,3（1）＝0.75. Given this belief, the 1-step challenger can compute the ex-
pected payoff from choosing ec, which is given by

uc（ei, ec） g2,3（h）Ph
i（ei）.

The nine values from the 12th row to the 20th row in the fourth column of the table represent the 
2-step challenger’s expected payoffs from nine different expenditure levels, respectively. The results in-
dicate that the 2-step challenger should choose e＊

c＝0 for sure （i.e., P2
c（0）＝1）.

This process continues until finding the best responses of step-5 players. Table 5 summarizes the 
best responses of players with five different reasoning levels when τ＝3. Notice that best responses de-
pend largely on the value of τ. If the value of τ is relatively large as in the current example, then there 
would be a variation in best responses for players doing more steps of reasoning. On the other hand, if 
the value of τ is very small （e.g., τ＝0.1）, then the population of players turns out to be quite homoge-
neous regarding the depth of reasoning ; the frequency of players doing 0 step of reasoning is quite 

f3（0）
f3（0）＋f3（1）

f3（1）
f3（0）＋f3（1）

1
9

ec∈E

1

h＝0

ei∈E

1

h＝0

Table 5‌� ：Best responses for the CH model with τ＝3 
in treatment LL

Number of Steps
of Reasoning （k）

Incumbent Challenger

1 8 8

2 8 0

3 1 0

4 1 2

5 2 2
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high. As a result, there is little variation in best responses for players doing higher steps of reasoning.

4　Estimation and Model Comparison

The model parameters λ and τ were estimated using maximum likelihood techniques.11 Table 6 shows 
log-likelihoods and maximum likelihood estimates of λ and τ separately for each treatment. 90% confi-
dence intervals for these estimates were constructed by bootstrapping （Efron & Tibshirani, 1993）.12 The 
log-likelihoods for the unique mixed-strategy Nash equilibrium were also computed for comparison 
with the QRE and the CH model.13 The log-likelihoods indicate that the QRE outperformed the CH and 
the Nash equilibrium in all treatments.

Table 7 presents observed and expected mean expenditures by treatment and role.14 Two discern-
ible features are found in this table. First, the expected expenditures under the CH model do not differ 
between the two roles in treatments LL and LH. This happens because the estimated values of τ are 
so small that both roles doing k （k ＞ 0） steps of reasoning should choose the same expenditure level as 
their best responses, namely ei＝ec＝8 for all k ＞ 0. Second, the QRE minimizes the difference between 
observed and expected mean expenditures in almost all cases. There are two exceptional cases ; the 
difference is minimized under the CH model for the challenger in treatment LL and under the Nash 
equilibrium for the challenger in treatment HL.

11　This paper implicitly assumes that all participants assigned to the same treatment have an identical parameter 
value, regardless of which role they play in the experiment.

12　For each treatment, 10000 bootstrap samples were generated from the first-round data.
13　Each player has one non-equilibrium strategy ; ei＝0 for the incumbent and ec＝1 for the challenger. The pres-

ence of non-equilibrium strategies makes the log-likelihood undefined. In order to avoid this issue, a noisy Nash 
model （NNM）, first introduced by McKelvey and Palfrey （1998）, was employed as a substitute for Nash equilibri-
um. The NNM assumes that players use the Nash equilibrium with probability γ and a uniform randomization 
over all pure strategies with probability 1－γ. As γ→ 1, the NNM converges to the Nash equilibrium. The 
log-likelihoods for the Nash equilibrium in Table 3 are in fact those for the NNM with γ＝0.9999.

14　The expected mean expenditures are computed using the estimated values of λ and τ presented in Table 3.

Table 6：Log-likelihoods and maximum likelihood estimates of λ and τ

Treatment
Nash QRE CH

Log-
Likelihood

Log-
Likelihood

λ
［90% C.I.］

Log-
Likelihood

τ
［90% C.I.］

LL
－156.9644 －125.1891 0.4856

［0.3111, 0.7565］
－129.9179 0.2799

［0.1493, 0.6667］

HL
－194.5664 －164.7086 1.3460

［0, 2.4708］
－166.6543 0.1100

［0.0072, 0.3576］

LH
－167.0454 －119.5485 0.4560

［0.2753, 0.8058］
－127.0528 0.3275

［0.1910, 1.2222］

HH
－165.5561 －146.7512 1.6697

［0.7923, 3.6998］
－148.1882 0.4881

［0.2781, 0.7316］
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Figure 2 presents side by side the relative frequency distribution of expenditures and the QRE prob-
abilities by treatment and role. A comparison with Figure 1 reveals that overall the resulting QRE 
probabilities capture deviations from the Nash equilibrium very well. This observation hints that re-
placing deterministic best responses with stochastic ones would be one approach for future develop-
ment of an alternative theory that better accounts for deviations from Nash equilibrium play, particu-
larly in early rounds of games.

Table 7：Observed and expected mean expenditures

Treatment
Incumbent Challenger

Mean Nash QRE CH Mean Nash QRE CH

LL 6.2188 5.6667 5.9893 4.9766 4.7188 2.3333 4.3412 4.9766

HL 8.125 7 7.3719 7.1770 3.75 6 6.5150 7.1039

LH 6.5 6.25 6.7455 5.1172 3.9688 1.75 4.0789 5.1172

HH 9.1875 8.5 9.0980 9.0104 5.75 4.5 5.3349 7.8843
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Figure 2：QRE and the relative frequency distribution of expenditure
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5　Conclusion

This paper used the first-round data of the all-pay auction experiment conducted by Otsubo （2013） to 
examine （i） if the Nash equilibrium of the game accounts for the first round behavior and （ii） how well 
alternative models of games capture deviations, if any, from Nash equilibrium play. Least surprisingly, 
the results show that the Nash equilibrium is not a good predictor for the first-round behavior. As al-
ternative models, the QRE and the CH model were considered, and their parameters were estimated 
using maximum likelihood methods. Of these two models, the QRE does better in all treatments.15

One direction for future research is to consider the QRE model that allows for λ-heterogeneity. The 
QRE considered in this paper assumes the common λ for all players. This means that all players have 
the same payoff responsiveness. Yet, people obviously differ in many dimensions （e.g., skill, taste, risk atti-

tude, level of rationality）, which result in a wide variety of individual behavioral patterns that defy a sim-
ple classification. For a recent development of heterogeneity in the QRE framework, see Chapter 4 of 
Goeree at al. （2016）.
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