修士論文要旨(2021年度)

リンクを用いた跳躍機構が荷重履歴に及ぼす 跳躍効率向上への影響に関する研究

Study on the effect of the jumping mechanism using the link on the load history to improve the jumping efficiency

1. はじめに

日本の探査ロボットにおいて開発背景として MIN-ERVA を始め、軽量でありかつ小型のローバの開発を 行う傾向にある。MENERVA に関してもさらに小型化 が進んだマイクロロボットなどが考えられている。その 理由としては、コスト面や海外とのローバの差別化や、 多種のロボットを運用するなどがあげられる。軽量化に 関しては搭載重量内に複数台の探査ロボットやローバを 乗せることが可能となり、数による探査範囲が拡大する ことや、探査システムのリスクが分散化されたり、探査 システムの多機能化などがあげられる。また他国の打ち 上げなどの際に搭載スペース次第で空いていれば、一緒 に搭載できる可能性も挙げられる。

探査ロボットにおいては惑星に存在するレゴリスや岩、 クレータなどが存在する不整地を走行することが求めら れる。ローバの移動機構とし、車輪型、クローラ型、脚型 などがあげられる。また欠点を担う複合型なども近年で は開発されている。しかし小型化にすると車輪型のロー バにおいては、乗り越えられる障害物も相対的に小さく なり、サスペンションがない場合、乗り越え能力は望め ない。またセンサの設置位置が低くなり視野が狭くなり、 障害物認識や経路の破綻が起こる。これらの課題を解決、 実現するため、本研究室では小型ホッピングローバを提 案している。このローバはホッピングすることにより移 動するということを目的としている。

2. 目的

本研究は砂地におけるばねを用いた跳躍機構の跳躍効 率を目的とする。直動の機構とリンクを用いた機構を比 電気電子情報通信工学専攻 服部 晃玖

較し、荷重履歴が異なることで、砂の形状を崩さずに跳 躍し跳躍効率が向上するかのという事を目的としている。 また跳躍の際に地面からどのような反力が返されている のかを確認することで、跳躍効率に影響があるのかを言 うことを目的としている。

- 3. 提案機構
- 4. 実機モデル
- 4.1 直動型跳躍機構

Fig3.3 に直動型の跳躍機構を示す。

 \boxtimes 1: Straight Leg Hopper

5. 非線形型跳躍機構

Fig3.4 に非線形型の跳躍機構を示す。

⊠ 2: Pantograph Leg Hopper

6. シミュレーション

6.1 線形モデルの2階微分方程式

Fig3 に 2 質点の線形モデルを示す. それぞれの運動方 程式は以下のように示すことができる. また力の向きは 鉛直上向きを正としている.

Fig4 に 2 質点の非線形モデルを示す. それぞれの運動 方程式は以下のように示すことができる. また力の向き は鉛直上向きを正としている.

(接地中)
$$m_1 \frac{d^2 x_1}{dt^2} = F - m_1 g$$
 (5)
(接地中) $m_2 \frac{d^2 x_2}{dt^2} = -F - k_2 x_2 - c_2 \frac{dx_2}{dt} - m_2 g$ (5)

(接地中以外)
$$m_1 \frac{d^2 x_1}{dt^2} = F - m_1 g$$
 (7)

(接地中以外)
$$m_2 \frac{d^2 x_2}{dt^2} = -F - m_2 g$$
 (8)

⊠ 4: Model of Linear Hopper

ここで m_1 :上部の重量, m_2 :下部の質量 $[kg], k_1$:跳躍機 構のばね定数 [N/m], L:リンクの長さ $[m], \theta/2$:リンクとば ねのなす角度 $[rad]k_2$:地面表現であるバネマスダンパの ばね定数 $[N/m], c_2$:地面表現であるバネマスダンパのダ ンパ係数 $[N\cdot s/m]$ とする.

6.3 地面の損失エネルギーに関して

損失エネルギーに関して Fig.5 に示す。直動型の損失 エネルギーは図の青色の部分で、非線形型に関しては赤 色の部分である。ここから分かるように非線形型は砂地 において強い力で押さないために直動型と比較したとき に損失エネルギーがとても小さいことが分かる。しかし 非線形型は力を分解しており、機構側でわずかではある

⊠ 3: Model of Linear Hopper

ここで *m*₁:上部の重量,*m*₂:下部の質量 [kg],*k*₁:跳躍機 構のばね定数 [N/m],*k*₂:地面表現であるバネマスダンパ が損失エネルギーが存在する。なので地面がとても固い 場合であれば直動型の方は機構側で損失するエネルギー がない分高く跳躍することが可能だと考えられる。

7. 実験説明

ここでは実験の説明をする。実験では中央大学の3号 館 3908 号室の砂場を使って実験を行う。また砂場の砂 の種類は硅砂5号を用いる。モーションキャプチャで跳 躍機構がどの程度跳躍したかを測定する。また砂の硬さ を変えてそれぞれどういった反力が得られるのかも反力 センサを用いることで測定する。直動型は密詰めと緩詰 で跳躍力に差があり、非線形型は密詰めも緩詰も跳躍力 に直動型ほど大きな差は見られなかった。また非線形型 跳躍機構の方が跳躍力が全体的にあることが分かったこ れは非線形型はリンクを介してばねの力を地面に伝える ため弱い力が地面に伝わる。そのため砂が密詰め、緩詰 めのどちらの時も砂を散逸させないでエネルギーを失わ ず跳躍できるという事があると考えられる。また線形型 は砂を散逸させながら跳躍するためエネルギーが地面で 失われてしまうという事が考えられる。

7.1 反力履歴と累計力積

反力履歴と累計力積に関してはどちらもシミュレーショ ンとおおよそ一致していることが分かった。また累計力 積が直動型・非線形型どちらに対しても後半下がってき ているのは反力センサの値の跳躍しているときの値も力 積として求めてしまっているのが原因だと考えられる。 7.2 直動型

図 7: 累計力積

直動型は密詰めと緩詰めの時の反力を比較したときに 若干ではあるが密詰めの方が最大の反力値が大きい傾向 があることが分かる。これは密詰めであることから地面 が散逸せず、反力としてパッドに返している。一方緩詰 めに関しては地面を多少ではあるが散逸させているため に、反力が小さくなっていると考えられる。累計力積は 非線形型よりも直動型の方が差が密詰めと緩詰の時を比 較すると明らかである。これは砂が緩詰めの時にばねの 張力から得る力が砂を散逸させてしまうことで、反力が 少なくなるからだと考える。

図 9: 累計力積

7.3 非線形型

非線形型は密詰め、緩詰めと比較したときに反力履歴 に関してはそこまで変わっていないように見える。非線 形型は、リンクを用いることによってばねから得られる 張力を変えている。そのため直動型に比べパッドにかか る力が弱く密詰めに限らず緩詰めに対しても地面を散逸 させない可能性がある。そのため密詰め及び緩詰めに対 する反力履歴に差がないと考えられる。また累計力積は 弱い力で砂を散逸させずに長い間踏み込んでいるために 地面の反力の累計力積が大きいと考えられる。

おわりに 8.

今回はシミュレーションと実機実験どちらからも非線 形跳躍機構が不整地に対して優位だということが分かっ た。なぜなら地面へ加える力が小さく砂を散逸させずに しっかりと踏み込むことができる。また地面がくずれて

いかないために長い間踏み込むことができる。その結果 累計力積が大きくなり跳躍距離が高まる。また非線形型 の損失エネルギーは直動型と比較してとても小さいエネ ルギーだということが分かった。また実機の反力履歴と 累計力積がおおよそ一致しており、これからシミュレー ションの整合性が取れていることが分かる。そこから地 面への損失エネルギーをシミュレーションで見ていたが、 妥当性のあるものと言える。

- MER10-YearAnniversaryLithograph.pdf
- [2] https://www.nasa.gov/jpl/ nasa-robot-plunges-into-volcano-to-explore-fissure
- Tetsuo Yoshimitsu: 3 "HOPPING ROVER "MINERVA" FOR ASTEROID EXPLORATIN",2006
- [4] H.J.Eisen: "Sojourner Mars Rover Thermal Performance", SAE Transactions, Vol. 107, Section 1: JOUR-NAL OF AEROSPACE (1998), pp. 697-707 (11 pages)
- [5] Brian H. Wilcox and Ross M. Jones:" The MUSES-CN Nanorover Mission and Related Technology
- [6] R.A.Lindemann, D.B.Bickler, B.D.Harrington, G.M.Ortiz, C.J.Voothees: "Mars exploration rover mobility development "Volume: 13, Issue: 2, June 2006, pp19-26
- [7] Mirko Kovac and Martin Fuchs and André Guignard and Jean-Christophe Zufferey and Dario Floreano:"A miniature 7g jumping robot", 2008 IEEE International Conference on Robotics and Automation,2008,373-378
- [8] Chi Zhang, Wei Zou, Liping Ma, Zhiqing Wang: "Biologically inspired jumping robots: A comprehensive review "Robotics and Autonomous Systems, Volume 124, February 2020, 10336
- [9] Zhihuai Miao, Jixue Mo, Gang Li: "Wheeled hopping robot with combustion-powered actuator" Journal of Advanced Robotic Systems, January-February 2018: 1?14
- [10] Zachary BattsJoohyung Kim: "Untethered One-Legged Hopping in 3D Using Linear Elastic Actuator in Parallel (LEAP)" ISER 2016: 2016 International " Untethered One-Symposium on Experimental Robotics pp 103-112
- [11] Zachary Batts, Joohyung Kim, and Katsu Yamane: "Design of a Hopping Mechanism Using a Voice Coil Actuator: Linear Elastic Actuator in Parallel (LEAP)
- [12] http://global.parrot.com/jp/products/ jumping-sumo/
- [13] https://www.jpl.nasa.gov/universe/archive/ un0012.pdf
- [14] https://www.nasa.gov/audience/foreducators/ robotics/imagegallery/r_frogbot.jpg.html
- [15] Fan Zheng, Xiaohong Chen, Yuanxi Sun, Junzhan Hou: "Design and Experimental Evaluation of a Single Actuator Continuous Hopping Robot Using the Geraed Symmetric Multi-Bar Mechanism", Appl. Sci. 2019, 9(1), 13
- [16] 前田 孝雄, 國井 康晴, 新通 光太郎, 大槻 真嗣, 吉川 健人, 吉光 徹雄"小型ホッピングローバのための跳躍機構と移 動戦略の検討", 日本機械学会ロボティクス・メカトロ 勤戦幅の彼前 , 日本偽佩手云日7 ニクス講演会講演集,2P2-A11,2017
- [17] https://www.onosokki.co.jp/HP-WK/c_support/ newreport/dampingfactor/dampingfactor_2.htm