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Abstract

In this thesis, we treat two themes on differential geometry.

In the Part I, we study the Ricci flow on a closed manifold and finite time interval [0, T ) (T < ∞)

on which certain integral curvature energies are finite. A Ricci flow on a manifold M is given by a

smooth family g(t) (t ∈ [0, T )), of Riemannian metrics satisfying the evolution equation

∂tg(t) = −2Ricg(t).

The Ricci flow equation was introduced by Hamilton [4] in 1982. In the same paper, he stated the

existence and uniqueness of the Ricci flow on a closed manifold. Moreover, he proved that a Ricci

flow on a closed manifold develops a singularity at a finite time T (i.e., T is the maximal existence

time of the flow) if and only if the maximum of the norm of the Riemannian curvature tensor blows

up at T. On the other hand, Wang [7] characterized the maximal existence time of the flow by certain

geometric energies which consist of integral bounds rather than point-wise ones. Later, Di Matteo

[3] generalized Wang’s results using mixed integral norms which are parametrized by α, β ∈ (1,∞)

with α ≥ n
2

β
β−1 .

Theorem 0.1 ([3, Theorem 1.2]). Let (Mn, g(t))t∈[0,T ) (T < +∞) be a smooth Ricci flow such

that (M, g(t)) is complete and has bounded curvature for every t in [0, T ). Assume that the initial

time-slice (M, g(0)) satisfies inj(M, g(0)) > 0 where inj(M, g(0)) denotes the injectivity radius of

(M, g(0)). Assume also that ∣∣∣∣||Rm(·, t)||Lα(M)

∣∣∣∣
Lβ([0,T ))

< +∞

for some pair (α, β) ∈ (1,+∞)× (1,+∞) ⊂ R2 with

α ≥ n

2

β

β − 1
.

Then this flow can be extended smoothly over T.

Theorem 0.2 ([3, Theorem 1.3]). Let (Mn, g(t))t∈[0,T ) (T < +∞) be a smooth Ricci flow such

that (M, g(t)) is complete and has bounded curvature for every t in [0, T ). Assume that the initial

time-slice (M, g(0)) satisfies inj(M, g(0)) > 0. Assume also that the following conditions hold:

(1) Ric(x, t) ≥ −A · g(x, t) for all (x, t) ∈ M × [0, T ),

(2)
∣∣∣∣||R(·, t)||Lα(M)

∣∣∣∣
Lβ([0,T ))

< +∞

for some A ∈ R and pair (α, β) ∈ (1,+∞)× (1,+∞) ⊂ R2 with

α ≥ n

2

β

β − 1
.

Then this flow can be extended smoothly over T.



In the Part I, we study the case that (α, β) = (n/2,∞) and (∞, 1). Under some stronger assump-

tions, we prove that in dimension four, such flow converges to a smooth Riemannian manifold except

for finitely many orbifold singularities.

Main Theorem 1 (cf. [1, Corollary 1.11]). Let (M4, g(t))t∈[0,T ) (T < ∞) be a 4-dimensional closed

(i.e., M is smooth compact and connected manifold without boundary) Ricci flow satisfying

(∗)
∣∣∣∣ sup

M
|Rg(t)|

∣∣∣∣
L1([0,T ))

≤ C < +∞

for some positive constant C, where Rg(t) denotes the scalar curvature of g(t). Then there exists a

positive constant ε = ε(M, g(0), T ) such that the following holds : (∗)p0,ε For fixed p0 > 2, assume

that there exists r > 0 such that

sup
t∈[0,T )

||Rg(t)||Lp0 (B(x,r,t)) ≤ ε

for all x ∈ M, where B(x, r, t) denotes the geodesic open ball centered at x of radius r with respect to

g(t). Then (M, g(t)) converges to an orbifold in the smooth Cheeger-Gromov sense. More specifically,

we can find a decomposition M = M reg
∪

M sing with the following properties:

(1) M reg is open and connected in M ,

(2) M sing is a zero set with respect to the Riemannian volume measure dvolg(t) for all t ∈ [0, T ),

(3) g(t) smoothly converges to a Riemannian metric gT on M reg as t → T.

(4) (M reg, gT ) can be compactified to a metric space (M̄ reg, d̄) by adding finitely many points and the

differentiable structure on M reg can be extended to a smooth orbifold structure on M̄ reg such that

the orbifold singularities are of cone type,

(5) Around every orbifold singularity of (M̄ reg, d̄) the metric gT satisfies

|∇mRm| = o(ρ−2−m) and |∇mRic| = O(ρ
−1−m− 2

p0 ) as ρ → 0, for all m ≥ 0

where ρ denotes the distance to the singularity. Furtheremore, for every ε > 0 we can find a smooth

orbifold metric ḡε on M̄ reg such that the following holds:

||gT − ḡε||C0(Mreg,ḡε) + ||gT − ḡε||W 2,2(Mreg,ḡε) < ε.

Here, the C0 and W 2,2-norms are taken with respect to ḡε.

We also show that in higher dimensions, the same assertions hold for a closed Ricci flow satisfying

another conditions of integral curvature bounds.

Main Theorem 2 (cf. [8, Theorem A]). Let (Mn, g(t))t∈[0,T ) (T < ∞) be a n-dimensional (n ≥ 5)

closed Ricci flow satisfying (∗) in Main Theorem 1. Then there exists a positive constsnat ε =

ε(M, g(0), n, T ) such that the following holds : Suppose that

sup
t∈[0,T )

||Rmg(t)||Ln/2(M) < +∞

and (∗)p0,ε for some p0 > n/2 in Main Theorem 1 holds. Then the assertions (1)-(5) in Main

Theorem 1 hold.



Moreover, we show that such flows can be extended over T by an orbifold Ricci flow.

In the Part II, for a compact manifold M with non-empty boundary ∂M , we give a Koiso-type

decomposition theorem, as well as an Ebin-type slice theorem, for the space of all Riemannian metrics

on M endowed with a fixed conformal class on ∂M . In the case that ∂M = ∅, Ebin [2] particularly

has proved a slice theorem for the pullback action of the diffeomorphism group on the space M ,

of all Riemannian metrics on M. In [5], Koiso has extended it to an Inverse Limit Hilbert (ILH for

brevity)-version. Moreover, he has also studied the conformal action on M , and consequently has

proved the following decomposition theorem for M .

Theorem 0.3 (Koiso’s decomposition theorem [6, Corollary 2.9] ). Let Mn be a closed n-manifold

(n ≥ 3), M the space of all Riemannian metrics on M and Diff(M) the diffeomorphism group of

M . Set also

C∞
+ (M) :=

{
f ∈ C∞(M)

∣∣ f > 0 on M
}
,

Š :=

{
g ∈ M

∣∣∣∣∣ Vol(M, g) = 1, Rg = const,
Rg

n− 1
/∈ Spec(−∆g)

}
,

where Vol(M, g), Rg and Spec(−∆g) denote respectively the volume of (M, g), the scalar curvature

of g and the set of all non-zero eigenvalues of the (non-negative) Laplacian −∆g of g. Note that

these four spaces become naturally ILH-manifolds. For any g = fḡ (f ∈ C∞
+ , ḡ ∈ Š) and any

smooth deformation {g(t)}t∈(−ε,ε) of g for sufficiently small ε > 0, then there exist uniquely smooth

deformations {f(t)}t∈(−ε,ε)(⊂ C∞
+ (M)) of f , {ϕ(t)}t∈(−ε,ε)(⊂ Diff(M) ) of the identity idM and

{g(t)}t∈(−ε,ε)(⊂ Š ) of ḡ with δg(ḡ
′
(0)) = 0 such that

g(t) = f(t)ϕ(t)∗ḡ(t).

Here, δg(ḡ
′
(0)) denotes the divergence − ∇i

g(ḡ
′
(0))i with respect to g.

We generalize these results to the case that ∂M ̸= ∅ with some suitable boundary conditions.

Main Theorem 3. For any g = fḡ (f ∈ C∞
+ (M)N , ḡ ∈ ŠC1

0
) and any smooth deforma-

tion {g(t)}t∈(−ε,ε)(⊂ MC1
0
) of g for sufficiently small ε > 0 , there exist smooth deformations

{f(t)}t∈(−ε,ε)(⊂ C∞
+ (M)N ) of f, {ϕ(t)}t∈(−ε,ε)(⊂ DiffC0) of idM and {ḡ(t)}t∈(−ε,ε)(⊂ ŠC1

0
) of ḡ

with δg(ḡ
′
(0)) = 0 such that

g(t) = f(t)ϕ(t)∗ḡ(t).

The spaces in Main Theorem 3 are defined as follows, respectively.

Fix a Riemannian metric g0 on M with Hg0 = 0 along ∂M and set its conformal class C := [g0] on

M . νg0 denotes the outer unit normal vector field along ∂M with respect to g0. When two metrics

g and g̃ on M have the same 1-jets j1xg = j1xg̃ for all x ∈ ∂M, we write it as j1∂Mg = j1∂M g̃. Set also

C∞
+ (M)N :=

{
f ∈ C∞

+ (M)
∣∣ νg0(f)|∂M = 0

}
,

MC0 :=
{
g ∈ M

∣∣ g = fg0 on ∂M for some f ∈ C∞
+ (M), Hg = 0 on ∂M

}
,

MC1
0
:=

{
g ∈ M

∣∣ j1∂Mg = j1∂M (fg0) for some f ∈ C∞
+ (M)N

}
,

S
C

(1)
0

:=
{
g ∈ M

C
(1)
0

∣∣ Vol(M, g) = 1, Rg = const
}
,



Š
C

(1)
0

:=

{
g ∈ S

C
(1)
0

∣∣∣∣∣ Rg

n− 1
/∈ Spec(−∆g; Neumann)

}
,

DiffC0 :=
{
ϕ ∈ Diff(M)

∣∣ j1∂M (ϕ∗g0) = j1∂M (fg0) on ∂M for some f ∈ C∞
+ (M)N

}
,

where Spec(−∆g; Neumann) denotes the set of all non-zero eigenvalues of −∆g with the Neumann

boundary condition. As a corollary, we give a characterization of relative Einstein metrics. Moreover,

we also give the following sufficient condition for a positive constant scalar curvature metric on a

manifold with boundary to be a relative Yamabe metric, which is a natural relative version of the

classical Yamabe metric.

Theorem 0.4. Let g be a relative Yamabe metric on a compact connected smooth manifold M of

dimension n ≥ 3 with non-empty smooth boundary ∂M with Rg > 0 on M. Assume that h is a

relative metric on M with constant scalar curvature and that φ is a diffeomorphism of M such that

dvφ∗h = γdvg for some positive constant γ. If

Rhh ≤ Rgg, (1)

then h is also a relative Yamabe metric. Moreover, if

Rhh < Rgg, (2)

then h is a unique relative Yamabe metric (up to positive constant) in the relative confomal class

[h]0 of h. Here, [h]0 :=
{
g ∈ [h]

∣∣ Hg = 0 on ∂M
}
=

{
u

4
n−2 · h

∣∣ u ∈ C∞
+ (M), νh(u) = 0 on ∂M

}
,

where νh denotes the inward unit normal vector field of ∂M with respect to h on M.
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