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Abstract. A theory of non-smooth atomic decomposition is obtained for
a large class of quasi-Banach lattices, including Morrey spaces, Lorentz
spaces, mixed Lebesgue spaces as well as some related function spaces.
As an application, an inequality comparing the fractional maximal op-
erator and the fractional integral operator is considered. Some examples
show that the restriction posed on quasi-Banach lattices are indispens-
able. This paper, which is a follow-up of the third author’s paper in
2020, simplifies the proof of some existing results.

1. Introduction

In this note we consider the decomposition of functions in quasi-Banach lat-
tices over Rn by the use of functions in L∞

c (Rn), the space of all compactly
supported essentially bounded functions, satisfying the moment conditions
of arbitrary order. Here and below the space L0(Rn) denotes the linear space
of all Lebesgue measurable functions in Rn and N0 := {0, 1, . . .}.

A quasi-Banach lattice over Rn is a quasi-Banach space (X (Rn), ‖ · ‖X )
contained in L0(Rn) such that, for all g ∈ X (Rn) and f ∈ L0(Rn), the
implication “|f | ≤ |g| ⇒ f ∈ X (Rn) and ‖f‖X ≤ ‖g‖X ” holds. A quasi-
Banach lattice is said to satisfy the Fatou property if lim

j→∞
fj ∈ X (Rn) and∥∥ lim

j→∞
fj
∥∥
X = lim

j→∞
‖fj‖X if we are given a sequence {fj}∞j=1 ⊂ X (Rn) such

that 0 ≤ f1 ≤ f2 ≤ · · · and sup
j∈N
‖fj‖X <∞.

Yoshihiro Sawano was partially supported by Grand-in-Aid for Scientific Research (C),
No. 19K03546, for Japan Society for the Promotion of Science.
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Next, we introduce the definition of the moment order of measurable
functions. Let L ∈ N0. The set PL(Rn) stands for the linear space of all
polynomials of degree less than or equal to L. The set PL(Rn)⊥ denotes the
set of all f ∈ L0(Rn) for which∫

Rn

(1 + |x|)L|f(x)|dx <∞

and

∫
Rn

xαf(x)dx = 0 for all α ∈ N0
n with |α| ≤ L.

To describe the distribution of the support of functions appearing in
the decomposition we consider, we recall the definition of sparseness. By a
“cube” we mean a compact cube whose edges are parallel to the coordinate
axes. The symbol Q stands for the set of all such cubes. The set of all dyadic
cubes is denoted by D:

D :=

{
Qjm :=

n∏
l=1

[2−jml, 2
−j(ml + 1)) : (j,m) ∈ Z× Zn

}
,

where (j,m1,m2, . . . ,mn) = (j,m). Recall also that a set A ⊂ D is sparse,
if there exists a disjoint collection {K(Q)}Q∈A of measurable sets such that
K(Q) is contained in Q and that 2|K(Q)| ≥ |Q| for each Q ∈ A. Each K(Q)
is called a nutshell of Q. Finally, denote by MD the dyadic maximal operator,
that is, for f ∈ L0(Rn),

MDf(x) := sup
Q∈D

χQ(x)mQ(|f |) (x ∈ Rn),

where mQ(g) stands for the average of a function g integrable over Q ∈ Q.
Recall that a quadrant is a set of the form

{(x1, x2, . . . , xn) ∈ Rn : (−1)kjxj > 0, j = 1, 2, . . . , n}

for some (k1, k2, . . . , kn) ∈ Zn.
We formulate the main result in this paper as an extension of the one by

Strömberg and Torchinsky [33]. Throughout this paper C is used for constants
that may change from one occurence to another. When we need to emphasize
that the constant C depends on some important parameters, we add them as
subscripts. Constants with subscripts remain unchanged from one occurence
to another.

Theorem 1.1. Let (X (Rn), ‖ · ‖X ) be a quasi-Banach lattice with the Fatou
property such that

‖MDf‖X ≤ C‖f‖X (f ∈ X (Rn)) (1.1)

and that L∞
c (Rn) ⊂ X (Rn). Let f ∈ X (Rn) and L ∈ N0.

Assume either f ∈ L1(Rn) or that

‖χF ‖X =∞ (1.2)

for all quadrants F .
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Then f admits a decomposition:

f =
∑
Q∈A

λQaQ a.e.,

where A ⊂ D is a sparse set, aQ ∈ PL(Rn)⊥ and |aQ| ≤ χQ for all Q ∈ A
and {λQ}Q∈A ⊂ R satisfies

0 ≤ λQ ≤ Cn,LmQ(|f |),

∥∥∥∥∥∥∥
∑

Q∈A

(λQχQ)
v

 1
v

∥∥∥∥∥∥∥
X

≤ Cv,n,L,X ‖f‖X (1.3)

for all v > 0.

If f ∈ L1(Rn), then Theorem 1.1 is easy to prove (see Section 3). What
is significant is that this integrability condition can be replaced by (1.1), a
weak restriction of the lattice X (Rn).

We present an application of Theorem 1.1. Let Iα be the fractional
integral operator of order α ∈ (0, n) given by

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn) (1.4)

for a non-negative function f ∈ L0(Rn). The fractional maximal operator
Mα of order α ∈ [0, n) is defined by

Mαf(x) := sup
Q∈Q

χQ(x)`(Q)α−n

∫
Q

|f(y)|dy (x ∈ Rn)

for f ∈ L0(Rn), where `(S) denotes the side-length of S ∈ Q∪D: `(S) = |S| 1n .
Note that M := M0 is the Hardy–Littlewood maximal operator. A geomet-
ric observation shows that Mαf ≤ Cα,nIαf for any non-negative function
f ∈ L0(Rn). As an application of Theorem 1.1, we obtain the following
equivalence:

Theorem 1.2. In addition to the Fatou property of X (Rn), assume that there
exist 1 < r <∞ and C > 0 such that∥∥∥∥∥∥

∞∑
j=1

Mfj
r

∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
∞∑
j=1

|fj |r
∥∥∥∥∥∥
X

(1.5)

for all {fj}∞j=1 ⊂ L0(Rn). Then there exists C > 0 such that

C−1‖Mαf‖X ≤ ‖Iαf‖X ≤ C‖Mαf‖X

for all non-negative functions f ∈ L0(Rn).

A couple of remarks about condition (1.5) may be in order. First, either
M or MD does not have to be bounded on X (Rn); it suffices to assume the
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Fatou property of X (Rn) and (1.5). Next, (1.5) is different from the usual
vector-valued inequality:∥∥∥∥∥∥∥

 ∞∑
j=1

Mfj
r

 1
r

∥∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥∥
 ∞∑

j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
X

. (1.6)

Needless to say, (1.6) is an extension of the well-known inequality which
Fefferman and Stein proved for X (Rn) = Lp(Rn) in [10].

We note that (1.1) and (1.5) are independent conditions. In fact, L∞(Rn)
satisfies (1.1) but fails (1.5), while Lp(Rn) with 0 < p ≤ 1 satisfies (1.5) but
fails (1.1). We claim that (1.5) is stronger than (1.2) since L∞

c (Rn) ⊂ X (Rn).
In fact, if 0 < r < ∞, F is a quadrant and {Qj}∞j=1 ⊂ D is an increasing

sequence such that 0 is a boundary point of Q1 and that
∞⋃
j=1

Qj = F almost

everywhere, then

∞χQ1
≤

∞∑
j=1

(MχQj+1\Qj
)r

and (1.5) implies

∞ ≤ C

∥∥∥∥∥∥
∞∑
j=1

χQj+1\Qj

∥∥∥∥∥∥
X

≤ C‖χF ‖X .

Thus, (1.5) holds. It should be noted that (1.1) yields X (Rn) ⊂ L1
loc(Rn), as

is seen from

mQ(|f |)‖χQ‖X ≤ ‖MDf‖X ≤ C‖f‖X (1.7)

for any f ∈ X (Rn) and Q ∈ Q.
There are many examples of quasi-Banach lattices satisfying (1.1), (1.2)

and (1.5). At this moment, we content ourselves with Morrey spaces and
give more examples in Section 6: We will use Morrey spaces to create a
counterexample in Section 5. Let 0 < q ≤ p < ∞. For f ∈ Lq

loc(Rn) its
Morrey quasi-norm is defined by

‖f‖Mp
q
:= sup

Q∈D

|Q|
1
p

‖χQ‖Lq

(∫
Q

|f(y)|qdy
) 1

q

. (1.8)

The Morrey spaceMp
q(Rn) is the set of all f ∈ Lq

loc(Rn) for which the quasi-
norm ‖f‖Mp

q
is finite. Chiarenza and Frasca established that M is bounded

on Mp
q(Rn) for 1 < q ≤ p < ∞ [4], so that (1.1) is satisfied. Thus, we

are in the position of using Theorem 1.1. Actually, Theorem 1.1 refines [18,
Theorem 1.2]. Furthermore, the spaceMp

q(Rn) with 0 < q ≤ 1 < p <∞ falls
under the scope of Theorem 1.2. In this case, Theorem 1.2 recaptures a result
by Tanaka [34]. In fact, (1.5) is equivalent to (1.6) for X (Rn) = Mpr

qr(Rn).

Thus, as long as qr > 1, or equivalently, r > q−1, we have (1.5) according to
[32, 35].
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Theorem 1.1 can be located also as an extension of [33, Chapter VIII] in
that the function space Lp

w(Rn) in [33, Chapter VIII] is replaced by general
quasi-Banach lattices. In [30], assuming that (1.5) is true, we showed that
many function spaces admit a decomposition as in Theorem 1.1 by the use of
the grand maximal operator, so that the theory of Hardy spaces adapted to
general Banach lattices had to be established. However, as our proof shows,
we do not need to use it. Our proof significantly simplifies the one in [30]. Also,
each aQ is supported on the closure of Q instead of the one of its triple 3Q.
It is also remarkable that Theorem 1.1 can deal with the variable Lebesgue
space Lp(·)(Rn) with some discontinuous exponent (see Section 6.8) which
does not fall within the scope of [30, 33]; see (6.5) for the precise definition
of Lp(·)(Rn).

Here we describe the structure of the remaining part of this paper.
Section 2 deals with the preliminaries, while the proof of Theorem 1.1 is
given in Section 3. We apply Theorem 1.1 in Section 4 to prove Theorem 1.2.
We give examples of Banach lattices that we cannot drop conditions (1.1),
(1.2) and (1.5) in Section 5. Finally, in Section 6 we conclude this paper with
some function spaces we envisage and survey some results obtained earlier.
We will see that Theorem 1.1 unifies many earlier results. We also supplement
some auxiliary estimates for function spaces we list in Section 6.

2. A generalized Calderón–Zygmund decompsition

We follow [29] to recall some results. Fix Q ∈ Q and L ∈ N0.

Since {xα}|α|≤L is linearly independent in L2(Q), for all f ∈ L1
loc(Rn)

there uniquely exists PL
Qf ∈ PL(Rn) such that χQ(f − PL

Qf) ∈ PL(Rn)⊥.

The polynomial PL
Qf is called the Gram–Schmidt polynomial of order L for

Q.

We follow [9, 26, 29] to recall the Calderón–Zygmund decomposition. Let
f ∈ L1

loc(Rn). Fix A > 4n and k ∈ Z. Write Ωk := {x ∈ Rn : MDf(x) > Ak}.
Assume that Ωk never contains any quadrant. We can find a disjoint collection
{Qk

j }j∈Jk ⊂ D and a collection {gk} ∪ {bkj }j∈Jk ⊂ L1(Rn) such that:

(0) Each Jk is a countable index set.
(1) We have

Ωk =
∑
j∈Jk

Qk
j . (2.1)

Furthermore,

Ak < mQk
j
(|f |) ≤ 2nAk.

(2) (Decomposition of f) f admits the following decomposition:

f = gk +
∑
j∈Jk

bkj a.e.. (2.2)
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Here

gk := fχRn\Ωk +
∑
j∈Jk

PL
Qk

j
(f)χQk

j
, bkj := χQk

j
(f − PL

Qk
j
(f)).

A direct consequence of this definition is that bkj satisfies the moment condi-

tion bkj ∈ PL(Rn)⊥ and the support condition supp(bkj ) ⊂ Qk
j .

We set

akj := χQk
j
(gk − gk+1) (k ∈ Z, j ∈ Jk). (2.3)

The proof of Theorem 1.1 uses the following facts:

Proposition 2.1. Let f ∈ L1
loc(Rn) and A > 4n. Assume that Ωk never con-

tains any quadrant for any k ∈ Z.
(1) The family A := {Qk

j }k∈Z,j∈Jk is sparse. In fact, K(Qk
j ) := Qk

j \ Ωk+1

is the nutshell. [29, Proposition 1]
(2) There exists Cn,L > 0 such that |gk| ≤ Cn,LA

k for all k ∈ Z. [29,
Proposition 2]

(3) Let k ∈ Z and j ∈ Jk. Then akj ∈ PL(Rn)⊥ and there exists a constant

Cn,L > 0 such that |akj | ≤ Cn,LA
kχQk

j
. [29, Proposition 3]

(4) Assume that MDf is finite almost everywhere. Then f = lim
k→∞

(gk −
g−k+1) in the sense of almost everywhere convergence. [29, Corollary 1]

3. Proof of Theorem 1.1

We preserve all the notation in Section 2. We prove Theorem 1.1 for f ∈
X (Rn) ∩ L1(Rn) after we translate it into the following form:

Theorem 3.1. Let L ∈ N0 and A > 4n. Let (X (Rn), ‖ · ‖X ) be a quasi-Banach
lattice with the Fatou property such that (1.1) holds and that L∞

c (Rn) ⊂
X (Rn). Let f ∈ X (Rn) ∩ L1(Rn). Then for {akj }k∈Z,j∈Jk and A as in (2.3)
and Proposition 2.1, respectively, we have

f =

∞∑
k=−∞

∑
j∈Jk

akj a.e., Ak < mQk
j
(|f |) ≤ 2nAk

as well as the quasi-norm estimate∥∥∥∥∥∥∥
 ∞∑

k=−∞

∑
j∈Jk

(AkχQk
j
)v

 1
v

∥∥∥∥∥∥∥
X

≤ Cv,n,L,X ‖f‖X . (3.1)

Proof. Since f ∈ L1(Rn), we are in the position of using Proposition 2.1(4)
thanks to the Hardy–Littlewood weak-(1,1) maximal inequality [9, Chapter
2]. What is not contained there is (3.1). Since the Ωk’s are nested,

∞∑
k=−∞

∑
j∈Jk

(AkχQk
j
)v =

∞∑
k=−∞

(AkχΩk)v ≤ Cv,A sup
k∈Z

AvkχΩk ≤ Cv,A(MDf)
v.
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Hence (3.1) holds from (1.1). □

We prove Theorem 1.1 for X (Rn) satisfying (1.2). Let us drop the as-
sumption f ∈ L1(Rn); we suppose not only that f ∈ X (Rn) but that (1.2)
holds. Write f (m)(x) := χ[0,m](max(|x|, |f(x)|))f(x) for x ∈ Rn and m ∈ N.
Then, since f (m) ∈ L∞

c (Rn) ⊂ L1(Rn), according to what we have proved,
each f (m) admits a decomposition as in Theorems 1.1 and 3.1. That is, with a
slight change of notation, each f (m) ∈ X (Rn) admits a decomposition: there

exist a sparse set A(m) := {Q ∈ D : λ
(m)
Q 6= 0} with the nutshell K(m)(Q)

for each Q ∈ A(m), {λ(m)
Q }Q∈D ⊂ R and a collection {a(m)

Q }Q∈D ⊂ PL(Rn)⊥

of functions satisfying |a(m)
Q | ≤ χQ for all Q ∈ D such that the following

properties hold:

(1) There exists a constant Cn,L > 0 such that

0 ≤ λ
(m)
Q ≤ Cn,LmQ(|f (m)|). (3.2)

(2) f (m) =
∑
Q∈D

λ
(m)
Q a

(m)
Q a.e..

(3) There exists a constant CA > 0 such that∑
Q∈D

λ
(m)
Q χ

(m)
Q ≤ CAMDf

(m) ≤ CAMDf ∈ L1
loc(Rn). (3.3)

(4) There exists a constant Cv,n,L,X > 0 such that∥∥∥∥∥∥∥
∑

Q∈D
(λ

(m)
Q χQ)

v

 1
v

∥∥∥∥∥∥∥
X

≤ Cv,n,L,X ‖f (m)‖X ≤ Cv,n,L,X ‖f‖X . (3.4)

By the diagonal argument, there exists an increasing sequence {ml}∞l=1 ⊂ N
such that for each Q ∈ D,

aQ := lim
l→∞

a
(ml)
Q ∈ L∞(Rn) ∩ PL(Rn)⊥, λQ := lim

l→∞
λ
(ml)
Q

exist in the weak-* topology of L∞(Rn) and in R, respectively. Since the weak-
* topology preserves the moment, the support and the size of functions, we
see that |aQ| ≤ χQ and that aQ ∈ PL(Rn)⊥ for each Q ∈ D. By the Fatou
property of X (Rn) and (3.4) with v = 1,

g :=
∑
Q∈D

λQaQ ∈ X (Rn).

We claim that f = g. Once this is achieved, we obtain a candidate of the de-
composition of f . Observe that the Lebesgue differentiation theorem reduces
matters to ∫

R

f(x)dx =

∫
R

g(x)dx (3.5)

for all R ∈ D.



8 Naoya Hatano, Ryota Kawasumi and Yoshihiro Sawano

Keeping in mind (1.7) and (3.3), we deduce∫
R

f(x)dx = lim
l→∞

∫
R

f (ml)(x)dx = lim
l→∞

∑
Q∈D

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx (3.6)

by using the Lebesgue convergence theorem twice.
We deal with ∑

Q∈D

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx.

First of all, a
(ml)
Q ∈ PL(Rn)⊥ ⊂ P0(Rn)⊥. Thus∑

Q∈D

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx =

∑
Q∈D,Q⊃R

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx.

Observe that for each µ ∈ N, there exists uniquely Rµ ∈ D such that
R ⊂ Rµ and that `(Rµ) = 2µ`(R). Let ε > 0 be fixed. Then there exists
Mε � 1 such that

‖χRµ‖X >
1 + ‖f‖X
C1,n,L,X ε

for all µ ≥Mε thanks to (1.2). Here C1,n,L,X is a constant in (3.4) with v = 1.
Thus, for all l ∈ N,

∞∑
µ=Mε

λ
(ml)
Rµ
≤ 1

‖χRMε
‖X

∥∥∥∥∥∥
∞∑

µ=Mε

λ
(ml)
Rµ

χRµ

∥∥∥∥∥∥
X

≤ C1,n,L,X

‖χRMε
‖X
‖f‖X ≤ ε.

Consequently,∣∣∣∣∣∣
∑

Q∈D,Q⊃R

∫
R

λQaQ(x)dx− lim
l→∞

∑
Q∈D,Q⊃R

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx

∣∣∣∣∣∣ ≤ 2|R|ε.

Since ε > 0 is arbitrary, we deduce from (3.6)∫
R

f(x)dx = lim
l→∞

∑
Q∈D

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx

=
∑
Q∈D

lim
l→∞

∫
R

λ
(ml)
Q a

(ml)
Q (x)dx

=
∑
Q∈D

∫
R

λQaQ(x)dx

=

∫
R

g(x)dx.

It remains to find a sparse family A and establish the norm estimate (1.3).
Let A := {Q ∈ D : λQ 6= 0}. We claim that A is a sparse family. In fact,

if λQ 6= 0, then λ
(ml)
Q 6= 0 for large l, say l ≥ LQ. Let Q ∈ A. Then since

f ∈ L1
loc(Rn) thanks to (1.7), [logA mQ(|f (ml)|)] does not depend on l as
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long as l is large. Thus, we may assume {K(ml)(Q)}∞l=LQ
is decreasing if we

replace LQ by a larger number. With this in mind, we define

K(Q) :=

∞⋂
l=LQ

K(ml)(Q).

Let us check that {K(Q)}Q∈A is a family of the nutshells. Since 2|K(ml)(Q)| ≥
|Q|, we see that 2|K(Q)| ≥ |Q|. Let Q,Q′ ∈ A be different cubes. Since
K(ml)(Q) ∩ K(ml)(Q′) = ∅ as long as l ≥ LQ + LQ′ , we see that K(Q) ∩
K(Q′) = ∅. Thus, K(Q) is a nutsell of each Q ∈ A. Finally, (1.3) follows from
(3.2) and (3.4). Thus the proof of Theorem 1.2 is complete.

4. Application of Theorem 1.1–Proof of Theorem 1.2

Let f ∈ L0(Rn) be a non-negative function. By the truncation and by the
monotone convergence theorem, we may assume f ∈ Lp(Rn) with 1 < p < n

α .
Apply Theorem 1.1 for f ∈ Lp(Rn). Let L � 1. Then there is a decomposi-
tion:

f =
∑
Q∈A

λQaQ a.e., (4.1)

where A ⊂ D is a sparse set, aQ ∈ PL(Rn)⊥ and |aQ| ≤ χQ for all Q ∈ A
and {λQ}Q∈A ⊂ R satisfies∥∥∥∥∥∥

∑
Q∈A

λQχQ

∥∥∥∥∥∥
Lp

≤ C1,n,L,Lp‖f‖Lp , 0 ≤ λQ ≤ Cn,LmQ(f).

Note that (4.1) takes place in Lp(Rn). Since Iα maps Lp(Rn) boundedly to
Lq(Rn), where 1

q = 1
p −

α
n ,

Iαf =
∑
Q∈A

λQIαaQ

in Lq(Rn). As a result, using [18, Lemma 4.2], we have

Iαf ≤ C
∑
Q∈A

λQ`(Q)α(MχQ)
r

since L� 1. Consequently, by (1.5),

‖Iαf‖X ≤ C

∥∥∥∥∥∥
∑
Q∈A

λQ`(Q)α(MχQ)
r

∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
∑
Q∈A

λQ`(Q)αχQ

∥∥∥∥∥∥
X

.

Since A is a sparse family, by using (1.5) once again we obtain

‖Iαf‖X ≤ C

∥∥∥∥∥∥
∑
Q∈A

λQ`(Q)α(MχK(Q))
r

∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥
∑
Q∈A

λQ`(Q)αχK(Q)

∥∥∥∥∥∥
X

.

(4.2)
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Since {K(Q)}Q∈A is disjoint,∑
Q∈A

λQ`(Q)αχK(Q) ≤ CMαf. (4.3)

Combining (4.2) and (4.3), we obtain the desired result.

5. Examples of function spaces showing that (1.1), (1.2) and
(1.5) are necessary

Here we collect some counterexamples.

5.1. Condition (1.1)

As the example of L1(Rn) shows, we cannot drop condition (1.1).

Proposition 5.1. We have f ∈ P0(Rn)⊥ if f admits a decomposition:

f =
∑
Q∈D

λQaQ a.e.,

where aQ ∈ P0(Rn)⊥ and |aQ| ≤ χQ for all Q ∈ D and {λQ}Q∈D ⊂ [0,∞)
satisfies ∥∥∥∥∥∥

∑
Q∈D

λQχQ

∥∥∥∥∥∥
L1

<∞.

Proof. Simply apply the Lebesgue convergence theorem. □
5.2. Condition (1.2)

We cannot require the moment condition for L∞(Rn)-functions.

Proposition 5.2. There do not exist {aQ}Q∈D ⊂ P0(Rn)⊥ and {λQ}Q∈D ⊂
[0,∞) such that |aQ| ≤ χQ for all Q ∈ D, that

1 =
∑
Q∈D

λQaQ

almost everywhere and that∥∥∥∥∥∥
∑
Q∈D

λQχQ

∥∥∥∥∥∥
L∞

<∞.

Proof. Assume to the contrary that there exist such a couple {aQ}Q∈D ⊂
P0(Rn)⊥ and {λQ}Q∈D ⊂ [0,∞). Then there exists K ∈ Z such that∥∥∥∥∥∥

∑
Q∈D,Q⊃QK0

λQχQ

∥∥∥∥∥∥
L∞

≤ 1

2
,

since ∑
Q∈D,Q⊃[0,1)n

λQ ≤

∥∥∥∥∥∥
∑

Q∈D,Q⊃[0,1)n

λQχQ

∥∥∥∥∥∥
L∞

<∞.
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Thus, if we take the average of this expansion over QK0 ∈ D, then

1 =
∑

Q∈D,Q⊂QK0

λQmQK0
(aQ) +

∑
Q∈D,Q⊃QK0

λQmQK0
(aQ)

=
∑

Q∈D,Q⊃QK0

λQmQK0
(aQ).

Meanwhile ∣∣∣∣∣∣
∑

Q∈D,Q⊃QK0

λQmQK0
(aQ)

∣∣∣∣∣∣ ≤ 1

2

by the choice of K. This is a contradiction. □
5.3. Condition (1.5)

Let 1 < p <∞. Set α := n
p . Then

C−1‖f‖Mp
1
≤ ‖Mαf‖L∞ ≤ C‖f‖Mp

1

for all f ∈ L0(Rn). Thus, if the conclusion of Theorem 1.2 were true for
X (Rn) = L∞(Rn), then Iα would be bounded fromMp

1(Rn) to L∞(Rn) and

hence Lp(Rn) to L∞(Rn). This is impossible since | · |α−n /∈ Lp′
(Rn).

6. Examples of X (Rn)

Here are some examples other than Morrey spaces to which Theorem 1.1 is
applicable.

6.1. Lorentz spaces

Let f ∈ L0(Rn). Then its decreasing rearrangement f∗ is the function defined
on (0,∞) by

f∗(t) := inf({s > 0 : |{x ∈ Rn : |f(x)| > s}| ≤ t} ∪ {∞}) (t > 0).

Let 0 < p < ∞ and 0 < q ≤ ∞. Then the Lorentz space Lp,q(Rn) is the set
of all f ∈ L0(Rn) for which the quasi-norm

‖f‖Lp,q :=

{∫ ∞

0

(t
1
p f∗(t))q

dt

t

} 1
q

is finite. It is well known that Lp,p(Rn) = Lp(Rn) [3, Theorem 5.2.1]. Thanks
to the famous result by Hunt [17], Lp,q(Rn) is normable when p > 1 and
q ≥ 1. In fact,

‖f‖Lp,q,∗ :=

{∫ ∞

0

(
t
1
p−1

∫ t

0

f∗(s)ds

)q
dt

t

} 1
q

is a norm equivalent to ‖ · ‖Lp,q . As a special case, we define WLp(Rn) =
Lp,∞(Rn) and this space is called the weak Lebesgue space. Ariño and Muck-
enhoupt established that M is bounded on WLp(Rn) for all 1 < p < ∞ [1].
In this case, (1.2) is satisfied. Thus, Theorem 1.1 is applicable in this case.
According to the extrapolation theorem in [8], (1.6) is satisfied as long as
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1 < p < ∞ and 1 < q ≤ ∞. In addition, using the real interpolation theory,
we can also establish (1.6) for 0 < q ≤ 1.

Theorem 6.1. Let 1 < p < ∞, 0 < q ≤ ∞ and 1 < r ≤ ∞. Then (1.6) holds
for X (Rn) = Lp,q(Rn).

To prove Theorem 6.1, we invoke a result from the textbook of Bergh
and Löfström. We denote by Lp,q(`r,Rn) the set of all sequences {fj}∞j=1 ⊂
L0(Rn) for which

‖{fj}∞j=1‖Lp,q(ℓr) :=

∥∥∥∥∥∥∥
 ∞∑

j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
Lp,q

<∞.

The space Lp(`r,Rn) stands for Lp,p(`r,Rn).

Lemma 6.2. [3, Theorem 5.3.1] Let p0, p1, q, r ∈ (0,∞] and 0 < η < 1 satisfy
p0 6= p1. Define p ∈ (0,∞] by

1

p
=

1− η

p0
+

η

p1
. (6.1)

Then

(Lp0(`r,Rn), Lp1(`r,Rn))η,q ∼= Lp,q(`r,Rn)

with equivalence of norms.

Proof of Theorem 6.1. We resort to a technique in [12]. Fix f ∈ L0(Rn) and
x ∈ Rn for a while. By the density of Q in R, we have

Mf(x) = sup
y∈Qn,

r∈Q∩(0,∞)

χQ(y,r)(x)mQ(y,r)(|f |).

Let r1, r2, . . . be an enumeration of Q ∩ (0,∞), and let y1, y2, . . . be the one
of Qn. Then

Mf(x) = lim
J→∞

sup
k,l∈{1,2,...,J}

χQ(yk,rl)(x)mQ(yk,rl)(|f |).

Here and below, we fix such enumerations and write

MJf(x) := sup
k,l∈{1,2,...,J}

χQ(yk,rl)(x)mQ(yk,rl)(|f |)

for each J ∈ N. We have only to show that

‖{MJfj}∞j=1‖Lp,q(ℓr) ≤ C‖{fj}∞j=1‖Lp,q(ℓr) (6.2)

with the constant C independent of J .

By the definition of the maximal operator MJ , we can find k(x), l(x) ∈
{1, 2, . . . , J} so that

MJf(x) ≤ 2χQ(yk(x),rl(x))(x)mQ(yk(x),rl(x))(|f |). (6.3)
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We may assume that such (k(x), l(x)) is the smallest couple in the lexi-
cographic order of {1, 2, . . . , J}2 among (k, l) satisfying (6.3), so that the
mapping x 7→ (k(x), l(x)) is measurable. Write

Ek,l(f) := {x ∈ Rn : k(x) = k, l(x) = l} ((k, l) ∈ {1, 2, . . . , J}2).
Then by the definition of Ek,l(f), we have

MJf(x) ≤ 2

J∑
k,l=1

χEk,l(f)∩Q(yk,rl)(x)mQ(yk,rl)(|f |).

We fix parameters p0 ∈ (1, p), p1 ∈ (p,∞) and η ∈ (0, 1) satisfying (6.1).
Write

Φ({hj}∞j=1) = {Φj(hj)}∞j=1 :=


J∑

k,l=1

χEk,l(fj)∩Q(yk,rl)mQ(yk,rl)(hj)


∞

j=1

for {hj}∞j=1 ⊂ L1
loc(Rn). Since Φ is a linear operator and |Φj(hj)| ≤ Mhj ,

Φ is bounded on Lp0(`r,Rn) and Lp1(`r,Rn) thanks to (1.6). Consequently,
thanks to Lemma 6.2, Φ is bounded on Lp,q(`r,Rn), that is, (6.2) holds. The
proof of Theorem 6.1 is therefore complete. □

6.2. Weak Morrey spaces

Let 0 < q ≤ p < ∞. The weak Morrey space WMp
q(Rn) is the set of all

f ∈ L0(Rn) for which the quasi-norm

‖f‖WMp
q
:= sup

λ>0
λ‖χ[λ,∞](|f |)‖Mp

q
(6.4)

is finite. Condition (1.1) is trivial since ‖χQ‖WMp
q
= |Q|

1
p for all Q ∈ Q. Ho

proved (1.5) in [16, Theorem 3.2] so as to include generalized Morrey spaces
considered in [20].

6.3. Lorentz–Morrey spaces

Let 0 < q ≤ p < ∞ and 0 < r ≤ ∞. By replacing the Lq-quasi-norm
‖ · ‖Lq by the Lorentz quasi-norm ‖ · ‖Lq,r in the definition of the Morrey
norm ‖ · ‖Mp

q
(see (1.8)), we obtain the Lorentz–Morrey quasi-norm ‖ · ‖Mp

q,r

considered by Ragusa [25]. As a special case of q = r, the Lorentz–Morrey
spaceMp

q,q(Rn) coincides with the Morrey spaceMp
q(Rn) endowed with the

quasi-norm (1.8) and as a speical case of r = ∞, the Lorentz–Morrey space
Mp

q,∞(Rn) coincides with the weak Morrey space WMp
q(Rn) endowed with

the quasi-norm (6.4).
According to [13, Theorem 10], (1.6) is satisfied if q, r > 1, while (1.2) is

satisfied if q, r > 0. In addition, using Theorem 6.1, we can verify that (1.6)
is also true in the case of r ≤ 1 by the same method as [13, Theorem 10] or
going through the argument above. Since ‖| · |δ‖Mp

q,r
= ‖ · ‖δ

Mpδ
qδ,rδ

for δ > 0,

X (Rn) = Mp
q,r(Rn) satisfies (1.5) for all 0 < q ≤ p < ∞ and 0 < r ≤ ∞.

Theorem 1.2 thus recaptures a result for Morrey–Lorentz spaces by the first
author [13].
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6.4. Orlicz spaces

Let Φ : [0,∞) → [0,∞) be a Young function, that is, a convex homeomor-
phism. Then define the Luxemburg–Nakano norm ‖ · ‖LΦ by

‖f‖LΦ := inf

({
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
∪ {∞}

)
for f ∈ L0(Rn). The Orlicz space LΦ(Rn) is the set of all f ∈ L0(Rn) for
which ‖f‖LΦ is finite.

We impose some standard conditions on the Young functions. A Young
function Φ : [0,∞) → [0,∞) is said to satisfy the ∆2-condition or the dou-
bling condition, denoted by Φ ∈ ∆2, if there exists a constant k > 1 called
the doubling constant such that Φ(2·) ≤ kΦ. In this case, we also say that Φ
satisfies the doubling condition. A Young function Φ : [0,∞)→ [0,∞) is said
to satisfy the ∇2-condition, denoted by Φ ∈ ∇2, if there exists a constant
k > 1, called the ∇2-constant, such that 2kΦ ≤ Φ(k·). According to [19], M
is bounded on LΦ(Rn), if Φ ∈ ∇2. According to [22, Corollary 2.8], (1.5) is
satisfied as long as Φ additionally satisfies the doubling condition, that is,
Φ ∈ ∆2∩∇2. It is noteworthy that (1.2) is satisfied if we merely assume that
Φ : [0,∞)→ [0,∞) is a Young function.

Moreover, according to [14], Φ ∈ ∆2 implies that the Orlicz space
LΦ(Rn) satisfies condition (1.5). In fact, to check this, we write

‖{fj}∞j=1‖LΦ(ℓr) :=

∥∥∥∥∥∥∥
 ∞∑

j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
LΦ

for {fj}∞j=1 ⊂ L0(Rn). Then, for all θ > 1, Φθ : [0,∞) → [0,∞), which is
defined by

Φθ(r) :=

∫ rθ

0

Φ(t)

t
dt,

is a Young function in ∆2 ∩∇2 according to [14], and we obtain∥∥∥∥∥∥
∞∑
j=1

Mfj
r

∥∥∥∥∥∥
LΦ1

 1
r

= ‖{Mfj}∞j=1‖LΦr (ℓr)

≤ C‖{fj}∞j=1‖LΦr (ℓr)

= C

∥∥∥∥∥∥
∞∑
j=1

|fj |r
∥∥∥∥∥∥
LΦ1

 1
r

for any {fj}∞j=1 ⊂ L0(Rn). Here we employed [22, Theorem 2.6] for the above
inequality. Since ‖·‖LΦ1 and ‖·‖LΦ are equivalent according to [14], inequality
(1.5) holds.
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6.5. Generalized Orlicz–Morrey spaces

Let G1 be the set of all non-decreasing functions ϕ : [0,∞) → [0,∞) such

that t ∈ (0,∞) 7→ φ(t)
t ∈ (0,∞) is non-increasing. We give two definitions:

Definition 6.3. Let Φ : [0,∞)→ [0,∞) be a Young function.

(1) [21] Let ϕ ∈ G1. For a cube Q ∈ Q, define the (ϕ,Φ)-average over Q of
f ∈ L0(Rn) by

‖f‖(φ,Φ);Q := inf

({
λ > 0 : ϕ(|Q|)mQ

(
Φ

(
|f |
λ

))
≤ 1

}
∪ {∞}

)
.

The generalized Orlicz-Morrey space Lφ,Φ(Rn) of the first kind is defined
to be the Banach space equipped with the norm

‖f‖Lφ,Φ := sup
Q∈Q
‖f‖(φ,Φ);Q.

(2) [31] For a cube Q ∈ Q, define the Φ-average over Q of f ∈ L0(Rn) by

‖f‖Φ;Q := inf

({
λ > 0 : mQ

(
Φ

(
|f |
λ

))
≤ 1

}
∪ {∞}

)
.

Let ϕ ∈ G1. Then the generalized Orlicz-Morrey space Mφ
Φ(Rn) of the

second kind is defined to be the Banach space equipped with the norm

‖f‖Mφ
Φ
:= sup

Q∈Q
ϕ(|Q|)‖f‖Φ;Q.

Let Φ(t) = tp with 1 ≤ p < ∞. Then Mφ
Φ(Rn) = Lφp

Φ (Rn) with coin-

cidence of norms and the above spaces Mφ
Φ(Rn) and Lφp

Φ (Rn) boil down to
the generalized Morrey spaceMφ

p (Rn) defined by Nakai [20].

It is noteworthy that the generalized Orlicz-Morrey spaceMφ
Φ(Rn) ap-

pears naturally in the context of the Calderón–Lozanovskǐi product. Let U de-
note the set of all non-zero positive concave and positively homogeneous con-
tinuous functions defined over [0,∞)2. Then the Calderón–Lozanovskǐi prod-
uct ϕ(E) = ϕ(E0, E1) consists of all f ∈ L0(Rn) such that |f | ≤ λϕ(|f0|, |f1|)
a.e. for some λ > 0 and fj ∈ Ej with norm 1, j = 0, 1. Its norm is given by

‖f‖φ(E) := inf{λ > 0 : |f | ≤ λϕ(|f0|, |f1|), fj ∈ Ej , ‖fj‖Ej
= 1, j = 0, 1}.

Let ϕ ∈ U and denote by Φ the inverse of ϕ(·, 1). Then Φ is a convex function
since ϕ(·, 1) is concave. We can say that Lφ

Φ(Rn) is a natural function space
in view of the following lemma:

Lemma 6.4. With concidence of norms, ϕ(Mφ
1 (Rn), L∞(Rn)) = Lφ

Φ(Rn).

Proof. Simply observe

‖f‖φ(Mφ
1 ,L∞) = inf{λ > 0 : |f | ≤ λϕ(|f0|, 1), f0 ∈Mφ

1 (R
n), ‖f0‖Mφ

1
= 1}.

□
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Another important thing to note is that L2(Rn) ∩ L3(Rn) is realized
as a special case of Lφ

Φ(Rn). Although L2(Rn) ∩ L3(Rn) cannot be realized
as a special case of Mφ

Φ(Rn) [11], Mφ
Φ(Rn) is important. In fact, letting

Φ(t) := t log(3+t) for t > 0, we learn that M mapsMφ
L log L(Rn) :=Mφ

Φ(Rn)

toMφ
1 (Rn) and that

C−1‖f‖Mφ
L log L

≤ ‖Mf‖Mφ
1
≤ C‖f‖Mφ

L log L

for all f ∈Mφ
L log L(Rn) [31].

If Φ ∈ ∇2, then M is bounded on both Lφ
Φ(Rn) andMφ

Φ(Rn) according
to [21] and [31], respectively. According to [27, Theorem 4.1] and [28], or
by using a technique in [14], we can check that (1.5) is satisfied as long as
Φ ∈ ∆2.

6.6. Mixed Lebesgue spaces

Let 0 < p1, p2, . . . , pn ≤ ∞ be constants. We abbreviate p := (p1, p2, . . . , pn).
Then define the mixed Lebesgue norm ‖ · ‖Lp by

‖f‖Lp :=

∫
R
· · ·

(∫
R

(∫
R
|f(x1, x2, . . . , xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn


1

pn

.

A natural modification for xi is made when pi = ∞. The mixed Lebesgue
space Lp(Rn) is defined to be the set of all f ∈ L0(Rn) with ‖f‖Lp < ∞.
According to Bagby [2], (1.1) is satisfied for p1, p2, . . . , pn ∈ (1,∞), while
(1.5) is satisfied for p1, p2, . . . , pn ∈ (0,∞) according to [23].

6.7. Mixed Morrey spaces

Let q = (q1, q2, . . . , qn) ∈ (0,∞]n. By replacing the Lq-quasi-norm by the
mixed Lebesgue quasi-norm ‖·‖Lq in the definition of the Morrey norm ‖·‖Mp

q

(see (1.8)), we obtain the mixed Morrey space Mp
q(Rn). Nogayama proved

(1.5) in [23], while (1.2) follows fromMp
q0(R

n)←↩Mp
q(Rn) if q0 ≤ min

i=1,2,...,n
qi.

In this case, Theorem 1.1 refines [24, Theorem 3].

6.8. Variable Lebesgue spaces

For a measurable function p(·) : Rn → (0,∞), the variable Lebesgue space
Lp(·)(Rn) is defined by

Lp(·)(Rn) :=
⋃
λ>0

{f ∈ L0(Rn) : ρp(·)(λ
−1f) <∞},

where

ρp(·)(f) := ‖ |f |p(·) ‖L1 .

Moreover, for f ∈ Lp(·)(Rn) one defines the variable Lebesgue quasi-norm by

‖f‖Lp(·) := inf
({

λ > 0 : ρp(·)(λ
−1f) ≤ 1

}
∪ {∞}

)
.
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There exists a discontinuous exponent p(·) such that (1.1) and (1.5)
hold. In fact, the following function is one of such functions:

p(·) =
∑
F

cFχF , (6.5)

where F moves over all quadrants and each cF ∈ (1,∞) is a fixed constant.
We recall a sufficient condition for (1.5). The exponent p(·) satisfies the

local log-Hölder continuity condition if

|p(x)− p(y)| ≤ c∗
log(|x− y|−1)

for |x− y| ≤ 1

2
, x, y ∈ Rn, (6.6)

while the exponent p(·) satisfies the log-Hölder-type decay condition at infin-
ity if

|p(x)− p∞| ≤
c∗

log(e+ |x|)
for x ∈ Rn. (6.7)

Here c∗, c
∗ and p∞ are positive constants independent of x and y.

If p(·) satisfies these conditions and 0 < p− := essinfx∈Rnp(x) ≤ p+ :=
esssupx∈Rnp(x) <∞, then we have (1.5) according to [7, 5, 6]. Finally, (1.2)
follows from the definition.
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