CHUO MATH NO.133(2021)

Integer values of generating functions for Lucas sequences

by Noriyuki SUWA

NOV. 22 , *2021*

INTEGER VALUES OF GENERATING FUNCTIONS FOR LUCAS SEQUENCES

NORIYUKI SUWA*)

ABSTRACT. It is known that the generating function of the Fibonacci sequence, $F(t) = \sum_{k=0}^{\infty} F_k t^k$ = $t/(1 - t - t^2)$, attains an integer value if and only if $t = F_k/F_{k+1}$ for some $k \in \mathbb{Z}$. In this article, we generalize this result for the Lucas sequences and the companion Lucas sequences associated to $(P, \pm 1)$, clarifying a role of the arithmetic of real quadratic number fields.

Introduction

The Lucas sequences, including the Fibonacci sequence, have been studied widely for a long time. There is left an enormous accumulation of research, and it seems that there remains an abundance of ore to mine.

For example, let $\{F_k\}_{k\geq 0}$ and $\{\Lambda_k\}_{k\geq 0}$ denote the Fibonacci sequence and the Lucas sequence, repectively, and put

$$F(t) = \sum_{k=0}^{\infty} F_k t^k = \frac{t}{1-t-t^2}, \ G(t) = \sum_{k=0}^{\infty} \Lambda_k t^k = \frac{2-t}{1-t-t^2}$$

It was recently that Hong [1] observed that $F(F_n/F_{n+1})$, $G(F_n/F_{n+1})$ and $G(\Lambda_n/\Lambda_{n+1})$ are integers for $n \ge 0$ and posed a question which rational number q assures $F(q) \in \mathbb{Z}$ or $G(q) \in \mathbb{Z}$. Soon after, Pongsriiam [3] answered the question, establishing the following results:

(1) Let $q \in \mathbb{Q}$. Then, F(q) is an integer if and only if $q = F_n/F_{n+1}$ or $-F_{n+1}/F_n$ for some n; (2) Let $q \in \mathbb{Q}$. Then, G(q) is an integer if and only if $q = F_n/F_{n+1}$, $-F_{n+1}/F_n$, Λ_n/Λ_{n+1} or $-\Lambda_{n+1}/\Lambda_n$ for some n.

Tsuno ([6],[7]) generalized Pongsriiam's result to the generating functions for sequences given by the Pell equations. Their argument depends on skillful combination of various formulas for the sequences defined by recurrence relation of order 2.

In this article, we reexamine their results and generalize (1) and (2) for the Lucas sequences and the companion Lucas sequences associated to $(P, \pm 1)$.

Main Result I (=Theorem 2.3) Let $P, Q \in \mathbb{Z}$ with $P \neq 0$, $Q = \pm 1$, $P^2 - 4Q > 0$ and $(P,Q) \neq (\pm 3,1)$. Put $f(t) = t/(1 - Pt + Qt^2)$, the generating function of the Lucas sequnce associated to (P,Q). Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

^{*)} Partially supported by Grant-in-Aid for Scientific Research No.19K03408

²⁰⁰⁵ Mathematics Subject Classification Primary 13B05; Secondary 14L15, 12G05.

N. SUWA

Main Result II (=Theorem 3.5) Let $P, Q \in \mathbb{Z}$ with $P \neq 0$, $Q = \pm 1$ and $P^2 - 4Q > 0$. Put $f(t) = (2 - Pt)/(1 - Pt + Qt^2)$, the generating function of the companion Lucas sequece associated to (P, Q).

(1) Assume Q = -1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

(2) Assume Q = 1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$, S_n/S_{n+1} , $(L_{n+1} - L_n)/(L_{n+2} - L_{n+1})$ or $(L_n + L_{n+1})/(L_{n+2} + L_{n+1})$ for some $n \in \mathbb{Z}$.

Now we explain the organization of the article. In the Section 1, we recall needed facts on the Lucas sequences though most of them are well known. We treat linear recurrence sequences also for negative indices, which simplifies formulas and the argument. Main Result I and Main Result II are proven in the Section 2 and in the Section 3, respectively. It should be mentioned that two main results follow from Dirichlet's unit theorem for real quadratic number fields. In the Section 4, we compare preceeding results and ours. In the Section 5, we remark upon an unlooked-for relation between our main result and the group $G_{P,Q}(\mathbb{Q})/\Theta$ investigated in [4] and [5].

Notation

For a ring R, R^{\times} denotes the multiplicative group of invertible elements of R.

 $\mathcal{L}(P,Q;\mathbb{Z}), \mathcal{L}(P,Q;\mathbb{Q})$: defined in 1.1 $\{L_k\}_{k\geq 0}$: the Lucas sequence associated to (P,Q), recalled in 1.1 $\{S_k\}_{k\geq 0}$: the companion Lucas sequence associated to (P,Q), recalled in 1.1 $\{F_k\}_{k\geq 0}$: the Fibonacci sequence $\{\Lambda_k\}_{k\geq 0}$: the Lucas sequence, recalled in 1.2 (a,b): the greatest common divisor of $a, b \in \mathbb{Z}$ $G_{P,Q}(\mathbb{Q})$: defined in 5.3 $G_{(P,Q)}(\mathbb{Q})$: defined in 5.3 $U_{P,Q}(\mathbb{Q})$: defined in 5.3

1. Recall: Lucas sequences

In the section, we fix $P, Q, \in \mathbb{Z}$ and put $D = P^2 - 4Q$.

Notation 1.1. For $P, Q \in \mathbb{Z}$, we put

$$\mathcal{L}(P,Q;\mathbb{Z}) = \{\{w_k\}_{k\geq 0} \in \mathbb{Z}^{\mathbb{N}} ; w_{k+2} - Pw_{k+1} + Qw_k = 0 \text{ for each } k \geq 0\}$$

and

$$\mathcal{L}(P,Q;\mathbb{Q}) = \{\{w_k\}_{k>0} \in \mathbb{Q}^{\mathbb{N}} ; w_{k+2} - Pw_{k+1} + Qw_k = 0 \text{ for each } k \ge 0\}.$$

The sequence $\{L_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Z})$ defined by $(L_0,L_1) = (0,1)$ is called the *Lucas sequence* associated to (P,Q), and $\{S_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Z})$ defined by $(S_0,S_1) = (2,P)$ is called the *companion Lucas sequence* associated to (P,Q).

As is well known, for $\{w_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Q})$, we have

$$w_{n+1}^2 - Pw_{n+1}w_n + Qw_n^2 = (w_1^2 - Pw_1w_0 + Qw_0^2)Q^n.$$

Example 1.2. The Lucas sequence associated to (P,Q) = (1,-1) is nothing but the Fibonacci sequence $\{F_k\}_{k\geq 0}$. On the other hand, the companion Lucas sequence associated to (P,Q) = (1,-1) is traditionally called the Lucas sequence and denoted by $\{L_k\}_{k\geq 0}$. To avoid the confusion, we shall denote by $\{\Lambda_k\}_{k\geq 0}$ the Lucas sequence.

Definition 1.3. Assume that $Q \neq 0$. Let $\{w_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Q})$. Then we can define terms w_k for k < 0 inductively by the recurrence relation

$$w_{k} = \frac{P}{Q}w_{k+1} - \frac{1}{Q}w_{k+2}.$$

Hereinafter we enumerate several formulas concerning Lucas sequences.

Formulas 1.4. Let $P, Q \in \mathbb{Z}$ with $Q \neq 0$. Then we have:

(1)
$$w_{-n}w_{n+1} - Qw_{-n-1}w_n = w_0(2w_1 - Pw_0)$$
 for $\{w_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Q}).$
(2) $L_{-n} = -\frac{L_n}{Q^n}, S_{-n} = \frac{S_n}{Q^n}.$
(3) $\frac{L_{-n-1}}{L_{-n}} = \frac{1}{Q} \frac{L_{n+1}}{L_n}, \frac{S_{-n-1}}{S_{-n}} = \frac{1}{Q} \frac{S_{n+1}}{S_n}.$

Proof. We can easily verify the formulas (1) and (2) by induction on n > 0. The formula (3) is an immediate consequence of (2).

Formulas 1.5. Let $P, Q \in \mathbb{Z}$ with $P^2 - 4Q \neq 0$. Let α , β denote the roots of the quadratic equation $t^2 - Pt + Q = 0$. Then we have:

(1)
$$w_n = \frac{1}{\alpha - \beta} \{ (w_1 - \beta w_0) \alpha^n - (w_1 - \alpha w_0) \beta^n \}$$
 for $\{ w_k \}_{k \ge 0} \in \mathcal{L}(P, Q; \mathbb{Q}).$
In particular,
(2) $L_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, S_n = \alpha^n + \beta^n.$

Definiton 1.6. Let $P, Q \in \mathbb{Z}$ and $\{w_k\}_{k \geq 0} \in \mathcal{L}(P, Q; \mathbb{Z})$. The generating function for $\{w_k\}_{k \geq 0}$ is defined by

$$f(t) = \sum_{k \ge 0} w_k t^k \in \mathbb{Z}[[t]].$$

As is well known, we have

$$f(t) = \frac{w_0 + (w_1 - Pw_0)t}{1 - Pt + Qt^2}.$$

For example, the generating function for the Lucas sequence $\{L_k\}_{k\geq 0}$ is given by

$$f(t) = \frac{t}{1 - Pt + Qt^2},$$

and the generating function for the companion Lucas sequence $\{S_k\}_{k\geq 0}$ is given by

$$f(t) = \frac{2 - Pt}{1 - Pt + Qt^2}$$

Formulas 1.7. Put $f(t) = \frac{w_0 + (w_1 - Pw_0)t}{1 - Pt + Qt^2}$. Then we have: (1) $f\left(\frac{s}{r}\right) = \frac{r\{w_0r + (w_1 - Pw_0)s\}}{r^2 - Prs + Qs^2}$ for $r, s \in \mathbb{Z}$. (2) $f\left(\frac{v_n}{v_{n+1}}\right) = \frac{v_{n+1}\{w_0v_{n+1} + (w_1 - Pw_0)v_n\}}{(v_1^2 - Pv_1v_0 + Qv_0^2)Q^n}$ for $\{v_k\}_{k\geq 0} \in \mathcal{L}(P, Q; \mathbb{Q})$.

Formulas 1.8. Put
$$f(t) = \frac{c}{1 - Pt + Qt^2}$$
. Then we have:
(1) $f\left(\frac{s}{r}\right) = \frac{rs}{r^2 - Prs + Qs^2}$ for $r, s \in \mathbb{Z}$.
(2) $f\left(\frac{v_n}{v_{n+1}}\right) = \frac{v_{n+1}v_n}{(v_1^2 - Pv_1v_0 + Qv_0^2)Q^n}$ for $\{v_k\}_{k\geq 0} \in \mathcal{L}(P, Q; \mathbb{Q})$.
(3) $f\left(\frac{L_n}{L_{n+1}}\right) = \frac{L_{n+1}L_n}{Q^n}$.
(4) $f\left(\frac{L_{-n-1}}{L_{-n}}\right) = f\left(\frac{L_n}{L_{n+1}}\right)$.

Proof. We can easily deduce the formula (3) from (2), noting $L_1^2 - PL_1L_0 + QL_0^2 = 1$. The formula (4) follows from (3) and 1.4 (2).

Formulas 1.9. Put
$$f(t) = \frac{2 - Pt}{1 - Pt + Qt^2}$$
. Then we have:
(1) $f\left(\frac{s}{r}\right) = \frac{r(2r - Ps)}{r^2 - Prs + Qs^2}$ for $r, s \in \mathbb{Z}$.
(2) $f\left(\frac{v_n}{v_{n+1}}\right) = \frac{v_{n+1}(2v_{n+1} - Pv_n)}{(v_1^2 - Pv_1v_0 + Qv_0^2)Q^n}$ for $\{v_k\}_{k\geq 0} \in \mathcal{L}(P, Q; \mathbb{Z})$
(3) $f\left(\frac{S_n}{S_{n+1}}\right) = -\frac{S_{n+1}L_n}{Q^n}$.
(4) $f\left(\frac{L_n}{L_{n+1}}\right) = \frac{L_{n+1}S_n}{Q^n}$.
(5) $f\left(\frac{S_{-n-1}}{S_{-n}}\right) = f\left(\frac{L_n}{L_{n+1}}\right)$.
(6) $f\left(\frac{L_{-n-1}}{L_{-n}}\right) = f\left(\frac{S_n}{S_{n+1}}\right)$.

Proof. We can easily deduce the formulas (3) and from (2), noting

$$S_1^2 - PS_1S_0 + QS_0^2 = -P^2 + 4Q = D, \ 2S_{n+1} - PS_n = DL_n, 2L_{n+1} - L_n = S_n$$

The formulas (5) and (6) are combinations of (3), (4) and 1.4 (2).

LUCAS SEQUENCES

2. Main result I

Lemma 2.1. Let $P, Q \in \mathbb{Z}$ with $P \neq 0$, $Q = \pm 1$ and $P^2 - 4Q > 0$. Let α be a root of the quadraic equation $t^2 - Pt + Q = 0$. Then α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times}/\{\pm 1\}$ except for $(P, Q) = (\pm 3, 1)$.

Proof. The multiplicative group $\mathbb{Z}[\alpha]^{\times}/\{\pm 1\}$ is cyclic as is well known. Assume that α does not generate the multiplicative group $\mathbb{Z}[\alpha]^{\times}/\{\pm 1\}$. Then there exists $\varepsilon \in \mathbb{Z}[\alpha]^{\times}$ such that $\alpha = \pm \varepsilon^k$ for some $k \geq 2$. Then we obtain $\mathbb{Z}[\varepsilon^k] = \mathbb{Z}[\varepsilon]$, which implies

$$\varepsilon^2 - \varepsilon - 1 = 0, \ \varepsilon^2 + \varepsilon - 1 = 0, \ \varepsilon^2 - \varepsilon + 1 = 0 \ \text{or} \ \varepsilon^2 + \varepsilon + 1 = 0.$$

However, the latter two cases are excluded since ε is real. In the first case we have $\varepsilon = (1\pm\sqrt{5})/2$, and in the second case we have $\varepsilon = (-1\pm\sqrt{5})/2$. These correspond to the cases of (P,Q) = (3,1)and (P,Q) = (-3,1), respectively.

Lemma 2.2. Let $P, Q, r, s \in \mathbb{Z}$ with (r, Q) = 1, (r, s) = 1 and $r \neq 0$. Put $f(t) = t/(1-Pt+Qt^2)$. Then, f(s/r) is an integer if and only if $r^2 - Prs + Qs^2 = \pm 1$.

Proof. We can easily verify the assertion, noting that (a) $f(s/r) = rs/(r^2 - Prs + Qs^2)$, (b) $(r^2 - Prs + Qs^2, r) = (Qs^2, r) = 1$ and (c) $(r^2 - Prs + Qs^2, s) = (r^2, s) = 1$.

Theorem 2.3. Let $P, Q \in \mathbb{Z}$ with $P \neq 0$, $Q = \pm 1$, $P^2 - 4Q > 0$ and $(P,Q) \neq (\pm 3, 1)$. Put $f(t) = t/(1 - Pt + Qt^2)$. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

Proof. As is remarked in Formula 1.8, we have

$$f\left(\frac{L_n}{L_{n+1}}\right) = \frac{L_{n+1}L_n}{Q^n} \in \mathbb{Z}$$

for $n \in \mathbb{Z}$ $(n \neq 0)$.

Conversely, assume that f(q) is an integer. Put

$$D = P^2 - 4Q, \ \alpha = \frac{P + \sqrt{D}}{2}, \ \beta = \frac{P - \sqrt{D}}{2}$$

Then α is invertible in the ring $\mathbb{Z}[\alpha]$ since $\alpha\beta = Q = \pm 1$. Furthermore, α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times}/\{\pm 1\}$ since $(P,Q) \neq (\pm 3, 1)$.

Now put

$$q = \frac{s}{r}, r, s \in \mathbb{Z}$$
 with $(r, s) = 1$

Then, by Lemma 2.2, we obtain $r^2 - Prs + Qs^2 = \pm 1$, which implies that $r - \alpha s$ is invertible in $\mathbb{Z}[\alpha]$. Hence there exists $n \in \mathbb{Z}$ such that

$$r - \alpha s = \beta^n, \ r - \beta s = \alpha^n$$

or

$$r - \alpha s = -\beta^n, \ r - \beta s = -\alpha^n.$$

Hence, by Lemma 2.1, we obtain

$$(r,s) = (L_{n+1}, L_n)$$
 or $(-L_{n+1}, -L_n)$,

noting the formula $L_k = \frac{\alpha^k - \beta^k}{\alpha - \beta}.$

Propsition 2.4.1. (The case of P = 3 and Q = 1) Put $f(t) = t/(1 - 3t + t^2)$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = F_n/F_{n+2}$ for some $n \in \mathbb{Z}$.

Proof. We can deduce

$$f\left(\frac{F_n}{F_{n+2}}\right) = (-1)^n F_{n+2} F_n$$

for $n \in \mathbb{Z}$ $(n \neq -2)$ immediately from the equality $F_{n+2}^2 - 3F_{n+2}F_n + F_n^2 = (-1)^n$.

Conversely, put $\varepsilon = (1 + \sqrt{5})/2$. Then the roots of the quadratic equation $t^2 - 3t + 1 = 0$ are given by $\alpha = \varepsilon^2 = (3 + \sqrt{5})/2$ and $\beta = \varepsilon^{-2} = (3 - \sqrt{5})/2$. Furthermore, ε generates the multiplicative group $\mathbb{Z}[\varepsilon^2]^{\times}/\{\pm 1\} = \mathbb{Z}[\varepsilon]^{\times}/\{\pm 1\}$.

Now, let $\{L_k\}_{k\in\mathbb{Z}}$ denote the Lucas sequence associated to (P,Q) = (3,1). Then we have $L_k = F_{2k}$ for each $k \in \mathbb{Z}$. Now put

$$q = \frac{s}{r}, r, s \in \mathbb{Z}$$
 with $(r, s) = 1$.

Then, by Lemma 2.2, we obtain $r^2 - 3rs + s^2 = \pm 1$, which implies that $r - \alpha s$ is invertible in $\mathbb{Z}[\alpha]$. Hence there exists $n \in \mathbb{Z}$ such that

$$r - \alpha s = \varepsilon^{-n}, \ r - \beta s = \varepsilon^{n}$$

or

$$r - \alpha s = -\varepsilon^{-n}, \ r - \beta s = -\varepsilon^{n}$$

Then we obtain

$$(r,s) = (F_{n+2}, F_n)$$
 or $(-F_{n+2}, -F_n)$,

noting $F_k = \frac{\varepsilon^k - \varepsilon^{-k}}{\varepsilon - \varepsilon^{-1}}$ and $\alpha - \beta = \varepsilon - \varepsilon^{-1}$.

Remark 2.4.2. Let $\{L_k\}_{k\geq 0}$ denote the Lucas sequence associated to (P,Q) = (3,1). Then we have $\{F_{2k}\}_{k\geq 0} = \{L_k\}_{k\geq 0}$ and $\{F_{2k+1}\}_{k\geq 0} = \{L_{k+1} - L_k\}_{k\geq 0}$.

Propsition 2.5.1. (The case of P = -3 and Q = 1) Put $f(t) = t/(1 + 3t + t^2)$, and let $q \in \mathbb{Q}$. Then f(q) is an integer if and only if $q = -F_n/F_{n+2}$ for some $n \in \mathbb{Z}$.

Proof. We can verify

$$f\left(-\frac{F_n}{F_{n+2}}\right) = (-1)^{n-1}F_{n+2}F_n$$

for $n \in \mathbb{Z}$ $(n \neq -2)$ and prove the assertion as in Propsition 2.4.1.

Remark 2.5.2. Let $\{L_k\}_{k\geq 0}$ denote the Lucas sequence associated to (P,Q) = (-3,1). Then we have $\{(-1)^{k-1}F_{2k}\}_{k\geq 0} = \{L_k\}_{k\geq 0}$ and $\{(-1)^kF_{2k+1}\}_{k\geq 0} = \{L_{k+1} + L_k\}_{k\geq 0}$.

3. Main result II

Lemma 3.1. Let $P, Q \in \mathbb{Z}$, and put

$$D = P^2 - 4Q, \ \alpha = \frac{P + \sqrt{D}}{2}, \ \beta = \frac{P - \sqrt{D}}{2}.$$

Assume that D is not a square. Let $r, s, r', s' \in \mathbb{Q}$. Then, $(r - s\alpha)/(r - s\beta) = (r' - s'\alpha)/(r' - s'\beta)$ if and only if (r : s) = (r' : s').

Proof. We obtain the conclusion immediately, simplifying $(r - s\alpha)(r' - s'\beta) = (r - s\beta)(r' - s'\alpha)$ and noting that α and β are linearly independent over \mathbb{Q} .

Lemma 3.2. Let $P, Q, r, s \in \mathbb{Z}$ with (r, Q) = 1, (r, s) = 1 and $r \neq 0$, and put $f(t) = (2-Pt)/(1-Pt+Qt^2)$. Then, f(s/r) is an integer if and only if 2r - Ps is divisible by $r^2 - Prs + Qs^2$.

Proof. First note $f(s/r) = r(2r - Ps)/(r^2 - Prs + Qs^2)$. Then, f(s/r) is an integer if and only if r(2r - Ps) is divisible by $r^2 - Prs + Qs^2$. In this case, 2r - Ps is divisible by $r^2 - Prs + Qs^2$ since $(r, r^2 - Prs + Qs^2) = 1$.

Corollary 3.3. Let $P, Q, r, s \in \mathbb{Z}$ with $P^2 - 4Q \neq 0$, $Q = \pm 1$, (r, s) = 1 and $r \neq 0$, and put $f(t) = (2 - Pt)/(1 - Pt + Qt^2)$, $D = P^2 - 4Q$ and $\alpha = (P + \sqrt{D})/2$. If f(s/r) is an integer, then $(r - s\alpha)/(r - s\beta)$ is an invertible element of $\mathbb{Z}[\sqrt{D}]$.

Proof. By Lemma 3.2, 2r - Ps is divisible by $r^2 - Prs + Qs^2$. Put now $\eta = r - s\alpha$ and $\bar{\eta} = r - s\beta$. Then, we have Nr $\eta = \operatorname{Nr} \bar{\eta} = r^2 - Prs + Qs^2$ and $\eta + \bar{\eta} = 2r - Ps$. These imply that Nr $\eta/\bar{\eta} = 1$ and $1/\eta + 1/\bar{\eta} \in \mathbb{Z}$, and therefore, $\eta/\bar{\eta} \in \mathbb{Z}[\eta] \subset \mathbb{Z}[\sqrt{D}]$. Hence the result.

Lemma 3.4. Let $P, Q \in \mathbb{Z}$. Assume that $P^2 - 4Q \neq 0$. Let α and β be the roots of the quadratic equation $t^2 - Pt + Q = 0$. Then we have:

(1)
$$\frac{L_{n+1} - \alpha L_n}{L_{n+1} - \beta L_n} = \frac{\beta^n}{\alpha^n} = \frac{\beta^{2n}}{Q^n},$$

(2)
$$\frac{S_{n+1} - \alpha S_n}{S_{n+1} - \beta S_n} = -\frac{\beta^n}{\alpha^n} = -\frac{\beta^{2n}}{Q^n},$$

(3)
$$\frac{(L_{n+2} - L_{n+1}) - \alpha (L_{n+1} - L_n)}{(L_{n+2} - L_{n+1}) - \beta (L_{n+1} - L_n)} = -\frac{\beta^{n+1}}{\alpha^n} = -\beta^{2n+1} \text{ if } Q = 1,$$

(4)
$$\frac{(L_{n+2} + L_{n+1}) - \alpha (L_{n+1} + L_n)}{(L_{n+2} + L_{n+1}) - \beta (L_{n+1} + L_n)} = \frac{\beta^{n+1}}{\alpha^n} = \beta^{2n+1} \text{ if } Q = 1.$$

Proof. We can readily verify (1) and (2), noting

$$(\alpha^{n+1} - \beta^{n+1}) - \alpha(\alpha^n - \beta^n) = (\alpha - \beta)\beta^n, \ (\alpha^{n+1} - \beta^{n+1}) - \beta(\alpha^n - \beta^n) = (\alpha - \beta)\alpha^n,$$
$$(\alpha^{n+1} + \beta^{n+1}) - \alpha(\alpha^n + \beta^n) = -(\alpha - \beta)\beta^n, \ (\alpha^{n+1} + \beta^{n+1}) - \beta(\alpha^n - \beta^n) = (\alpha - \beta)\alpha^n.$$

Assume now Q = 1. Then we obtain $\alpha\beta = 1$, and therefore,

$$(L_{n+2} - L_{n+1}) - \alpha(L_{n+1} - L_n) = \frac{\beta^{n+1} - \beta^n}{\alpha - \beta} = \frac{\beta^{n+1}(1 - \alpha)}{\alpha - \beta},$$

$$(L_{n+2} - L_{n+1}) - \beta(L_{n+1} - L_n) = \frac{\alpha^{n+1} - \alpha^n}{\alpha - \beta} = \frac{\alpha^n(\alpha - 1)}{\alpha - \beta},$$

$$(L_{n+2} + L_{n+1}) - \alpha(L_{n+1} + L_n) = \frac{\beta^{n+1} + \beta^n}{\alpha - \beta} = \frac{\beta^{n+1}(1 + \alpha)}{\alpha - \beta},$$

$$(L_{n+2} + L_{n+1}) - \beta(L_{n+1} + L_n) = \frac{\alpha^{n+1} + \alpha^n}{\alpha - \beta} = \frac{\alpha^n(\alpha + 1)}{\alpha - \beta}.$$

Theorem 3.5. Let $P, Q \in \mathbb{Z}$ with $P \neq 0$, $Q = \pm 1$ and $P^2 - 4Q > 0$. Put $f(t) = (2 - Pt)/(1 - Pt + Qt^2)$.

(1) Assume Q = -1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

(2) Assume Q = 1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$, S_n/S_{n+1} , $(L_{n+1} - L_n)/(L_{n+2} - L_{n+1})$ or $(L_n + L_{n+1})/(L_{n+2} + L_{n+1})$ for some $n \in \mathbb{Z}$.

Proof. As is remarked in Formulas 1.9, we have

$$f\left(\frac{S_n}{S_{n+1}}\right) = -\frac{S_{n+1}L_n}{Q^n} \in \mathbb{Z}, \ f\left(\frac{L_n}{L_{n+1}}\right) = \frac{L_{n+1}S_n}{Q^n} \in \mathbb{Z}.$$

Moreover, in the case of Q = 1, we can verify

$$f\left(\frac{L_{n+1}-L_n}{L_{n+2}-L_{n+1}}\right) = -(L_{n+2}-L_{n+1})(L_{n+1}+L_n) \in \mathbb{Z},$$

$$f\left(\frac{L_{n+1}+L_n}{L_{n+2}+L_{n+1}}\right) = (L_{n+2}+L_{n+1})(L_{n+1}-L_n) \in \mathbb{Z},$$

noting

$$(L_{n+2} - L_{n+1})^2 - P(L_{n+2} - L_{n+1})(L_{n+1} - L_n) + (L_{n+1} - L_n)^2 = 2 - P,$$

$$2(L_{n+2} - L_{n+1}) - P(L_{n+1} - L_n) = -(2 - P)(L_{n+1} + L_n),$$

and

$$(L_{n+2} + L_{n+1})^2 - P(L_{n+2} + L_{n+1})(L_{n+1} + L_n) + (L_{n+1} + L_n)^2 = 2 + P,$$

$$2(L_{n+2} + L_{n+1}) - P(L_{n+1} + L_n) = (2 + P)(L_{n+1} - L_n),$$

repectively.

Conversely, assume that f(q) is an integer. Put

$$D = P^2 - 4Q, \ \alpha = \frac{P + \sqrt{D}}{2}, \ \beta = \frac{P - \sqrt{D}}{2}.$$

Then α is invertible in the ring $\mathbb{Z}[\alpha]$.

Now we assume $(P,Q) \neq (\pm 3,1)$, which implies that α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times}/{\pm 1}$ by Lemma 2.1. Put

$$q = \frac{s}{r}, r, s \in \mathbb{Z}$$
 with $(r, s) = 1$.

Then, by Corollary 3.3, $(r - s\alpha)/(r - s\beta)$ is an invertible element of $\mathbb{Z}[\alpha]$.

First assume Q = -1. Then we have

$$\frac{r-s\alpha}{r-s\beta} = \pm (-1)^n \beta^{2n}$$

for some $n \in \mathbb{Z}$ since $Nr(r - \alpha s) = Nr(r - \beta s)$ and $Nr \beta = -1$. Hence we obtain

$$(s:r) = (L_n:L_{n+1})$$
 or $(S_n:S_{n+1})$

by Lemma 3.1 and Lemma 3.4.

Assume now Q = 1. Then we have

$$\frac{r-s\alpha}{r-s\beta} = \pm \beta^{2n} \text{ or } \frac{r-s\alpha}{r-s\beta} = \mp \beta^{2n+1}$$

for some $n \in \mathbb{Z}$. Then we obtain

$$(s:r) = (L_n: L_{n+1}), (S_n: S_{n+1}), (L_{n+1} - L_n: L_{n+2} - L_{n+1}) \text{ or } (L_{n+1} + L_n: L_{n+2} + L_{n+1})$$

again by Lemma 3.1 and Lemma 3.4.

We treat the case of $(p, Q) = (\pm 3, 1)$ separately in 3.6 and 3.7.

Remark 3.5.1. In the case of Q = 1, we have

$$\frac{L_{-n-1} - L_{-n-2}}{L_{-n} - L_{-n-1}} = \frac{L_{n+2} - L_{n+1}}{L_{n+1} - L_n}, \quad \frac{L_{-n-1} + L_{-n-2}}{L_{-n} + L_{-n-1}} = \frac{L_{n+2} + L_{n+1}}{L_{n+1} + L_n}$$

and

$$f\left(\frac{L_{n+2}-L_{n+1}}{L_{n+1}-L_n}\right) = f\left(\frac{L_{n+1}+L_n}{L_{n+2}+L_{n+1}}\right), \ f\left(\frac{L_{n+1}+L_n}{L_{n+2}+L_{n+1}}\right) = f\left(\frac{L_{n+1}-L_n}{L_{n+2}-L_{n+1}}\right).$$

Propsition 3.6.1. (The case of P = 3 and Q = 1) Put $f(t) = (2t - 3)/(1 - 3t + t^2)$, and let $q \in \mathbb{Q}$. Then f(q) is an integer if and only if $q = F_n/F_{n+2}$ or Λ_n/Λ_{n+2} for some $n \in \mathbb{Z}$.

Proof. Put $\varepsilon = (1 + \sqrt{5})/2$. Then the roots of the quadratic equation $t^2 - 3t + 1 = 0$ are given by $\alpha = \varepsilon^2 = (3 + \sqrt{5})/2$ and $\beta = \varepsilon^{-2} = (3 - \sqrt{5})/2$. Furthermore, ε generates the multiplicative group $\mathbb{Z}[\varepsilon^2]^{\times}/\{\pm 1\} = \mathbb{Z}[\varepsilon]^{\times}/\{\pm 1\}$.

Now put

$$q = \frac{s}{r}, r, s \in \mathbb{Z}$$
 with $(r, s) = 1$

and assume that f(q) is an integer. Then, By Corollary 3.3, there exists $n \in \mathbb{Z}$ such that

$$\frac{r-s\alpha}{r-s\beta} = \pm \varepsilon^{-2n}$$

since $\operatorname{Nr}(r - \alpha s) = \operatorname{Nr}(r - \beta s)$ and $\operatorname{Nr} \varepsilon = -1$. That is to say, there exists $n \in \mathbb{Z}$ such that

$$\frac{r-s\alpha}{r-s\beta} = \pm\beta^n$$

Hence we obtain

$$(s:r) = (L_n:L_{n+1}), (S_n:S_{n+1}), (L_{n+1}-L_n:L_{n+2}-L_{n+1}) \text{ or } (L_{n+1}+L_n:L_{n+2}+L_{n+1})$$

by Lemma 3.1 and Lemma 3.4. At last, we obtain the result, noting

$$L_n = F_{2n}, \ S_n = \Lambda_{2n}, \ L_{n+1} - L_n = F_{2n+1}, \ L_{n+1} + L_n = \Lambda_{2n+1}$$

Remark 3.6.2. Let $\{L_k\}_{k\geq 0}$ denote the Lucas sequence associated to (P,Q) = (3,1). Then we have $\{F_{2k}\}_{k\geq 0} = \{L_k\}_{k\geq 0}$ and $\{F_{2k+1}\}_{k\geq 0} = \{L_{k+1} - L_k\}_{k\geq 0}$, as is remarked in 2.4.2, and $\{\Lambda_{2k}\}_{k\geq 0} = \{S_k\}_{k\geq 0}$ and $\{\Lambda_{2k+1}\}_{k\geq 0} = \{L_{k+1} + L_k\}_{k\geq 0}$.

We can similarly prove the following:

Propsition 3.7.1. (The case of P = -3 and Q = 1) Put $f(t) = (2t+3)/(1+3t+t^2)$, and let $q \in \mathbb{Q}$. Then f(q) is an integer if and only if $q = -F_n/F_{n+2}$ or $-\Lambda_n/\Lambda_{n+2}$ for some $n \in \mathbb{Z}$.

Remark 3.7.2. Let $\{L_k\}_{k\geq 0}$ denote the Lucas sequence associated to (P,Q) = (-3,1). Then we have $\{(-1)^{k-1}F_{2k}\}_{k\geq 0} = \{L_k\}_{k\geq 0}$ and $\{(-1)^kF_{2k+1}\}_{k\geq 0} = \{L_{k+1} + L_k\}_{k\geq 0}$, as is remarked in 2.5.2, and $\{(-1)^k\Lambda_{2k}\}_{k\geq 0} = \{S_k\}_{k\geq 0}$ and $\{(-1)^k\Lambda_{2k+1}\}_{k\geq 0} = \{L_{k+1} - L_k\}_{k\geq 0}$.

4. Preceeding results

4.1. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal solution of the Pell equation $x^2 - Ny^2 = \pm 1$. Define two integer sequences $\{U_n\}_{n\geq 0}$ and $\{V_n\}_{n\geq 0}$ by

$$U_n = \frac{(a+b\sqrt{N})^n - (a-b\sqrt{N})^n}{2\sqrt{N}}$$

and

$$V_n = \frac{(a+b\sqrt{N})^n + (a-b\sqrt{N})^n}{2}.$$

Put P = 2a and $Q = a^2 - Nb^2 = \pm 1$. Then $\{U_n\}_{n \ge 0}, \{V_n\}_{n \ge 0} \in \mathcal{L}(P,Q;\mathbb{Z})$. The generating functions of $\{U_n\}_{n \ge 0}$ and $\{V_n\}_{n \ge 0}$ are given by

$$\frac{bt}{1 - Pt + Qt^2}$$

and

$$\frac{1}{2} \frac{1-at}{1-Pt+Qt^2}$$

respectively. We have also

$$U_n = bL_n, \ V_n = \frac{1}{2}S_n$$

for each $n \in \mathbb{Z}$, where $\{L_n\}_{n\geq 0}$ and $\{S_n\}_{n\geq 0}$ denote the Lucas sequence and the companion Lucas sequence associated to (P, Q), respectively.

Tsuno [6] proves the following assertions:

(1) Put $f(t) = \frac{bt}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = U_n/U_{n+1}$ or QU_{n+1}/U_n for some $n \ge 0$.

10

(2) Put $f(t) = \frac{1}{2} \frac{1-at}{1-Pt+Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = U_n/U_{n+1}, V_n/V_{n+1}, q = QU_{n+1}/U_n$ or QV_{n+1}/V_n for some $n \ge 0$.

Noting

$$U_n/U_{n+1} = L_n/L_{n+1}, \ U_{n+1}/U_n = L_{n+1}/L_n, \ V_n/V_{n+1} = S_n/S_{n+1}, V_{n+1}/V_n = S_{n+1}S_n$$

and

$$L_{n+1}/L_n = QL_{-n-1}/L_{-n}, \ S_{n+1}/S_n = QS_{-n-1}/S_{-n}$$

we can restate the above assetions as follows:

(1)' Put $f(t) = \frac{bt}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$. (2)' Put $f(t) = \frac{1}{2} \frac{1 - at}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

Now we deduce these assertions from ours.

In the case of (1)' we have

$$f\left(\frac{L_n}{L_{n+1}}\right) = \frac{bL_{n+1}L_n}{Q^n} \in \mathbb{Z}.$$

Conversely, put q = s/r $(r, s \in \mathbb{Z}$ with (r, s) = 1), and assume that f(q) is an integer. Then b is divisible by $r^2 - Prs + Qs^2$ since brs is divisible by $r^2 - Prs + Qs^2$ and $(rs, r^2 - Prs + Qs^2) = 1$. Put now $\eta = (r + sa) - sb\sqrt{N}$ and d = (r + sa, sb). Then $\operatorname{Nr} \eta = r^2 - Prs + Qs^2$. Moreover, η/d is invertible in $\mathbb{Z}[\sqrt{N}]$,

Indeed, b is divisible by d^2 and b/d^2 is divisible by $Nr(\eta/d)$ since b is divisible by $Nr \eta$. Assume now $Nr(\eta/d) \neq \pm 1$, and let p be a prime divisor of $Nr(\eta/d)$. Then, we could conclude that b/dand (r + sa)/d are both divisible by p, noting

$$\operatorname{Nr}\frac{\eta}{d} = \left(\frac{r+sa}{d}\right)^2 - s^2 \left(\frac{b}{d}\right)^2.$$

However, this contradicts the fact that (r + sa)/d and b/d are prime to each other.

The multiplicative group $\mathbb{Z}[\sqrt{N}]^{\times}/\{\pm 1\}$ is generated by $\alpha = a + b\sqrt{N}$ since (a, b) is the minimal solution of the Pell equation $x^2 - Ny^2 = \pm 1$. Hence, we obtain $(r - s\alpha)/d = \pm \beta^n$ and $(r - s\beta)/d = \pm \alpha^n$, and therefore $r/s = L_{n+1}/L_n$ for some $n \in \mathbb{Z}$.

On the other hand, in the case of (2)' we have

$$f\left(\frac{S_n}{S_{n+1}}\right) = \frac{S_{n+1}L_n}{2}, \ f\left(\frac{L_n}{L_{n+1}}\right) = -\frac{L_{n+1}S_n}{2},$$
$$f\left(\frac{L_{n+1}-L_n}{L_{n+2}-L_{n+1}}\right) = -\frac{1}{2}(L_{n+2}-L_{n+1})(L_{n+1}+L_n),$$
$$f\left(\frac{L_{n+1}+L_n}{L_{n+2}+L_{n+1}}\right) = \frac{1}{2}(L_{n+2}+L_{n+1})(L_{n+1}-L_n).$$

Hence, we can conclude

$$f\left(\frac{S_n}{S_{n+1}}\right), f\left(\frac{L_n}{L_{n+1}}\right) \in \mathbb{Z},$$

noting that S_k is even for each $k \in \mathbb{Z}$ since $S_0 = 2$ and $S_1 = 2$. Furtheremore, we can verify $L_k \equiv k \mod 2$ for each k, noting $L_0 = 0$, $L_1 = 1$ and $L_2 \equiv 0 \mod 2$. Hence we obtain

$$f(\frac{L_{n+1}-L_n}{L_{n+2}-L_{n+1}}), f(\frac{L_{n+1}+L_n}{L_{n+2}+L_{n+1}}) \notin \mathbb{Z}.$$

4.2. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal solution of the Pell equation $x^2 - Ny^2 = \pm 4$. Define two integer sequences $\{U_n\}_{n\geq 0}$ and $\{V_n\}_{n\geq 0}$ by

$$U_n = \frac{(a+b\sqrt{N})^n - (a-b\sqrt{N})^n}{2^n\sqrt{N}}$$

and

$$V_n = \frac{(a+b\sqrt{N})^n + (a-b\sqrt{N})^n}{2^n}.$$

Put P = a and $Q = (a^2 - Nb^2)/4 = \pm 1$. Then $\{U_n\}_{n \ge 0}, \{V_n\}_{n \ge 0} \in \mathcal{L}(P, Q \mathbb{Z})$. The generating functions of $\{U_n\}_{n \ge 0}$ and $\{V_n\}_{n \ge 0}$ are given by

$$\frac{bt}{1 - Pt + Qt^2}$$

and

$$\frac{2-at}{1-Pt+Qt^2},$$

respectively. We have also

$$U_n = bL_n, \ V_n = S_n$$

for each $n \in \mathbb{Z}$, where $\{L_n\}_{n\geq 0}$ and $\{S_n\}_{n\geq 0}$ denote the Lucas sequence and the companion Lucas sequence associated to (P, Q), respectively.

Tsuno [7] proves the following assertions, under the assumption $N \ge 5$:

(1) Put $f(t) = \frac{bt}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = U_n/U_{n+1}$ or QU_{n+1}/U_n for some $n \ge 0$.

(2) Put $f(t) = \frac{1}{2} \frac{1 - at}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then:

(a) Assume Q = -1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = U_n/U_{n+1}$, $-U_{n+1}/U_n$, V_n/V_{n+1} or $-V_{n+1}/V_n$ for some $n \in \mathbb{Z}$.

(b) Assume Q = 1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = \pm 1$ or $q = U_n/U_{n+1}$, $U_n/U_{n+1}, V_n/V_{n+1}, V_{n+1}/V_n, U_{2n-1}/(U_{2n} \pm U_1 \text{ or } U_{2n+1})/(U_{2n+1} \pm U_1)$ some $n \in \mathbb{Z}$.

We can restate (1) and (2) as follows:

(1)' Put $f(t) = \frac{bt}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then, f(q) is an integer if and only if $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

(2)' Put $f(t) = \frac{2 - at}{1 - Pt + Qt^2}$, and let $q \in \mathbb{Q}$. Then:

(a) Assume Q = -1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

(b) Assume Q = 1. Then, f(q) $(q \in \mathbb{Q})$ is an integer if and only if $q = L_n/L_{n+1}$, S_n/S_{n+1} , $(L_n - L_{n-1})/(L_{n+1} - L_n)$ or $(L_n - L_{n-1})/(L_{n+1} - L_n)$ some $n \in \mathbb{Z}$.

Indeed, we can deduce the assertion (1)' from Theorem 2.3 as in 4.1. Now we deduce the assertion (2)' from Theorem 3.5. First note

$$U_n/U_{n+1} = L_n/L_{n+1}, \ U_{n+1}/U_n = L_{n+1}/L_n, \ V_n/V_{n+1} = S_n/S_{n+1}, V_{n+1}/V_n = S_{n+1}/S_n$$

and

$$L_{n+1}/L_n = QL_{-n-1}/L_{-n}, \ S_{n+1}/S_n = QS_{-n-1}/S_{-n}$$

Furthermore, if Q = 1, then we have

$$\frac{L_0 - L_{-1}}{L_1 - L_0} = 1, \ \frac{L_0 + L_{-1}}{L_1 - L_0} = -1$$

and

$$\frac{L_n - L_{n-1}}{L_{n+1} - L_n} = \frac{L_{2n-1}}{L_{2n} - 1}, \ \frac{L_n + L_{n-1}}{L_{n+1} + L_n} = \frac{L_{2n-1}}{L_{2n} + 1},$$
$$\frac{L_{n+1} + L_n}{L_n + L_{n-1}} = \frac{L_{2n+1}}{L_{2n} - L_1}, \ \frac{L_{n+1} - L_n}{L_n - L_{n-1}} = \frac{L_{2n+1}}{L_{2n} + L_1}$$

which follow from

$$(L_n - L_{n-1})(L_{2n} - 1) = L_{2n-1}(L_{n+1} - L_n), (L_n + L_{n-1})(L_{2n} + 1) = L_{2n-1}(L_{n+1} + L_n),$$
$$(L_{n+1} + L_n)(L_{2n} - L_1) = L_{2n+1}(L_n + L_{n-1}), (L_{n+1} - L_n)(L_{2n} + L_1) = L_{2n+1}(L_n - L_{n-1}),$$

respectively. We can honestly verify these equalities, using the formula

$$L_n L_m = \frac{S_{n+m} - S_{n-m}}{D}$$

Hence, the assertion (2)' is nothing but Theorem 3.5.

5. An observation

In this section, we fix $P, Q \in \mathbb{Z}$ and put $D = P^2 - 4Q$.

Notation 5.1. Let $P, Q \in \mathbb{Z}$. As is well known, the map $\{w_k\}_{k\geq 0} \mapsto (w_0, w_1)$ gives rise to a \mathbb{Q} -linear isomorphism $\mathcal{L}(P, Q; \mathbb{Q}) \xrightarrow{\sim} \mathbb{Q}^2$.

Now put $\tilde{R} = \mathbb{Q}[t]/(t^2 - Pt + Q)$ and $\theta = t \mod (t^2 - Pt + Q)$. We define a \mathbb{Q} -linear map $\omega : \tilde{R} \to \mathbb{Q}$ by $\omega(a + b\theta) = b \ (a, b \in \mathbb{Q})$. Moreover, we define a \mathbb{Q} -linear map $\tilde{\omega} : \tilde{R} \to \mathbb{Q}^{\mathbb{N}}$ by $\tilde{\omega}(\eta) = \{\omega(\eta\theta^k)\}_{k\geq 0}$. For $\eta = a + b\theta \in \tilde{R}$, we have $\tilde{\omega}(\eta) = \{b, a + Pb, \dots\}$.

We can verify the following statements, paraphrasing the proofs of [4, Prop.3.2 and Cor.3.3]. (1) The Q-linear map $\tilde{\omega} : \tilde{R} \to \mathcal{L}(P,Q;\mathbb{Q}) \subset \mathbb{Q}^{\mathbb{N}}$ is bijective.

(2) A Q-algebra structure of $\mathcal{L}(P,Q;\mathbb{Q})$ is defined through the Q-linear isomorphism $\tilde{\omega}: \tilde{R} \xrightarrow{\sim} \mathcal{L}(P,Q;\mathbb{Q})$. Then the Lucas sequence $\{L_k\}_{k\geq 0} = \tilde{\omega}(1)$ is the unit of the ring $\mathcal{L}(P,Q;\mathbb{Q})$.

More precisely, let $\boldsymbol{w} = \{w_k\}_{k\geq 0}, \boldsymbol{w}' = \{w'_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Q})$. Then the product of \boldsymbol{w} and \boldsymbol{w}' is given by

$$(w_0w'_1 + w_1w'_0 - Pw_0w'_0, w_1w'_1 - Qw_0w'_0, \dots).$$

It is readily seen that the multiplication by θ on \tilde{R} induces the shift operation $\{w_k\}_{k\geq 0} \mapsto \{w_{k+1}\}_{k\geq 0}$ on $\mathcal{L}(P,Q;\mathbb{Q})$ through the isomorphism $\tilde{\omega}: \tilde{R} \xrightarrow{\sim} \mathcal{L}(P,Q;\mathbb{Q})$.

(3) Let $\eta = a + b\theta \in \tilde{R} = \mathbb{Q}[t]/(t^2 - Pt + Q)$ $(a, b \in \mathbb{Q})$. Then $\eta \mapsto \bar{\eta}$ gives rise to a \mathbb{Q} -automorphism of \tilde{R} . Moreover, we define $\operatorname{Nr} \eta \in \mathbb{Q}$ by $\operatorname{Nr} \eta = \eta \bar{\eta} = a^2 + Pab + Qb^2$. For example, we have $\operatorname{Nr} \theta = Q$. Obviously, η is invertible in \tilde{R} if and only if $\operatorname{Nr} \eta \neq 0$.

Now let $\boldsymbol{w} = \{w_k\}_{k\geq 0} \in \mathcal{L}(P,Q;\mathbb{Q})$. Define $\Delta(\boldsymbol{w}) \in \mathbb{Q}$ by $\Delta(\boldsymbol{w}) = w_1^2 - Pw_0w_1 + Qw_0^2$. If $\eta \in \tilde{R}$ and $\boldsymbol{w} = \tilde{\omega}(\eta)$, then we have $\operatorname{Nr} \eta = \Delta(\boldsymbol{w})$. Therefore, the sequence $\boldsymbol{w} = \{w_k\}_{k\geq 0}$ is invertible in $\mathcal{L}(P,Q;\mathbb{Q})$ if and only if $\Delta(\boldsymbol{w}) = w_1^2 - Pw_0w_1 + Qw_0^2 \neq 0$.

Notation 5.2. We put $\delta = -P + 2\theta \in \tilde{R}$. Then we have $\delta^2 = D$ and Nr $\delta = -D$. The sequence $\tilde{\omega}(\delta)$ is nothing but the companion Lucas sequence $(S_k)_{k>0}$ associated to (P,Q).

Notation 5.3. We define groups $G_{P,Q}(\mathbb{Q})$, $G_{(P,Q)}(\mathbb{Q})$ and $U_{P,Q}(\mathbb{Q})$ by

$$G_{P,Q}(\mathbb{Q}) = (\mathbb{Q}[t]/(t^2 - Pt + Q))^{\times},$$

$$G_{(P,Q)}(\mathbb{Q}) = \operatorname{Coker}[i: \mathbb{Q}^{\times} \to (\mathbb{Q}[t]/(t^2 - Pt + Q))^{\times}],$$

$$U_{P,Q}(\mathbb{Q}) = \operatorname{Ker}[\operatorname{Nr}: (\mathbb{Q}[t]/(t^2 - Pt + Q))^{\times} \to \mathbb{Q}^{\times}].$$

Here $i : \mathbb{Q}^{\times} \to (\mathbb{Q}[t]/(t^2 - Pt + Q))^{\times}$ denotes the inclusion map. Moreover, we define a homomorphism of groups $\gamma : G_{P,Q}(\mathbb{Q}) \to U_{P,Q}(\mathbb{Q})$ by $\gamma(\eta) = \eta/\bar{\eta} = \eta^2/\mathrm{Nr}\,\eta$. Then we have $\mathrm{Ker}[\gamma : G_{P,Q}(\mathbb{Q}) \to U_{P,Q}(\mathbb{Q})] = \mathbb{Q}^{\times}$, and γ is surjective by Hilbert 90. Hence γ induces an isomorphism of groups $\tilde{\gamma} : G_{(P,Q)}(\mathbb{Q}) = G_{P,Q}(\mathbb{Q})/\mathbb{Q}^{\times} \xrightarrow{\sim} U_{P,Q}(\mathbb{Q})$. It is readily seen:

(a) If D is a square in \mathbb{Q}^{\times} , then $U_{P,Q}(\mathbb{Q})$ is isomorphic to the multiplicative group \mathbb{Q}^{\times} ;

(b) If D = 0, then $U_{P,Q}(\mathbb{Q})$ is isomorphic to the additive group \mathbb{Q} ;

(c) If D is not a square in \mathbb{Q} , then $U_{P,Q}(\mathbb{Q})$ is isomorphic to the multiplicative group Ker[Nr : $\mathbb{Q}(\sqrt{D})^{\times} \to \mathbb{Q}^{\times}$].

Hence, if $D \neq 0$, then we obtain $\gamma(\delta) = -1$, which is a unique element of order 2 of $U_{P,Q}(\mathbb{Q})$.

Assume now $Q \neq 0$. Then θ is invertible in $\tilde{R} = \mathbb{Q}[t]/(t^2 - Pt + Q)$. Let Θ denote the subgroup of $G_{(P,Q)}(\mathbb{Q})$ generated by θ . Then the group $G_{(P,Q)}(\mathbb{Q})/\Theta$ is isomorphic to the group G(f) defined by Laxton [2] under the assumptions: (P,Q) = 1 and $D = P^2 - 4Q \neq 0$ ([4, Th.4.2] and [5, Th.4.2]). Here $f(t) = t^2 - Pt + Q$.

Remark 5.3.1. The groups $G_{P,Q}(\mathbb{Q})$, $G_{(P,Q)}(\mathbb{Q})$ and $U_{P,Q}(\mathbb{Q})$ are the \mathbb{Q} -rational points of the group schemes $G_{P,Q}$, $G_{(P,Q)}$ and $U_{P,Q}$, respectively. For details, we refer to [4, Section 1] and [5, Section 1].

Hereafter, we investigate the elements of order 2 of $G_{(P,Q)}(\mathbb{Q})/\Theta$.

Proposition 5.4. Let $\eta \in G_{P,Q}(\mathbb{Q})$. Then:

(1) There exists $\xi \in U_{P,Q}(\mathbb{Q})$ such that $\xi^2 = \gamma(\eta)$ if and only if $\operatorname{Nr} \eta$ is a square in \mathbb{Q} . In this case, the solutions of the equation $\xi^2 = \gamma(\eta)$ in $U_{P,Q}(\mathbb{Q})$ are given by $\xi = \pm \eta/\sqrt{\operatorname{Nr} \eta}$.

(2) Assume that $\operatorname{Nr} \eta$ is a square in \mathbb{Q} , and put $\eta = u + v\delta$ $(u, v \in \mathbb{Q})$. If $Dv \neq 0$, then we have $\pm \eta/\sqrt{\operatorname{Nr} \eta} = \gamma(\eta \pm \sqrt{\operatorname{Nr} \eta})$.

Proof. (1) Assume first that $\operatorname{Nr} \eta$ is a square in \mathbb{Q} . Then we have $\pm \eta / \sqrt{\operatorname{Nr} \eta} \in U_{P,Q}(\mathbb{Q})$ and $(\pm \eta / \sqrt{\operatorname{Nr} \eta})^2 = \eta^2 / \operatorname{Nr} \eta = \gamma(\eta).$

Conversely, assume that there exists $\xi \in U_{P,Q}(\mathbb{Q})$ such that $\xi^2 = \gamma(\eta)$. Taking $\tilde{\xi} \in G_{P,Q}(\mathbb{Q})$ such that $\gamma(\tilde{\xi}) = \xi$, we obtain $\eta = a\xi^2$ for some $a \in \mathbb{Q}^{\times}$. This implies $\operatorname{Nr} \eta = a^2(\operatorname{Nr} \xi)^2$.

(2) Put $\tilde{\xi} = \eta \pm \sqrt{\operatorname{Nr} \eta}$. Then we obtain $\tilde{\xi}^2 = 2(u \pm \sqrt{\eta})\eta$, and therefore $\gamma(\tilde{\xi})^2 = \gamma(\eta)$ since $\operatorname{Nr} \eta = u^2 - Dv^2 \neq u^2$.

Remark 5.5. Assume D = 0. Let $\eta = u + v\delta \in \tilde{R} = \mathbb{Q}[t]/(t^2 - Pt + Q)$ $(u, v \in \mathbb{Q})$. Then we obtain $\eta^2 = u^2 + 2uv\delta$ and $\operatorname{Nr} \eta = u^2$, noting $\delta^2 = D$. Hence, η is invertible in \tilde{R} if and only if $u \neq 0$. In this case, we have $\gamma(\eta) = 1 + 2v\delta/u$, and the solutions of $\xi^2 = \gamma(\eta)$ in $U_{P,Q}(\mathbb{Q})$ are given by $\xi = \pm (1 + v\delta/u)$.

Corollary 5.6. Assume that $Q \neq 0$ and $D \neq 0$. Then there exists $\xi \in U_{P,Q}(\mathbb{Q})$ such that $\xi^2 = \gamma(\theta)$ in $U_{P,Q}(\mathbb{Q})$ if and only if $Q = \operatorname{Nr} \theta$ is a square in \mathbb{Q} . In this case, the solutions of the equation $\xi^2 = \gamma(\theta)$ in $U_{P,Q}(\mathbb{Q})$ are given by $\xi = \pm \theta/\sqrt{Q} = \gamma(\theta \pm \sqrt{Q})$.

The following assertion is a direct consequence of Corollary 5.6.

Corollary 5.7. Assume that $Q \neq 0$ and $D \neq 0$. Then:

(1) If Q is a square in \mathbb{Q} and $P \neq 0, \pm \sqrt{Q}$, then the kernel of the square map on $G_{(P,Q)}(\mathbb{Q})/\Theta$ is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

(2) If Q is not a square in \mathbb{Q} , then the kernel of the square map on $G_{(P,Q)}(\mathbb{Q})/\Theta$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.

Example 5.8. Assume Q = 1 and $P \neq 0, \pm 1, \pm 2$. Then we have

$$(\theta + 1)^2 = (P + 2)\theta$$
, $Nr(\theta + 1) = P + 2$, $\gamma(\theta + 1) = \theta$,
 $(\theta - 1)^2 = (P - 2)\theta$, $Nr(\theta - 1) = -P + 2$, $\gamma(\theta - 1) = -\theta$,
 $(\theta + 1)(\theta - 1) = P\theta - 2 = \theta\delta$.

Furthermore, the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta] = 1, [\theta+1], [\theta-1], [\delta]\}$.

Observation 5.9. Put $f(t) = (2-t)/(1 - Pt + t^2)$, the generating function of the companion Lucas sequence associated to (P, 1). Let $q \in \mathbb{Q}$. Theorem 3.5, Proposition 3.6.1 and Proposition 3.7.1 assert that $f(q) \in \mathbb{Z}$ if and only if $q = w_n/w_{n+1}$ for some $n \in \mathbb{Z}$, where $\{w_k\}_{k\geq 0} = \tilde{\omega}(\eta)$ and $[\eta] \in \{[\theta], [\delta], [\theta+1], [\theta-1]\} \subset G_{(P,1)}(\mathbb{Q})/\Theta$. The author is not sure whether this is a chance or an apperance of a deeper fact. However, the following examples suggest that there is hidden something to consider.

Example 5.10.1. Let P = 0 and Q = 1. Then we have

$$\{L_k\}_{k\geq 0} = \{0, 1, 0, -1, 0, 1, \dots\}, \{S_k\}_{k\geq 0} = \{2, 0, -2, 0, 2, 0, \dots\},\$$
$$\{L_{k+1} + L_k\}_{k\geq 0} = \{1, 1, -1, -1, 1, 1, \dots\}, \{L_{k+1} - L_k\}_{k\geq 0} = \{1, -1, -1, 1, 1, -1, \dots\},\$$

N. SUWA

and the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta] = [\delta], [\theta+1] = [\theta-1]\}$. Moreover, let $q \in \mathbb{Q}$.

(1) Put $f(t) = t/(1+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if q = 0, i.e. $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$. (2) Put $f(t) = 2/(1+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q = 0, \pm 1$, i.e. $q = L_n/L_{n+1}$ or $(L_{n+1} + L_n)/(L_{n+2} + L_{n+1})$ for some $n \in \mathbb{Z}$.

Example 5.10.2. Let P = 1 and Q = 1. Then we have

$${L_k}_{k\geq 0} = {0, 1, 1, 0, -1, -1, 0, 1, \dots}, {S_k}_{k\geq 0} = {2, 1, -1, -2, -1, 1, 2, 1, \dots},$$

 $\{L_{k+1}+L_k\}_{k\geq 0} = \{1, 2, 1, -1, -2, -1, 2, 1, \dots\}, \{L_{k+1}-L_k\}_{k\geq 0} = \{1, 0, -1, -1, 0, 1, 1, 0, \dots\},\$

and the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta] = [\theta - 1], [\delta] = [\theta + 1]\}$. Moreover, let $q \in \mathbb{Q}$.

(1) Put $f(t) = t/(1-t+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if q = 0, 1, i.e. $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

(2) Put $f(t) = (2-t)/(1-t+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if q = 0, 1, 2, 1/2, i.e. $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

Example 5.10.3. Let P = -1 and Q = 1. Then we have

$$\{L_k\}_{k\geq 0} = \{0, 1, -1, 0, 1, \dots\}, \{S_k\}_{k\geq 0} = \{2, -1, -1, 2, -1, \dots\},\$$
$$\{L_{k+1} + L_k\}_{k\geq 0} = \{1, 0, -1, 1, 0, \dots\}, \{L_{k+1} - L_k\}_{k\geq 0} = \{1, -2, 1, 1, -2, \dots\}$$

and the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta] = [\theta + 1], [\delta] = [\theta - 1]\}$. Moreover, let $q \in \mathbb{Q}$.

(1) Put $f(t) = t/(1+t+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if q = 0, -1, i.e. $q = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

(2) Put $f(t) = (2+t)/(1+t+t^2)$. Then, $f(q) \in \mathbb{Z}$ if and only if q = 0, -1, -2, -1/2, i.e. $q = L_n/L_{n+1}$ or S_n/S_{n+1} for some $n \in \mathbb{Z}$.

Example 5.10.4. Let P = 2 and Q = 1. Then we have

$$L_k = k1^{k-1}, \ S_k = 2 \cdot 1^k, \ L_{k+1} + L_k = 2k1^{k-1} + 1^k, \ L_{k+1} - L_k = 1^k$$

and the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta], [\theta+1]\}$. Moreover, let $q \in \mathbb{Q}$. (1) Put $f(t) = t/(1-t)^2$. Then, $f(q) \in \mathbb{Z}$ if and only if $q = n/(n+1) = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

(2) Put $f(t) = (2-2t)/(1-t)^2 = 2/(1-t)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q = n/(n+1) = L_n/L_{n+1}$ or $q = (2n+1)/(2n+3) = (L_{n+1}+L_n)/(L_{n+2}+L_{n+1})$ for some $n \in \mathbb{Z}$.

Example 5.10.5. Let P = -2 and Q = 1. Then we have

$$L_k = k(-1)^{k-1}, \ S_k = 2 \cdot (-1)^k, \ L_{k+1} + L_k = (-1)^k, \ L_{k+1} - L_k = -2k(-1)^{k-1} + (-1)^k$$

and the kernel of the square map on $G_{(P,1)}(\mathbb{Q})/\Theta$ is given by $\{[\theta], [\theta-1]\}$. Moreover, let $q \in \mathbb{Q}$. (1) Put $f(t) = t/(1+t)^2$. Then, $f(q) \in \mathbb{Z}$ if and only if $q = -n/(n+1) = L_n/L_{n+1}$ for some $n \in \mathbb{Z}$.

(2) Put $f(t) = (2+2t)/(1+t)^2 = 2/(1+t)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q = -n/(n+1) = L_n/L_{n+1}$ or $q = -(2n+1)/(2n+3) = (L_{n+1}+L_n)/(L_{n+2}+L_{n+1})$ for some $n \in \mathbb{Z}$.

References.

[1] D. S. Hong, When is the generating function for the Fibonacci numbers an integer? College Mathematics Journal 46 (2015) 110–112.

[2] R. R. Laxton, On groups of linear recurrences, I. Duke Math. J. 36 (1969) 721–736.

[3] P. Pongsriiam, Integer values of generating functions for the Fibonacci and Lucas numbers. College Mathematics Journal 48 (2017) 97–101.

[4] N. Suwa, Geometric aspects of Lucas sequences, I. Tokyo J. Math. 43 (2020) 75–136

[5] N. Suwa, Geometric aspects of Lucas sequences, II. Tokyo J. Math. 43 (2020) 383-454

[6] Y. Tsuno, Extended results on integer values of generating functions for sequences given by Pell's equation. The Fibonacci Quarterly 59 (2021) 158–166.

[7] Y. Tsuno, Extended results on integer values of generating functions for sequences given by Pell's equation. II. (in Japanese) The 18th Conference, Tokyo, August 21, 2020, electronically published by the Fibonacci Association Japan.

DEPARTMENT OF MATHEMATICS, CHUO UNIVERSITY, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, JAPAN *E-mail address*: suwa@math.chuo-u.ac.jp

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号Ŧ	们行年月	自 論文名	著者
No. 1	1988	ON THE DEFORMATIONS OF WITT GROUPS TO TORI II	Tsutomu SEKIGUCHI
No. 2	1988	On minimal Einstein submanifold with codimension two	Yoshio MATSUYAMA
No. 3	1988	Minimal Einstein submanifolds	Yoshio MATSUYAMA
No. 4	1988	Submanifolds with parallel Ricci tensor	Yoshio MATSUYAMA
No. 5	1988	A CASE OF EXTENSIONS OF GROUP SCHEMES OVER	Tsutomu SEKIGUCHI
		A DISCRETE VALUATION RING	and Noriyuki SUWA
No. 6	1989	ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES	S.HURDER
			and Y.MITSUMATSU
No. 7	1989	ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR	Paul DUPUIS and Hitoshi ISHII
		SECOND-ORDER ELLIPTIC PDE'S ON NONSMOOTH DOMAINS	
No. 8	1989	SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER	Tsutomu SEKIGUCHI
		A DI SCRETE VALUATION RING I	and Noriyuki SUWA
No. 9	1989	ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR	Paul DUPUIS
		SECOND- ORDER ELLIPTIC PDE'S ON DOMAINS WITH CORNERS	and Hitoshi ISHII
No. 1	0 1989	MILNOR'S INEQUALITY FOR 2-DIMENSIONAL ASYMPTOTIC CYCLES	Yoshihiko MITSUMATSU
No. 1	1 1989	ON THE SELF-INTERSECTIONS OF FOLIATION CYCLES	Yoshihiko MITSUMATSU
No. 12	2 1989	On curvature pinching of minimal submanifolds	Yoshio MATSUYAMA
No. 1	3 1990	The Intersection Product of Transverse Invariant Measures	S.HURDER
			and Y.MITSUMATSU
No. 14	4 1990	The Transverse Euler Class for Amenable Foliations	S.HURDER
			and Y.MITSUMATSU
No. 14	4 1989	The Maximum Principle for Semicontinuous Functions	M.G.Crandall and H.ISHII
No. 1	5 1989	Fully Nonliear Oblique DerivativeProblems for Nonlinear Second-Order Elliptic PDE's.	Hitoshi ISHII
No. 1	5 1990	On Bundle Structure Theorem for Topological Semigroups.	Yoichi NADUMO,
			Masamichi TOKIZAWA
			and Shun SATO
No. 1	6 1990	On Linear Orthogonal Semigroup \mathfrak{O}_n	
		- Sphere bundle structure, homotopy type and Lie algebra -	Masamichi TOKIZAWA
	- 1000		and Shun SATO
No. I	/ 1990 2 1000	On a hypersurface with birecurrent second fundametal tensor.	Yoshio MATSUYAMA
No. 18	8 1990	equationd.	and P. L. LIONS
No. 19	9 1991	Viscosity solutions for a class of Hamilton-Jacobi equations	H. ISHII
		in Hilbert spaces.	
No. 20	0 1991	Perron's methods for monotone systems of second-order elliptic PDEs.	H. ISHII
No. 2	1 1991	Viscosity solutions for monotone systems of second-order elliptic PDEs.	H. ISHII and S. KOIKE
No. 22	2 1991	Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces.	H. ISHII
No. 23	3		
No. 24	4 1992	On some pinching of minimal submanifolds.	Y. MATSUYAMA
No. 2	5 1992	Transverse Euler Class of Foliations on Almost Compact Foliation Cycles.	S. HURDER
			and Y. MITSUMATSU
No. 2	$6\ 1992$	Local Homeo- and Diffeomorphisms: Invertibility and Convex Image.	G. ZAMPIERI and G. GORNI

No.	$27\ 1$.992	Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space.	. G. ZAMPIERI and G. GORNI
No.	28 1	.992	Uniqueness of solutions to the Cauchy problems for $u_t - \triangle u + r \bigtriangledown u ^2 =$	0I. FUKUDA, H. ISHII
				and M. TSUTSUMI
No.	29 1	992	Viscosity solutions of functional differential equations.	H. ISHII and S. KOIKE
No.	$30 \ 1$.993	On submanifolds of sphere with bounded second fundamental form	Y. MATSUYAMA
No.	$31 \ 1$.993	On the equivalence of two notions of weak solutions, viscosty solutions	H. ISHII
			and distributional solutions.	
No.	$32\ 1$.993	On curvature pinching for totally real submanifolds of $CP^n(c)$	Y. MATSUYAMA
No.	$33\ 1$.993	On curvature pinching for totally real submanifolds of $HP^n(c)$	Y. MATSUYAMA
No.	$34\ 1$.993	On curvature pinching for totally complex submanifolds of $HP^n(c)$	Y. MATSUYAMA
No.	$35 \ 1$.993	A new formulation of state constracts problems for first-order PDEs.	H. ISHII and S. KOIKE
No.	$36\ 1$.993	On Multipotent Invertible Semigroups.	M. TOKIZAWA
No.	$37\ 1$.993	On the uniquess and existence of sulutions of fully nonlinear parabolic	H. ISHII and K. KOBAYASHI
			PDEs under the Osgood type condition	
No.	$38 \ 1$.993	Curvatura pinching for totally real submanifolds of $CP^{n}(c)$	Y. MATSUYAMA
No.	$39\ 1$.993	Critical Gevrey index for hypoellipticity of parabolic operators and	T. GRAMCHEV
			Newton polygones	P.POPIVANOV
				and M.YOSHINO
No.	40 1	993	Generalized motion of noncompact hypersurfaces with velocity having	H. ISHII
			arbitray growth on the curvature tensor.	and P. E.SOUGANIDIS
No.	41 1	.994	On the unified Kummer-Artin-Schreier-Witt theory	T. SEKIGUCHI and N. SUWA
No.	42 1	.995	Uniqueness results for a class of Hamilton-Jacobi equations with	Hitoshi ISHII
			singular coefficients.	and Mythily RAMASWARY
No.	$43 \ 1$.995	A genaralization of Bence, Merriman and Osher algorithm for motion	
			by mean curvature.	
No.	44 1	995	Degenerate parabolic PDEs with discontinuities and generalized	Todor GRAMCHEV
				and Masafumi YOSHINO
No.	45 1	995	Normal forms of pseudodifferential operators on tori and diophantine	Todor GRAMCHEV
			phenomena.	and Masafumi YOSHINO
No.	46 1	996	On the dustributions of likelihood ratio criterion for equality	Shin-ichi TSUKADA
			of characteristic vectors in two populations.	and Takakazu SUGIYAMA
No.	47 1	.996	On a quantization phenomenon for totally real submanifolds of $CP^n(c)$	Yoshio MATSUYAMA
No.	48 1	.996	A charactarization of real hypersurfaces of complex projective space.	Yoshio MATSUYAMA
No.	49 1	.999	A Note on Extensions of Algebraic and Formal Groups, IV.	T. SEKIGUCHI and N. SUWA
No.	$50 \ 1$.999	On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_a$	Mitsuaki YATO
			over a $\mathbb{Z}_{(p)}$ -algebra	
No.	$51\ 2$	2003	On the descriptions of $\mathbb{Z}/p^n\mathbb{Z}$ -torsors	Kazuyoshi TSUCHIYA
			by the Kummer-Artin-Schreier-Witt theory	
No.	$52\ 2$	2003	ON THE RELATION WITH THE UNIT GROUP SCHEME $U(\mathbb{Z}/p^n)$	Noritsugu ENDO
			AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME	
No.	$54\ 2$	2004	ON NON-COMMUTATIVE EXTENTIONS OF	Yuki HARAGUCHI
			$\mathbb{G}_{a,A}$ BY $\mathbb{G}_{m,A}$ OVER AN \mathbb{F}_p -ALGEBRA	
No.	$55\ 2$	2004	ON THE EXTENSIONS OF \widehat{W}_n BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$ -ALGEBRA	Yasuhiro NIITSUMA
No.	$56\ 2$	2005	On inverse multichannel scattering	V.MARCHENKO
				K.MOCHIZUKI
				and I.TROOSHIN
No.	$57\ 2$	2005	On Thurston's inequality for spinnable foliations	H.KODAMA, Y.MITSUMATSU
				S.MIYOSHI and A.MORI

No.	58	2006	Tables of Percentage Points for Multiple Comparison Procedures	Y.MAEDA, T.SUGIYAMA and X FUJIKOSHI
No.	59	2006	COUTING POINTS OF THE CURVE $y^4 = x^3 + a$ OVER A FINITE FIELD	Eiji OZAKI
No.	60	2006	TWISTED KUMMER AND KUMMER-ARTIN-SCHREIER THEORIES	Norivuki SUWA
No.	61	2006	Embedding a Gaussian discrete-time $ARMA(3,2)$ process in a Gaussian continuous-time $ARMA(3,2)$ process	Mituaki HUZII
No.	62	2006	Statistical test of randomness for cryptographic applications	Mituaki HUZII, Yuichi TAKEDA Norio WATANABE Toshinari KAMAKURA and Takakazu SUGIYAMA
No.	63	2006	ON NON-COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_a$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_p -algebra	Yuki HARAGUCHI
No.	64	2006	Asymptotic distribution of the contribution ratio in high dimensional	Y.FUJIKOSHI
			principal component analysis	T.SATO and T.SUGIYAMA
No.	65	2006	Convergence of Contact Structures to Foliations	Yoshihiko MITSUMATSU
No.	66	2006	多様体上の流体力学への幾何学的アプローチ	三松 佳彦
No.	67	2006	Linking Pairing, Foliated Cohomology, and Contact Structures	Yoshihiko MITSUMATSU
No.	68	2006	On scattering for wave equations with time dependent coefficients	Kiyoshi MOCHIZUKI
No.	69	2006	On decay-nondecay and scattering for <i>Schrödinger</i> equations with time dependent complex potentials	K.MOCHIZUKI and T.MOTAI
No.	70	2006	Counting Points of the Curve $y^2 = x^{12} + a$ over a Finite Field	Yasuhiro NIITSUMA
No.	71	2006	Quasi-conformally flat manifolds satisfying certain condition on the Ricci tensor	U.C.De and Y.MATSUYAMA
No.	72	2006	Symplectic volumes of certain symplectic quotients	T.SUZUKI and T.TAKAKURA
			associated with the special unitary group of degree three	
No.	73	2007	Foliations and compact leaves on 4-manifolds I	Y.MITSUMATSU and E.VOGT
			Realization and self-intersection of compact leaves	
No.	74	2007	ON A TYPE OF GENERAL RELATIVISTIC SPACETIME	A.A.SHAIKH
			WITH W_2 -CURVATURE TENSOR	and Y.MATSUYAMA
No.	75	2008	Remark on TVD schemes to nonstationary convection equation	Hirota NISHIYAMA
No.	76	2008	THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS	Masashi TAKAMURA
No.	77	2008	Reeb components and Thurston's inequality	S.MIYOSHI and A.MORI
No.	78	2008	Permutation test for equality of individual	H.MURAKAMI, E.HINO
			eigenvalues from covariance matrix in high-dimension	and T.SUGIYAMA
No.	79	2008	Asymptotic Distribution of the Studentized Cumulative	M.HYODO, T.YAMADA
			Contribution Ratio in High-Dimensional PrincipalComponent Analysis	and T.SUGIYAMA
No.	80	2008	Table for exact critical values of multisample Lepage type statistics when $k = 3$	Hidetoshi MURAKAMI
No.	81	2008	AROUND KUMMER THEORIES	Noriyuki SUWA
No.	82	2008	DEFORMATIONS OF THE KUMMER SEQUENCE	Yuji TSUNO
No.	83	2008	ON BENNEQUIN'S ISOTOPY LEMMA	Yoshihiko MITSUMATSU
			AND THURSTON'S INEQUALITY	
No.	84	2009	On solvability of Stokes problems in special Morrey space $L_{3,\text{unif}}$	N. KIKUCHI and G.A. SEREGIN
No.	85	2009	On the Cartier Duality of Certain Finite Group Schemes of type (p^n, p^n)	N.AKI and M.AMANO

No. 86 2010	Construction of solutions to the Stokes equations	Norio KIKUCHI
No. 87 2010	RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A	U.C.De and Y.MATSUYAMA
	KENMOTSU MANIFOLD	
No. 88 2010	On the group of extensions $\operatorname{Ext}^{1}(\mathcal{G}^{(\lambda_{0})}, \mathcal{E}^{(\lambda_{1}, \dots, \lambda_{n})})$	Takashi KONDO
	over a discrete valuation ring	
No. 89 2010	Normal basis problem for torsors under a finite flat group scheme	Yuji TSUNO
No. 90 2010	On the homomorphism of certain type of models of algebraic tori	Nobuhiro AKI
No. 91 2011	Leafwise Symplectic Structures on Lawson's Foliation	Yoshihiko MITSUMATSU
No. 92 2011	Symplectic volumes of double weight varieties associated with $SU(3)/T$	Taro SUZUKI
No. 93 2011	On vector partition functions with negative weights	Tatsuru TAKAKURA
No. 94 2011	Spectral representations and scattering for	K.MOCHIZUKI
	Schrodinger operators on star graphs	and I.TOROOSHIN
No. 95 2011	Normally contracting Lie group actions	T.INABA, S.MATSUMOTO
		and Y.MITSUMATSU
No. 96 2012	Homotopy invariance of higher K-theory for abelian categories	S.MOCHIZUKI and A.SANNAI
No. 97 2012	CYCLE CLASSES FOR <i>p</i> -ADIC ÉTALE TATE TWISTS	Kanetomo SATO
	AND THE IMAGE OF p -ADIC REGULATORS	
No. 98 2012	STRONG CONVERGENCE THEOREMS FOR GENERALIZED	YUKINO TOMIZAWA
1100 00 2012	EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE	
	MAPPINGS IN BANACH SPACES	
No. 99 2013	Global solutions for the Navier-Stokes equations	Tsukasa Iwabuchi
100.00 2010	in the ratational framework	and Rvo Takada
No.100 2013	On the cyclotomic twisted torus and some torsors	Tsutomu Sekiguchi
100100 2010		and Yohei Toda
No.101 2013	Helicity in differential topology and incompressible fluids	Yoshihiko Mitsumatsu
	on foliated 3-manifolds	
No.102 2013	LINKS AND SUBMERSIONS TO THE PLANE	SHIGEAKI MIYOSHI
	ON AN OPEN 3-MANIFOLD	
	この論文には改訂版(No.108)があります。そちらを参照してください。	
No.103 2013	GROUP ALGEBRAS AND NORMAL BASIS PROBLEM	NORIYUKI SUWA
No.104 2013	Symplectic volumes of double weight varieties associated with $SU(3)$. II	Taro Suzuki
No.105 2013	REAL HYPERSUBFACES OF A PSEUDO RICCI SYMMETRIC	SHYAMAL KUMAB HUI
100100 2010	COMPLEX PROJECTIVE SPACE	AND YOSHIO MATSUYAMA
No 106 2014	CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF	YUKINO TOMIZAWA
110.100 2011	NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES	
No 107 2014	Thurston's h-principle for 2-dimensional Foliations	Yoshihiko MITSUMATSU
100.101 2011	of Codimension Greater than One	and Elmar VOGT
No 108 2015	LINKS AND SUBMERSIONS TO THE PLANE	SHIGEAKI MIYOSHI
110.100 2010	ON AN OPEN 3-MANIFOLD	
No 109 2015	KUMMER THEORIES FOR ALCEBRAIC TORI	NOBIVIIKI SUWA
10.103 2015	AND NORMAL BASIS PROBLEM	Notu i oki so wa
No 110 2015	I^{p} _MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS	TSUKASA IWABUCHI
10.110 2015	L^{-} -MALLING LIGHTED FOR SOMEODINGER OF ERATORS IN ODEN SETS OF \mathbb{D}^{d}	TOKIO MATSUVAMA
		AND KOICHI TANICUCHI
No 111 2015	Nonautonomous differential equations and	Voshikazu Kabayashi Naaki Tanaka
110.111 2010	Linschitz evolution operators in Banach spaces	and Vukino Tomizowa
No 119 9015	Clobal solvability of the Kinghboff equation with Corner date	anu Tukino Toimzawa Toltio Matauwawa
110.112 2013	Giobal solvability of the Kirchnon equation with Gevrey data	and Michael Durchand
		and miniati nuzitalisky

No.113 2015 A small remark on flat functions Kazuo MASUDA and Yoshihiko MITSUMATSU No.114 2015 Reeb components of leafwise complex foliations and their symmetries I Tomohiro HORIUCHI and Yoshihiko MITSUMATSU Tomohiro HORIUCHI No.115 2015 Reeb components of leafwise complex foliations and their symmetries II Tomohiro HORIUCHI No.116 2015 Reeb components of leafwise complex foliations and their symmetries III and Yoshihiko MITSUMATSU No.117 2016 Besov spaces on open sets Tsukasa Iwabuchi, Tokio Matsuyama and Koichi Taniguchi No.118 2016 Decay estimates for wave equation with a potential on exterior domains Vladimir Georgiev and Tokio Matsuyama No.119 2016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A YOSHIKAZU KOBAYASHI GENERAL TYPE OF DISSIPATIVITY CONDITIONS AND NAOKI TANAKA No.120 2017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX YOSHIO MATSUYAMA PROJECTIVE SPACE No.121 2017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian Tsukasa Iwabuchi, Tokio Matsuyama and Koichi Taniguchi No.122 2018 Geometric aspects of Lucas sequences, I Noriyuki Suwa No.123 2018 Derivatives of flat functions Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU Yoshihiko MITSUMATSU No.124 2018 Geometry and dynamics of Engel structures No.125 2018 Geometric aspects of Lucas sequences, II Noriyuki Suwa No.126 2018 On volume functions of special flow polytopes Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA No.127 2019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY Noriyuki Suwa Kento YAMAMOTO No.128 2019 On syntomic complex with modulus for semi-stable reduction case No.129 2019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES Noriyuki Suwa No.130 2020 Étale cohomology of arithmetic schemes and zeta values Kanetomo Sato of arithmetic surfaces No.131 2020 Global well-posedness of the Kirchhoff equation Tokio Matsuyama No.132 2021 Sparse non-smooth atomic decomposition of quasi-Banach lattices Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

Noriyuki Suwa

No.133 2021 Integer values of generating functions for Lucas sequences