CHUO MATH NO.133(2021)

Integer values of generating functions for Lucas sequences

by
Noriyuki SUWA

DEPARTMENT OF MATHEMATICS
 - CHUO UNIVERSITY
 BUNKYOKU TOKYO JAPAN

NOV. 22, 2021

INTEGER VALUES OF GENERATING FUNCTIONS FOR LUCAS SEQUENCES

NORIYUKI SUWA*

Abstract

It is known that the generating function of the Fibonacci sequence, $F(t)=\sum_{k=0}^{\infty} F_{k} t^{k}$ $=t /\left(1-t-t^{2}\right)$, attains an integer value if and only if $t=F_{k} / F_{k+1}$ for some $k \in \mathbb{Z}$. In this article, we generalize this result for the Lucas sequences and the companion Lucas sequences associated to ($P, \pm 1$), clarifying a role of the arithmetic of real quadratic number fields.

Introduction

The Lucas sequences, including the Fibonacci sequence, have been studied widely for a long time. There is left an enormous accumulation of research, and it seems that there remains an abundance of ore to mine.

For example, let $\left\{F_{k}\right\}_{k \geq 0}$ and $\left\{\Lambda_{k}\right\}_{k \geq 0}$ denote the Fibonacci sequence and the Lucas sequence, repectively, and put

$$
F(t)=\sum_{k=0}^{\infty} F_{k} t^{k}=\frac{t}{1-t-t^{2}}, G(t)=\sum_{k=0}^{\infty} \Lambda_{k} t^{k}=\frac{2-t}{1-t-t^{2}}
$$

It was recently that Hong [1] observed that $F\left(F_{n} / F_{n+1}\right), G\left(F_{n} / F_{n+1}\right)$ and $G\left(\Lambda_{n} / \Lambda_{n+1}\right)$ are integers for $n \geq 0$ and posed a question which rational number q assures $F(q) \in \mathbb{Z}$ or $G(q) \in \mathbb{Z}$. Soon after, Pongsriiam [3] answered the question, establishing the following results:
(1) Let $q \in \mathbb{Q}$. Then, $F(q)$ is an integer if and only if $q=F_{n} / F_{n+1}$ or $-F_{n+1} / F_{n}$ for some n;
(2) Let $q \in \mathbb{Q}$. Then, $G(q)$ is an integer if and only if $q=F_{n} / F_{n+1},-F_{n+1} / F_{n}, \Lambda_{n} / \Lambda_{n+1}$ or $-\Lambda_{n+1} / \Lambda_{n}$ for some n.

Tsuno ([6],[7]) generalized Pongsriiam's result to the generating functions for sequences given by the Pell eqautions. Their argument depends on skillful combination of various formulas for the sequences defined by recurrence relation of order 2 .

In this article, we reexamine their results and generalize (1) and (2) for the Lucas sequences and the companion Lucas sequences associated to $(P, \pm 1)$.
Main Result $\mathbf{I}\left(=\right.$ Theorem 2.3) Let $P, Q \in \mathbb{Z}$ with $P \neq 0, Q= \pm 1, P^{2}-4 Q>0$ and $(P, Q) \neq(\pm 3,1)$. Put $f(t)=t /\left(1-P t+Q t^{2}\right)$, the generating function of the Lucas sequnce associated to (P, Q). Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.

[^0]Main Result II (=Theorem 3.5) Let $P, Q \in \mathbb{Z}$ with $P \neq 0, Q= \pm 1$ and $P^{2}-4 Q>0$. Put $f(t)=(2-P t) /\left(1-P t+Q t^{2}\right)$, the generating function of the companion Lucas sequnce associated to (P, Q).
(1) Assume $Q=-1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}$ or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.
(2) Assume $Q=1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}, S_{n} / S_{n+1}$, $\left(L_{n+1}-L_{n}\right) /\left(L_{n+2}-L_{n+1}\right)$ or $\left(L_{n}+L_{n+1}\right) /\left(L_{n+2}+L_{n+1}\right)$ for some $n \in \mathbb{Z}$.

Now we explain the organization of the article. In the Section 1, we recall needed facts on the Lucas sequences though most of them are well known. We treat linear recurrence sequences also for negative indices, which simplifies formulas and the argument. Main Result I and Main Result II are proven in the Section 2 and in the Section 3, respectively. It should be mentioned that two main results follow from Dirichlet's unit theorem for real quadratic number fields. In the Section 4, we compare preceeding results and ours. In the Section 5, we remark upon an unlooked-for relation between our main result and the group $G_{P, Q}(\mathbb{Q}) / \Theta$ investigated in [4] and [5].

Notation

For a ring R, R^{\times}denotes the multiplicative group of invertible elements of R.
$\mathcal{L}(P, Q ; \mathbb{Z}), \mathcal{L}(P, Q ; \mathbb{Q}):$ defined in 1.1
$\left\{L_{k}\right\}_{k \geq 0}$: the Lucas sequence associated to (P, Q), recalled in 1.1
$\left\{S_{k}\right\}_{k \geq 0}$: the companion Lucas sequence associated to (P, Q), recalled in 1.1
$\left\{F_{k}\right\}_{k \geq 0}$: the Fibonacci sequence
$\left\{\Lambda_{k}\right\}_{k \geq 0}$: the Lucas sequence, recalled in 1.2
(a, b) : the greatest common divisor of $a, b \in \mathbb{Z}$
$G_{P, Q}(\mathbb{Q}):$ defined in 5.3
$G_{(P, Q)}(\mathbb{Q})$: defined in 5.3
$U_{P, Q}(\mathbb{Q}):$ defined in 5.3
$G_{(P, Q)}(\mathbb{Q}) / \Theta:$ defined in 5.3

1. Recall: Lucas sequences

In the section, we fix $P, Q, \in \mathbb{Z}$ and put $D=P^{2}-4 Q$.
Notation 1.1. For $P, Q \in \mathbb{Z}$, we put

$$
\mathcal{L}(P, Q ; \mathbb{Z})=\left\{\left\{w_{k}\right\}_{k \geq 0} \in \mathbb{Z}^{\mathbb{N}} ; w_{k+2}-P w_{k+1}+Q w_{k}=0 \text { for each } k \geq 0\right\}
$$

and

$$
\mathcal{L}(P, Q ; \mathbb{Q})=\left\{\left\{w_{k}\right\}_{k \geq 0} \in \mathbb{Q}^{\mathbb{N}} ; w_{k+2}-P w_{k+1}+Q w_{k}=0 \text { for each } k \geq 0\right\}
$$

The sequence $\left\{L_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Z})$ defined by $\left(L_{0}, L_{1}\right)=(0,1)$ is called the Lucas sequence associated to (P, Q), and $\left\{S_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Z})$ defined by $\left(S_{0}, S_{1}\right)=(2, P)$ is called the companion Lucas sequence associated to (P, Q).

As is well known, for $\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$, we have

$$
w_{n+1}^{2}-P w_{n+1} w_{n}+Q w_{n}^{2}=\left(w_{1}^{2}-P w_{1} w_{0}+Q w_{0}^{2}\right) Q^{n}
$$

Example 1.2. The Lucas sequence associated to $(P, Q)=(1,-1)$ is nothing but the Fibonacci sequence $\left\{F_{k}\right\}_{k \geq 0}$. On the other hand, the companion Lucas sequence associated to $(P, Q)=(1,-1)$ is traditionally called the Lucas sequence and denoted by $\left\{L_{k}\right\}_{k \geq 0}$. To avoid the confusion, we shall denote by $\left\{\Lambda_{k}\right\}_{k \geq 0}$ the Lucas sequence.

Definition 1.3. Assume that $Q \neq 0$. Let $\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$. Then we can define terms w_{k} for $k<0$ inductively by the recurrence relation

$$
w_{k}=\frac{P}{Q} w_{k+1}-\frac{1}{Q} w_{k+2} .
$$

Hereinafter we enumerate several formulas concerning Lucas sequences.
Formulas 1.4. Let $P, Q \in \mathbb{Z}$ with $Q \neq 0$. Then we have:
(1) $w_{-n} w_{n+1}-Q w_{-n-1} w_{n}=w_{0}\left(2 w_{1}-P w_{0}\right)$ for $\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$.
(2) $L_{-n}=-\frac{L_{n}}{Q^{n}}, S_{-n}=\frac{S_{n}}{Q^{n}}$.
(3) $\frac{L_{-n-1}}{L_{-n}}=\frac{1}{Q} \frac{L_{n+1}}{L_{n}}, \frac{S_{-n-1}}{S_{-n}}=\frac{1}{Q} \frac{S_{n+1}}{S_{n}}$.

Proof. We can easily verify the formulas (1) and (2) by induction on $n>0$. The formula (3) is an immediate consequence of (2).

Formulas 1.5. Let $P, Q \in \mathbb{Z}$ with $P^{2}-4 Q \neq 0$. Let α, β denote the roots of the quadratic equation $t^{2}-P t+Q=0$. Then we have:
(1) $w_{n}=\frac{1}{\alpha-\beta}\left\{\left(w_{1}-\beta w_{0}\right) \alpha^{n}-\left(w_{1}-\alpha w_{0}\right) \beta^{n}\right\}$ for $\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$.

In particular,
(2) $L_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, S_{n}=\alpha^{n}+\beta^{n}$.

Defintion 1.6. Let $P, Q \in \mathbb{Z}$ and $\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Z})$. The generating function for $\left\{w_{k}\right\}_{k \geq 0}$ is defined by

$$
f(t)=\sum_{k \geq 0} w_{k} t^{k} \in \mathbb{Z}[[t]]
$$

As is well known, we have

$$
f(t)=\frac{w_{0}+\left(w_{1}-P w_{0}\right) t}{1-P t+Q t^{2}}
$$

For example, the generating function for the Lucas sequence $\left\{L_{k}\right\}_{k \geq 0}$ is given by

$$
f(t)=\frac{t}{1-P t+Q t^{2}}
$$

and the generating function for the companion Lucas sequence $\left\{S_{k}\right\}_{k \geq 0}$ is given by

$$
f(t)=\frac{2-P t}{1-P t+Q t^{2}}
$$

Formulas 1.7. Put $f(t)=\frac{w_{0}+\left(w_{1}-P w_{0}\right) t}{1-P t+Q t^{2}}$. Then we have:
(1) $f\left(\frac{s}{r}\right)=\frac{r\left\{w_{0} r+\left(w_{1}-P w_{0}\right) s\right\}}{r^{2}-P r s+Q s^{2}}$ for $r, s \in \mathbb{Z}$.
(2) $f\left(\frac{v_{n}}{v_{n+1}}\right)=\frac{v_{n+1}\left\{w_{0} v_{n+1}+\left(w_{1}-P w_{0}\right) v_{n}\right\}}{\left(v_{1}^{2}-P v_{1} v_{0}+Q v_{0}^{2}\right) Q^{n}}$ for $\left\{v_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$.

Formulas 1.8. Put $f(t)=\frac{t}{1-P t+Q t^{2}}$. Then we have:
(1) $f\left(\frac{s}{r}\right)=\frac{r s}{r^{2}-\operatorname{Pr} s+Q s^{2}}$ for $r, s \in \mathbb{Z}$.
(2) $f\left(\frac{v_{n}}{v_{n+1}}\right)=\frac{v_{n+1} v_{n}}{\left(v_{1}^{2}-P v_{1} v_{0}+Q v_{0}^{2}\right) Q^{n}}$ for $\left\{v_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$.
(3) $f\left(\frac{L_{n}}{L_{n+1}}\right)=\frac{L_{n+1} L_{n}}{Q^{n}}$.
(4) $f\left(\frac{L_{-n-1}}{L_{-n}}\right)=f\left(\frac{L_{n}}{L_{n+1}}\right)$.

Proof. We can easily deduce the formula (3) from (2), noting $L_{1}^{2}-P L_{1} L_{0}+Q L_{0}^{2}=1$. The formula (4) follows from (3) and 1.4 (2).
Formulas 1.9. Put $f(t)=\frac{2-P t}{1-P t+Q t^{2}}$. Then we have:
(1) $f\left(\frac{s}{r}\right)=\frac{r(2 r-P s)}{r^{2}-\operatorname{Pr} s+Q s^{2}}$ for $r, s \in \mathbb{Z}$.
(2) $f\left(\frac{v_{n}}{v_{n+1}}\right)=\frac{v_{n+1}\left(2 v_{n+1}-P v_{n}\right)}{\left(v_{1}^{2}-P v_{1} v_{0}+Q v_{0}^{2}\right) Q^{n}}$ for $\left\{v_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Z})$.
(3) $f\left(\frac{S_{n}}{S_{n+1}}\right)=-\frac{S_{n+1} L_{n}}{Q^{n}}$.
(4) $f\left(\frac{L_{n}}{L_{n+1}}\right)=\frac{L_{n+1} S_{n}}{Q^{n}}$.
(5) $f\left(\frac{S_{-n-1}}{S_{-n}}\right)=f\left(\frac{L_{n}}{L_{n+1}}\right)$.
(6) $f\left(\frac{L_{-n-1}}{L_{-n}}\right)=f\left(\frac{S_{n}}{S_{n+1}}\right)$.

Proof. We can easily deduce the formulas (3) and from (2), noting

$$
S_{1}^{2}-P S_{1} S_{0}+Q S_{0}^{2}=-P^{2}+4 Q=D, 2 S_{n+1}-P S_{n}=D L_{n}, 2 L_{n+1}-L_{n}=S_{n}
$$

The formulas (5) and (6) are combinations of (3), (4) and 1.4 (2).
2. Main result I

Lemma 2.1. Let $P, Q \in \mathbb{Z}$ with $P \neq 0, Q= \pm 1$ and $P^{2}-4 Q>0$. Let α be a root of the quadraic equation $t^{2}-P t+Q=0$. Then α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times} /\{ \pm 1\}$ except for $(P, Q)=(\pm 3,1)$.

Proof. The multiplicative group $\mathbb{Z}[\alpha]^{\times} /\{ \pm 1\}$ is cyclic as is well known. Assume that α does not generate the multiplicative group $\mathbb{Z}[\alpha]^{\times} /\{ \pm 1\}$. Then there exists $\varepsilon \in \mathbb{Z}[\alpha]^{\times}$such that $\alpha= \pm \varepsilon^{k}$ for some $k \geq 2$. Then we obtain $\mathbb{Z}\left[\varepsilon^{k}\right]=\mathbb{Z}[\varepsilon]$, which implies

$$
\varepsilon^{2}-\varepsilon-1=0, \varepsilon^{2}+\varepsilon-1=0, \varepsilon^{2}-\varepsilon+1=0 \text { or } \varepsilon^{2}+\varepsilon+1=0 \text {. }
$$

However, the latter two cases are excluded since ε is real. In the first case we have $\varepsilon=(1 \pm \sqrt{5}) / 2$, and in the second case we have $\varepsilon=(-1 \pm \sqrt{5}) / 2$. These correspond to the cases of $(P, Q)=(3,1)$ and $(P, Q)=(-3,1)$, respectively.

Lemma 2.2. Let $P, Q, r, s \in \mathbb{Z}$ with $(r, Q)=1,(r, s)=1$ and $r \neq 0$. Put $f(t)=t /\left(1-P t+Q t^{2}\right)$. Then, $f(s / r)$ is an integer if and only if $r^{2}-\operatorname{Prs}+Q s^{2}= \pm 1$.

Proof. We can easily verify the assertion, noting that (a) $f(s / r)=r s /\left(r^{2}-\operatorname{Prs}+Q s^{2}\right)$, (b) $\left(r^{2}-\operatorname{Pr} s+Q s^{2}, r\right)=\left(Q s^{2}, r\right)=1$ and (c) $\left(r^{2}-\operatorname{Pr} s+Q s^{2}, s\right)=\left(r^{2}, s\right)=1$.

Theorem 2.3. Let $P, Q \in \mathbb{Z}$ with $P \neq 0, Q= \pm 1, P^{2}-4 Q>0$ and $(P, Q) \neq(\pm 3,1)$. Put $f(t)=t /\left(1-P t+Q t^{2}\right)$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.

Proof. As is remarked in Formula 1.8, we have

$$
f\left(\frac{L_{n}}{L_{n+1}}\right)=\frac{L_{n+1} L_{n}}{Q^{n}} \in \mathbb{Z}
$$

for $n \in \mathbb{Z}(n \neq 0)$.
Conversely, assume that $f(q)$ is an integer. Put

$$
D=P^{2}-4 Q, \alpha=\frac{P+\sqrt{D}}{2}, \beta=\frac{P-\sqrt{D}}{2} .
$$

Then α is invertible in the ring $\mathbb{Z}[\alpha]$ since $\alpha \beta=Q= \pm 1$. Futhermore, α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times} /\{ \pm 1\}$ since $(P, Q) \neq(\pm 3,1)$.

Now put

$$
q=\frac{s}{r}, r, s \in \mathbb{Z} \text { with }(r, s)=1
$$

Then, by Lemma 2.2, we obtain $r^{2}-\operatorname{Prs}+Q s^{2}= \pm 1$, which implies that $r-\alpha s$ is invertible in $\mathbb{Z}[\alpha]$. Hence there exists $n \in \mathbb{Z}$ such that

$$
r-\alpha s=\beta^{n}, r-\beta s=\alpha^{n}
$$

or

$$
r-\alpha s=-\beta^{n}, r-\beta s=-\alpha^{n} .
$$

Hence, by Lemma 2.1, we obtain

$$
(r, s)=\left(L_{n+1}, L_{n}\right) \text { or }\left(-L_{n+1},-L_{n}\right)
$$

noting the formula $L_{k}=\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}$.
Propsition 2.4.1. (The case of $P=3$ and $Q=1)$ Put $f(t)=t /\left(1-3 t+t^{2}\right)$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=F_{n} / F_{n+2}$ for some $n \in \mathbb{Z}$.

Proof. We can deduce

$$
f\left(\frac{F_{n}}{F_{n+2}}\right)=(-1)^{n} F_{n+2} F_{n}
$$

for $n \in \mathbb{Z}(n \neq-2)$ immediately from the equality $F_{n+2}^{2}-3 F_{n+2} F_{n}+F_{n}^{2}=(-1)^{n}$.
Conversely, put $\varepsilon=(1+\sqrt{5}) / 2$. Then the roots of the quadratic equation $t^{2}-3 t+1=0$ are given by $\alpha=\varepsilon^{2}=(3+\sqrt{5}) / 2$ and $\beta=\varepsilon^{-2}=(3-\sqrt{5}) / 2$. Furthermore, ε generates the multiplicative group $\mathbb{Z}\left[\varepsilon^{2}\right]^{\times} /\{ \pm 1\}=\mathbb{Z}[\varepsilon]^{\times} /\{ \pm 1\}$.

Now, let $\left\{L_{k}\right\}_{k \in \mathbb{Z}}$ denote the Lucas sequence associated to $(P, Q)=(3,1)$. Then we have $L_{k}=F_{2 k}$ for each $k \in \mathbb{Z}$. Now put

$$
q=\frac{s}{r}, r, s \in \mathbb{Z} \text { with }(r, s)=1
$$

Then, by Lemma 2.2, we obtain $r^{2}-3 r s+s^{2}= \pm 1$, which implies that $r-\alpha s$ is invertible in $\mathbb{Z}[\alpha]$. Hence there exists $n \in \mathbb{Z}$ such that

$$
r-\alpha s=\varepsilon^{-n}, r-\beta s=\varepsilon^{n}
$$

or

$$
r-\alpha s=-\varepsilon^{-n}, r-\beta s=-\varepsilon^{n}
$$

Then we obtain

$$
(r, s)=\left(F_{n+2}, F_{n}\right) \text { or }\left(-F_{n+2},-F_{n}\right)
$$

noting $F_{k}=\frac{\varepsilon^{k}-\varepsilon^{-k}}{\varepsilon-\varepsilon^{-1}}$ and $\alpha-\beta=\varepsilon-\varepsilon^{-1}$.
Remark 2.4.2. Let $\left\{L_{k}\right\}_{k \geq 0}$ denote the Lucas sequence associated to $(P, Q)=(3,1)$. Then we have $\left\{F_{2 k}\right\}_{k \geq 0}=\left\{L_{k}\right\}_{k \geq 0}$ and $\left\{F_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}$.

Propsition 2.5.1. (The case of $P=-3$ and $Q=1)$ Put $f(t)=t /\left(1+3 t+t^{2}\right)$, and let $q \in \mathbb{Q}$. Then $f(q)$ is an integer if and only if $q=-F_{n} / F_{n+2}$ for some $n \in \mathbb{Z}$.

Proof. We can verify

$$
f\left(-\frac{F_{n}}{F_{n+2}}\right)=(-1)^{n-1} F_{n+2} F_{n}
$$

for $n \in \mathbb{Z}(n \neq-2)$ and prove the assertion as in Propsition 2.4.1.

Remark 2.5.2. Let $\left\{L_{k}\right\}_{k \geq 0}$ denote the Lucas sequence associated to $(P, Q)=(-3,1)$. Then we have $\left\{(-1)^{k-1} F_{2 k}\right\}_{k \geq 0}=\left\{L_{k}\right\}_{k \geq 0}$ and $\left\{(-1)^{k} F_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}+L_{k}\right\}_{k \geq 0}$.

Lemma 3.1. Let $P, Q \in \mathbb{Z}$, and put

$$
D=P^{2}-4 Q, \alpha=\frac{P+\sqrt{D}}{2}, \beta=\frac{P-\sqrt{D}}{2} .
$$

Assume that D is not a square. Let $r, s, r^{\prime}, s^{\prime} \in \mathbb{Q}$. Then, $(r-s \alpha) /(r-s \beta)=\left(r^{\prime}-s^{\prime} \alpha\right) /\left(r^{\prime}-s^{\prime} \beta\right)$ if and only if $(r: s)=\left(r^{\prime}: s^{\prime}\right)$.
Proof. We obtain the conclusion immediately, simplifying $(r-s \alpha)\left(r^{\prime}-s^{\prime} \beta\right)=(r-s \beta)\left(r^{\prime}-s^{\prime} \alpha\right)$ and noting that α and β are linearly independent over \mathbb{Q}.

Lemma 3.2. Let $P, Q, r, s \in \mathbb{Z}$ with $(r, Q)=1,(r, s)=1$ and $r \neq 0$, and put $f(t)=(2-P t) /(1-$ $\left.P t+Q t^{2}\right)$. Then, $f(s / r)$ is an integer if and only if $2 r-P s$ is divisible by $r^{2}-\operatorname{Pr} s+Q s^{2}$.

Proof. First note $f(s / r)=r(2 r-P s) /\left(r^{2}-\operatorname{Prs}+Q s^{2}\right)$. Then, $f(s / r)$ is an integer if and only if $r(2 r-P s)$ is divisible by $r^{2}-\operatorname{Prs}+Q s^{2}$. In this case, $2 r-P s$ is divisible by $r^{2}-\operatorname{Pr} s+Q s^{2}$ since $\left(r, r^{2}-\operatorname{Pr} s+Q s^{2}\right)=1$.

Corollary 3.3. Let $P, Q, r, s \in \mathbb{Z}$ with $P^{2}-4 Q \neq 0, Q= \pm 1,(r, s)=1$ and $r \neq 0$, and put $f(t)=(2-P t) /\left(1-P t+Q t^{2}\right), D=P^{2}-4 Q$ and $\alpha=(P+\sqrt{D}) / 2$. If $f(s / r)$ is an integer, then $(r-s \alpha) /(r-s \beta)$ is an invertible element of $\mathbb{Z}[\sqrt{D}]$.
Proof. By Lemma 3.2, $2 r-P s$ is divisible by $r^{2}-\operatorname{Pr} s+Q s^{2}$. Put now $\eta=r-s \alpha$ and $\bar{\eta}=r-s \beta$. Then, we have $\operatorname{Nr} \eta=\operatorname{Nr} \bar{\eta}=r^{2}-\operatorname{Pr} s+Q s^{2}$ and $\eta+\bar{\eta}=2 r-P s$. These imply that $\operatorname{Nr} \eta / \bar{\eta}=1$ and $1 / \eta+1 / \bar{\eta} \in \mathbb{Z}$, and therefore, $\eta / \bar{\eta} \in \mathbb{Z}[\eta] \subset \mathbb{Z}[\sqrt{D}]$. Hence the result.

Lemma 3.4. Let $P, Q \in \mathbb{Z}$. Assume that $P^{2}-4 Q \neq 0$. Let α and β be the roots of the quadratic equation $t^{2}-P t+Q=0$. Then we have:
(1) $\frac{L_{n+1}-\alpha L_{n}}{L_{n+1}-\beta L_{n}}=\frac{\beta^{n}}{\alpha^{n}}=\frac{\beta^{2 n}}{Q^{n}}$,
(2) $\frac{S_{n+1}-\alpha S_{n}}{S_{n+1}-\beta S_{n}}=-\frac{\beta^{n}}{\alpha^{n}}=-\frac{\beta^{2 n}}{Q^{n}}$,
(3) $\frac{\left(L_{n+2}-L_{n+1}\right)-\alpha\left(L_{n+1}-L_{n}\right)}{\left(L_{n+2}-L_{n+1}\right)-\beta\left(L_{n+1}-L_{n}\right)}=-\frac{\beta^{n+1}}{\alpha^{n}}=-\beta^{2 n+1}$ if $Q=1$,
(4) $\frac{\left(L_{n+2}+L_{n+1}\right)-\alpha\left(L_{n+1}+L_{n}\right)}{\left(L_{n+2}+L_{n+1}\right)-\beta\left(L_{n+1}+L_{n}\right)}=\frac{\beta^{n+1}}{\alpha^{n}}=\beta^{2 n+1}$ if $Q=1$.

Proof. We can readily verify (1) and (2), noting

$$
\begin{aligned}
& \left(\alpha^{n+1}-\beta^{n+1}\right)-\alpha\left(\alpha^{n}-\beta^{n}\right)=(\alpha-\beta) \beta^{n},\left(\alpha^{n+1}-\beta^{n+1}\right)-\beta\left(\alpha^{n}-\beta^{n}\right)=(\alpha-\beta) \alpha^{n}, \\
& \left(\alpha^{n+1}+\beta^{n+1}\right)-\alpha\left(\alpha^{n}+\beta^{n}\right)=-(\alpha-\beta) \beta^{n},\left(\alpha^{n+1}+\beta^{n+1}\right)-\beta\left(\alpha^{n}-\beta^{n}\right)=(\alpha-\beta) \alpha^{n} .
\end{aligned}
$$

Assume now $Q=1$. Then we obtain $\alpha \beta=1$, and therefore,

$$
\begin{aligned}
& \left(L_{n+2}-L_{n+1}\right)-\alpha\left(L_{n+1}-L_{n}\right)=\frac{\beta^{n+1}-\beta^{n}}{\alpha-\beta}=\frac{\beta^{n+1}(1-\alpha)}{\alpha-\beta} \\
& \left(L_{n+2}-L_{n+1}\right)-\beta\left(L_{n+1}-L_{n}\right)=\frac{\alpha^{n+1}-\alpha^{n}}{\alpha-\beta}=\frac{\alpha^{n}(\alpha-1)}{\alpha-\beta} \\
& \left(L_{n+2}+L_{n+1}\right)-\alpha\left(L_{n+1}+L_{n}\right)=\frac{\beta^{n+1}+\beta^{n}}{\alpha-\beta}=\frac{\beta^{n+1}(1+\alpha)}{\alpha-\beta} \\
& \left(L_{n+2}+L_{n+1}\right)-\beta\left(L_{n+1}+L_{n}\right)=\frac{\alpha^{n+1}+\alpha^{n}}{\alpha-\beta}=\frac{\alpha^{n}(\alpha+1)}{\alpha-\beta}
\end{aligned}
$$

Theorem 3.5. Let $P, Q \in \mathbb{Z}$ with $P \neq 0, Q= \pm 1$ and $P^{2}-4 Q>0$. Put $f(t)=(2-P t) /(1-$ $\left.P t+Q t^{2}\right)$.
(1) Assume $Q=-1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}$ or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.
(2) Assume $Q=1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}, S_{n} / S_{n+1}$, $\left(L_{n+1}-L_{n}\right) /\left(L_{n+2}-L_{n+1}\right)$ or $\left(L_{n}+L_{n+1}\right) /\left(L_{n+2}+L_{n+1}\right)$ for some $n \in \mathbb{Z}$.
Proof. As is remarked in Formulas 1.9, we have

$$
f\left(\frac{S_{n}}{S_{n+1}}\right)=-\frac{S_{n+1} L_{n}}{Q^{n}} \in \mathbb{Z}, f\left(\frac{L_{n}}{L_{n+1}}\right)=\frac{L_{n+1} S_{n}}{Q^{n}} \in \mathbb{Z}
$$

Moreover, in the case of $Q=1$, we can verify

$$
\begin{aligned}
f\left(\frac{L_{n+1}-L_{n}}{L_{n+2}-L_{n+1}}\right) & =-\left(L_{n+2}-L_{n+1}\right)\left(L_{n+1}+L_{n}\right) \in \mathbb{Z} \\
f\left(\frac{L_{n+1}+L_{n}}{L_{n+2}+L_{n+1}}\right) & =\left(L_{n+2}+L_{n+1}\right)\left(L_{n+1}-L_{n}\right) \in \mathbb{Z}
\end{aligned}
$$

noting

$$
\begin{gathered}
\left(L_{n+2}-L_{n+1}\right)^{2}-P\left(L_{n+2}-L_{n+1}\right)\left(L_{n+1}-L_{n}\right)+\left(L_{n+1}-L_{n}\right)^{2}=2-P \\
2\left(L_{n+2}-L_{n+1}\right)-P\left(L_{n+1}-L_{n}\right)=-(2-P)\left(L_{n+1}+L_{n}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\left(L_{n+2}+L_{n+1}\right)^{2}-P\left(L_{n+2}+L_{n+1}\right)\left(L_{n+1}+L_{n}\right)+\left(L_{n+1}+L_{n}\right)^{2}=2+P \\
2\left(L_{n+2}+L_{n+1}\right)-P\left(L_{n+1}+L_{n}\right)=(2+P)\left(L_{n+1}-L_{n}\right)
\end{gathered}
$$

repectively.
Conversely, assume that $f(q)$ is an integer. Put

$$
D=P^{2}-4 Q, \alpha=\frac{P+\sqrt{D}}{2}, \beta=\frac{P-\sqrt{D}}{2}
$$

Then α is invertible in the ring $\mathbb{Z}[\alpha]$.

Now we assume $(P, Q) \neq(\pm 3,1)$, which implies that α generates the multiplicative group $\mathbb{Z}[\alpha]^{\times} /\{ \pm 1\}$ by Lemma 2.1. Put

$$
q=\frac{s}{r}, r, s \in \mathbb{Z} \text { with }(r, s)=1
$$

Then, by Corollary $3.3,(r-s \alpha) /(r-s \beta)$ is an invertible element of $\mathbb{Z}[\alpha]$.
First assume $Q=-1$. Then we have

$$
\frac{r-s \alpha}{r-s \beta}= \pm(-1)^{n} \beta^{2 n}
$$

for some $n \in \mathbb{Z}$ since $\operatorname{Nr}(r-\alpha s)=\operatorname{Nr}(r-\beta s)$ and $\operatorname{Nr} \beta=-1$. Hence we obtain

$$
(s: r)=\left(L_{n}: L_{n+1}\right) \text { or }\left(S_{n}: S_{n+1}\right)
$$

by Lemma 3.1 and Lemma 3.4.
Assume now $Q=1$. Then we have

$$
\frac{r-s \alpha}{r-s \beta}= \pm \beta^{2 n} \text { or } \frac{r-s \alpha}{r-s \beta}=\mp \beta^{2 n+1}
$$

for some $n \in \mathbb{Z}$. Then we obtain

$$
(s: r)=\left(L_{n}: L_{n+1}\right),\left(S_{n}: S_{n+1}\right),\left(L_{n+1}-L_{n}: L_{n+2}-L_{n+1}\right) \text { or }\left(L_{n+1}+L_{n}: L_{n+2}+L_{n+1}\right)
$$

again by Lemma 3.1 and Lemma 3.4.
We treat the case of $(p, Q)=(\pm 3,1)$ separately in 3.6 and 3.7.
Remark 3.5.1. In the case of $Q=1$, we have

$$
\frac{L_{-n-1}-L_{-n-2}}{L_{-n}-L_{-n-1}}=\frac{L_{n+2}-L_{n+1}}{L_{n+1}-L_{n}}, \frac{L_{-n-1}+L_{-n-2}}{L_{-n}+L_{-n-1}}=\frac{L_{n+2}+L_{n+1}}{L_{n+1}+L_{n}}
$$

and

$$
f\left(\frac{L_{n+2}-L_{n+1}}{L_{n+1}-L_{n}}\right)=f\left(\frac{L_{n+1}+L_{n}}{L_{n+2}+L_{n+1}}\right), f\left(\frac{L_{n+1}+L_{n}}{L_{n+2}+L_{n+1}}\right)=f\left(\frac{L_{n+1}-L_{n}}{L_{n+2}-L_{n+1}}\right)
$$

Propsition 3.6.1. (The case of $P=3$ and $Q=1)$ Put $f(t)=(2 t-3) /\left(1-3 t+t^{2}\right)$, and let $q \in \mathbb{Q}$. Then $f(q)$ is an integer if and only if $q=F_{n} / F_{n+2}$ or $\Lambda_{n} / \Lambda_{n+2}$ for some $n \in \mathbb{Z}$.

Proof. Put $\varepsilon=(1+\sqrt{5}) / 2$. Then the roots of the quadratic equation $t^{2}-3 t+1=0$ are given by $\alpha=\varepsilon^{2}=(3+\sqrt{5}) / 2$ and $\beta=\varepsilon^{-2}=(3-\sqrt{5}) / 2$. Furthermore, ε generates the multiplicative group $\mathbb{Z}\left[\varepsilon^{2}\right]^{\times} /\{ \pm 1\}=\mathbb{Z}[\varepsilon]^{\times} /\{ \pm 1\}$.

Now put

$$
q=\frac{s}{r}, r, s \in \mathbb{Z} \text { with }(r, s)=1
$$

and assume that $f(q)$ is an integer. Then, By Corollary 3.3 , there exists $n \in \mathbb{Z}$ such that

$$
\frac{r-s \alpha}{r-s \beta}= \pm \varepsilon^{-2 n}
$$

since $\operatorname{Nr}(r-\alpha s)=\operatorname{Nr}(r-\beta s)$ and $\operatorname{Nr} \varepsilon=-1$. That is to say, there exists $n \in \mathbb{Z}$ such that

$$
\frac{r-s \alpha}{r-s \beta}= \pm \beta^{n}
$$

Hence we obtain

$$
(s: r)=\left(L_{n}: L_{n+1}\right),\left(S_{n}: S_{n+1}\right),\left(L_{n+1}-L_{n}: L_{n+2}-L_{n+1}\right) \text { or }\left(L_{n+1}+L_{n}: L_{n+2}+L_{n+1}\right)
$$

by Lemma 3.1 and Lemma 3.4. At last, we obtain the result, noting

$$
L_{n}=F_{2 n}, S_{n}=\Lambda_{2 n}, L_{n+1}-L_{n}=F_{2 n+1}, L_{n+1}+L_{n}=\Lambda_{2 n+1}
$$

Remark 3.6.2. Let $\left\{L_{k}\right\}_{k \geq 0}$ denote the Lucas sequence associated to $(P, Q)=(3,1)$. Then we have $\left\{F_{2 k}\right\}_{k \geq 0}=\left\{L_{k}\right\}_{k \geq 0}$ and $\left\{F_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}$, as is remarked in 2.4.2, and $\left\{\Lambda_{2 k}\right\}_{k \geq 0}=\left\{S_{k}\right\}_{k \geq 0}$ and $\left\{\Lambda_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}+L_{k}\right\}_{k \geq 0}$.

We can similarly prove the following:
Propsition 3.7.1. (The case of $P=-3$ and $Q=1$) Put $f(t)=(2 t+3) /\left(1+3 t+t^{2}\right)$, and let $q \in \mathbb{Q}$. Then $f(q)$ is an integer if and only if $q=-F_{n} / F_{n+2}$ or $-\Lambda_{n} / \Lambda_{n+2}$ for some $n \in \mathbb{Z}$.

Remark 3.7.2. Let $\left\{L_{k}\right\}_{k \geq 0}$ denote the Lucas sequence associated to $(P, Q)=(-3,1)$. Then we have $\left\{(-1)^{k-1} F_{2 k}\right\}_{k \geq 0}=\left\{L_{k}\right\}_{k \geq 0}$ and $\left\{(-1)^{k} F_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}+L_{k}\right\}_{k \geq 0}$, as is remarked in 2.5.2, and $\left\{(-1)^{k} \Lambda_{2 k}\right\}_{k \geq 0}=\left\{S_{k}\right\}_{k \geq 0}$ and $\left\{(-1)^{k} \Lambda_{2 k+1}\right\}_{k \geq 0}=\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}$.

4. Preceeding results

4.1. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal solution of the Pell equation $x^{2}-N y^{2}= \pm 1$. Define two integer sequences $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{n}\right\}_{n \geq 0}$ by

$$
U_{n}=\frac{(a+b \sqrt{N})^{n}-(a-b \sqrt{N})^{n}}{2 \sqrt{N}}
$$

and

$$
V_{n}=\frac{(a+b \sqrt{N})^{n}+(a-b \sqrt{N})^{n}}{2}
$$

Put $P=2 a$ and $Q=a^{2}-N b^{2}= \pm 1$. Then $\left\{U_{n}\right\}_{n \geq 0},\left\{V_{n}\right\}_{n \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Z})$. The generating functions of $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{n}\right\}_{n \geq 0}$ are given by

$$
\frac{b t}{1-P t+Q t^{2}}
$$

and

$$
\frac{1}{2} \frac{1-a t}{1-P t+Q t^{2}}
$$

respectively. We have also

$$
U_{n}=b L_{n}, \quad V_{n}=\frac{1}{2} S_{n}
$$

for each $n \in \mathbb{Z}$, where $\left\{L_{n}\right\}_{n \geq 0}$ and $\left\{S_{n}\right\}_{n \geq 0}$ denote the Lucas sequence and the companion Lucas sequence associated to (P, Q), respectively.

Tsuno [6] proves the following assertions:
(1) Put $f(t)=\frac{b t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=U_{n} / U_{n+1}$ or $Q U_{n+1} / U_{n}$ for some $n \geq 0$.
(2) Put $f(t)=\frac{1}{2} \frac{1-a t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=$ $U_{n} / U_{n+1}, V_{n} / V_{n+1}, q=Q U_{n+1} / U_{n}$ or $Q V_{n+1} / V_{n}$ for some $n \geq 0$.

Noting

$$
U_{n} / U_{n+1}=L_{n} / L_{n+1}, U_{n+1} / U_{n}=L_{n+1} / L_{n}, V_{n} / V_{n+1}=S_{n} / S_{n+1}, V_{n+1} / V_{n}=S_{n+1} S_{n}
$$

and

$$
L_{n+1} / L_{n}=Q L_{-n-1} / L_{-n}, S_{n+1} / S_{n}=Q S_{-n-1} / S_{-n}
$$

we can restate the above assetions as follows:
$(1)^{\prime}$ Put $f(t)=\frac{b t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=\frac{1}{2} \frac{1-a t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=$ L_{n} / L_{n+1} or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.

Now we deduce these assertions from ours.
In the case of (1)' we have

$$
f\left(\frac{L_{n}}{L_{n+1}}\right)=\frac{b L_{n+1} L_{n}}{Q^{n}} \in \mathbb{Z} .
$$

Conversely, put $q=s / r(r, s \in \mathbb{Z}$ with $(r, s)=1)$, and assume that $f(q)$ is an integer. Then b is divisible by $r^{2}-\operatorname{Prs}+Q s^{2}$ since brs is divisible by $r^{2}-\operatorname{Pr}+Q s^{2}$ and $\left(r s, r^{2}-P r s+Q s^{2}\right)=1$. Put now $\eta=(r+s a)-s b \sqrt{N}$ and $d=(r+s a, s b)$. Then $\operatorname{Nr} \eta=r^{2}-\operatorname{Pr} s+Q s^{2}$. Moreover, η / d is invertible in $\mathbb{Z}[\sqrt{N}]$,

Indeed, b is divisible by d^{2} and b / d^{2} is divisible by $\operatorname{Nr}(\eta / d)$ since b is divisible by $\operatorname{Nr} \eta$. Assume now $\operatorname{Nr}(\eta / d) \neq \pm 1$, and let p be a prime divisor of $\operatorname{Nr}(\eta / d)$. Then, we could conclude that b / d and $(r+s a) / d$ are both divisible by p, noting

$$
\mathrm{Nr} \frac{\eta}{d}=\left(\frac{r+s a}{d}\right)^{2}-s^{2}\left(\frac{b}{d}\right)^{2} .
$$

However, this contradicts the fact that $(r+s a) / d$ and b / d are prime to each other.
The multiplicatve group $\mathbb{Z}[\sqrt{N}]^{\times} /\{ \pm 1\}$ is generated by $\alpha=a+b \sqrt{N}$ since (a, b) is the minimal solution of the Pell equation $x^{2}-N y^{2}= \pm 1$. Hence, we obtain $(r-s \alpha) / d= \pm \beta^{n}$ and $(r-s \beta) / d= \pm \alpha^{n}$, and therefore $r / s=L_{n+1} / L_{n}$ for some $n \in \mathbb{Z}$.

On the other hand, in the case of $(2)^{\prime}$ we have

$$
\begin{gathered}
f\left(\frac{S_{n}}{S_{n+1}}\right)=\frac{S_{n+1} L_{n}}{2}, f\left(\frac{L_{n}}{L_{n+1}}\right)=-\frac{L_{n+1} S_{n}}{2}, \\
f\left(\frac{L_{n+1}-L_{n}}{L_{n+2}-L_{n+1}}\right)=-\frac{1}{2}\left(L_{n+2}-L_{n+1}\right)\left(L_{n+1}+L_{n}\right), \\
f\left(\frac{L_{n+1}+L_{n}}{L_{n+2}+L_{n+1}}\right)=\frac{1}{2}\left(L_{n+2}+L_{n+1}\right)\left(L_{n+1}-L_{n}\right) .
\end{gathered}
$$

Hence, we can conclude

$$
f\left(\frac{S_{n}}{S_{n+1}}\right), f\left(\frac{L_{n}}{L_{n+1}}\right) \in \mathbb{Z}
$$

noting that S_{k} is even for each $k \in \mathbb{Z}$ since $S_{0}=2$ and $S_{1}=2$. Furtheremore, we can verify $L_{k} \equiv k \bmod 2$ for each k, noting $L_{0}=0, L_{1}=1$ and $L_{2} \equiv 0 \bmod 2$. Hence we obtain

$$
f\left(\frac{L_{n+1}-L_{n}}{L_{n+2}-L_{n+1}}\right), f\left(\frac{L_{n+1}+L_{n}}{L_{n+2}+L_{n+1}}\right) \notin \mathbb{Z}
$$

4.2. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal solution of the Pell equation $x^{2}-N y^{2}= \pm 4$. Define two integer sequences $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{n}\right\}_{n \geq 0}$ by

$$
U_{n}=\frac{(a+b \sqrt{N})^{n}-(a-b \sqrt{N})^{n}}{2^{n} \sqrt{N}}
$$

and

$$
V_{n}=\frac{(a+b \sqrt{N})^{n}+(a-b \sqrt{N})^{n}}{2^{n}}
$$

Put $P=a$ and $Q=\left(a^{2}-N b^{2}\right) / 4= \pm 1$. Then $\left\{U_{n}\right\}_{n \geq 0},\left\{V_{n}\right\}_{n \geq 0} \in \mathcal{L}(P, Q \mathbb{Z})$. The generating functions of $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{n}\right\}_{n \geq 0}$ are given by

$$
\frac{b t}{1-P t+Q t^{2}}
$$

and

$$
\frac{2-a t}{1-P t+Q t^{2}}
$$

respectively. We have also

$$
U_{n}=b L_{n}, \quad V_{n}=S_{n}
$$

for each $n \in \mathbb{Z}$, where $\left\{L_{n}\right\}_{n \geq 0}$ and $\left\{S_{n}\right\}_{n \geq 0}$ denote the Lucas sequence and the companion Lucas sequence associated to (P, Q), respectively.

Tsuno [7] proves the following assertions, under the assumption $N \geq 5$:
(1) Put $f(t)=\frac{b t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=U_{n} / U_{n+1}$ or $Q U_{n+1} / U_{n}$ for some $n \geq 0$.
(2) Put $f(t)=\frac{1}{2} \frac{1-a t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then:
(a) Assume $Q=-1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=U_{n} / U_{n+1},-U_{n+1} / U_{n}$, V_{n} / V_{n+1} or $-V_{n+1} / V_{n}$ for some $n \in \mathbb{Z}$.
(b) Assume $Q=1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q= \pm 1$ or $q=U_{n} / U_{n+1}$, $U_{n} / U_{n+1}, V_{n} / V_{n+1}, V_{n+1} / V_{n}, U_{2 n-1} /\left(U_{2 n} \pm U_{1}\right.$ or $\left.U_{2 n+1}\right) /\left(U_{2 n+1} \pm U_{1}\right)$ some $n \in \mathbb{Z}$.

We can restate (1) and (2) as follows:
$(1)^{\prime}$ Put $f(t)=\frac{b t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then, $f(q)$ is an integer if and only if $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) ${ }^{\prime}$ Put $f(t)=\frac{2-a t}{1-P t+Q t^{2}}$, and let $q \in \mathbb{Q}$. Then:
(a) Assume $Q=-1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}$ or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.
(b) Assume $Q=1$. Then, $f(q)(q \in \mathbb{Q})$ is an integer if and only if $q=L_{n} / L_{n+1}, S_{n} / S_{n+1}$, $\left(L_{n}-L_{n-1}\right) /\left(L_{n+1}-L_{n}\right)$ or $\left(L_{n}-L_{n-1}\right) /\left(L_{n+1}-L_{n}\right)$ some $n \in \mathbb{Z}$.

Indeed, we can deduce the assertion (1) from Theorem 2.3 as in 4.1 . Now we deduce the assertion (2) from Theorem 3.5. First note

$$
U_{n} / U_{n+1}=L_{n} / L_{n+1}, U_{n+1} / U_{n}=L_{n+1} / L_{n}, \quad V_{n} / V_{n+1}=S_{n} / S_{n+1}, V_{n+1} / V_{n}=S_{n+1} / S_{n}
$$

and

$$
L_{n+1} / L_{n}=Q L_{-n-1} / L_{-n}, S_{n+1} / S_{n}=Q S_{-n-1} / S_{-n}
$$

Furthermore, if $Q=1$, then we have

$$
\frac{L_{0}-L_{-1}}{L_{1}-L_{0}}=1, \frac{L_{0}+L_{-1}}{L_{1}-L_{0}}=-1
$$

and

$$
\begin{aligned}
\frac{L_{n}-L_{n-1}}{L_{n+1}-L_{n}} & =\frac{L_{2 n-1}}{L_{2 n}-1}, \frac{L_{n}+L_{n-1}}{L_{n+1}+L_{n}}=\frac{L_{2 n-1}}{L_{2 n}+1} \\
\frac{L_{n+1}+L_{n}}{L_{n}+L_{n-1}} & =\frac{L_{2 n+1}}{L_{2 n}-L_{1}}, \frac{L_{n+1}-L_{n}}{L_{n}-L_{n-1}}=\frac{L_{2 n+1}}{L_{2 n}+L_{1}}
\end{aligned}
$$

which follow from

$$
\begin{aligned}
\left(L_{n}-L_{n-1}\right)\left(L_{2 n}-1\right) & =L_{2 n-1}\left(L_{n+1}-L_{n}\right),\left(L_{n}+L_{n-1}\right)\left(L_{2 n}+1\right)=L_{2 n-1}\left(L_{n+1}+L_{n}\right) \\
\left(L_{n+1}+L_{n}\right)\left(L_{2 n}-L_{1}\right) & =L_{2 n+1}\left(L_{n}+L_{n-1}\right),\left(L_{n+1}-L_{n}\right)\left(L_{2 n}+L_{1}\right)=L_{2 n+1}\left(L_{n}-L_{n-1}\right)
\end{aligned}
$$

respectively. We can honestly verify these equalities, using the formula

$$
L_{n} L_{m}=\frac{S_{n+m}-S_{n-m}}{D}
$$

Hence, the assertion $(2)^{\prime}$ is nothing but Theorem 3.5.

5. An observation

In this section, we fix $P, Q \in \mathbb{Z}$ and put $D=P^{2}-4 Q$.
Notation 5.1. Let $P, Q \in \mathbb{Z}$. As is well known, the $\operatorname{map}\left\{w_{k}\right\}_{k \geq 0} \mapsto\left(w_{0}, w_{1}\right)$ gives rise to a \mathbb{Q}-linear isomorphism $\mathcal{L}(P, Q ; \mathbb{Q}) \xrightarrow{\sim} \mathbb{Q}^{2}$.

Now put $\tilde{R}=\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)$ and $\theta=t \bmod \left(t^{2}-P t+Q\right)$. We define a \mathbb{Q}-linear map $\omega: \tilde{R} \rightarrow \mathbb{Q}$ by $\omega(a+b \theta)=b(a, b \in \mathbb{Q})$. Moreover, we define a \mathbb{Q}-linear map $\tilde{\omega}: \tilde{R} \rightarrow \mathbb{Q}^{\mathbb{N}}$ by $\tilde{\omega}(\eta)=\left\{\omega\left(\eta \theta^{k}\right)\right\}_{k \geq 0}$. For $\eta=a+b \theta \in \tilde{R}$, we have $\tilde{\omega}(\eta)=\{b, a+P b, \ldots\}$.

We can verify the following statements, paraphrasing the proofs of [4, Prop.3.2 and Cor.3.3].
(1) The \mathbb{Q}-linear map $\tilde{\omega}: \tilde{R} \rightarrow \mathcal{L}(P, Q ; \mathbb{Q}) \subset \mathbb{Q}^{\mathbb{N}}$ is bijective.
(2) A \mathbb{Q}-algebra structure of $\mathcal{L}(P, Q ; \mathbb{Q})$ is defined through the \mathbb{Q}-linear isomorphism $\tilde{\omega}: \tilde{R} \xrightarrow{\sim}$ $\mathcal{L}(P, Q ; \mathbb{Q})$. Then the Lucas sequence $\left\{L_{k}\right\}_{k \geq 0}=\tilde{\omega}(1)$ is the unit of the ring $\mathcal{L}(P, Q ; \mathbb{Q})$.

More precisely, let $\boldsymbol{w}=\left\{w_{k}\right\}_{k \geq 0}, \boldsymbol{w}^{\prime}=\left\{w_{k}^{\prime}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$. Then the product of \boldsymbol{w} and \boldsymbol{w}^{\prime} is given by

$$
\left(w_{0} w_{1}^{\prime}+w_{1} w_{0}^{\prime}-P w_{0} w_{0}^{\prime}, w_{1} w_{1}^{\prime}-Q w_{0} w_{0}^{\prime}, \ldots\right)
$$

It is readily seen that the multiplication by θ on \tilde{R} induces the shift operation $\left\{w_{k}\right\}_{k \geq 0} \mapsto$ $\left\{w_{k+1}\right\}_{k \geq 0}$ on $\mathcal{L}(P, Q ; \mathbb{Q})$ through the isomorphism $\tilde{\omega}: \tilde{R} \xrightarrow{\sim} \mathcal{L}(P, Q ; \mathbb{Q})$.
(3) Let $\eta=a+b \theta \in \tilde{R}=\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)(a, b \in \mathbb{Q})$. Then $\eta \mapsto \bar{\eta}$ gives rise to a \mathbb{Q} automorphism of \tilde{R}. Moreover, we define $\operatorname{Nr} \eta \in \mathbb{Q}$ by $\operatorname{Nr} \eta=\eta \bar{\eta}=a^{2}+P a b+Q b^{2}$. For example, we have $\operatorname{Nr} \theta=Q$. Obviously, η is invertible in \tilde{R} if and only if $\operatorname{Nr} \eta \neq 0$.

Now let $\boldsymbol{w}=\left\{w_{k}\right\}_{k \geq 0} \in \mathcal{L}(P, Q ; \mathbb{Q})$. Define $\Delta(\boldsymbol{w}) \in \mathbb{Q}$ by $\Delta(\boldsymbol{w})=w_{1}^{2}-P w_{0} w_{1}+Q w_{0}^{2}$. If $\eta \in \tilde{R}$ and $\boldsymbol{w}=\tilde{\omega}(\eta)$, then we have $\operatorname{Nr} \eta=\Delta(\boldsymbol{w})$. Therefore, the sequence $\boldsymbol{w}=\left\{w_{k}\right\}_{k \geq 0}$ is invertible in $\mathcal{L}(P, Q ; \mathbb{Q})$ if and only if $\Delta(\boldsymbol{w})=w_{1}^{2}-P w_{0} w_{1}+Q w_{0}^{2} \neq 0$.

Notation 5.2. We put $\delta=-P+2 \theta \in \tilde{R}$. Then we have $\delta^{2}=D$ and $\operatorname{Nr} \delta=-D$. The sequence $\tilde{\omega}(\delta)$ is nothing but the companion Lucas sequence $\left(S_{k}\right)_{k \geq 0}$ associated to (P, Q).

Notation 5.3. We define groups $G_{P, Q}(\mathbb{Q}), G_{(P, Q)}(\mathbb{Q})$ and $U_{P, Q}(\mathbb{Q})$ by

$$
\begin{aligned}
G_{P, Q}(\mathbb{Q}) & =\left(\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)\right)^{\times}, \\
G_{(P, Q)}(\mathbb{Q}) & =\operatorname{Coker}\left[i: \mathbb{Q}^{\times} \rightarrow\left(\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)\right)^{\times}\right], \\
U_{P, Q}(\mathbb{Q}) & =\operatorname{Ker}\left[\operatorname{Nr}:\left(\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)\right)^{\times} \rightarrow \mathbb{Q}^{\times}\right] .
\end{aligned}
$$

Here $i: \mathbb{Q}^{\times} \rightarrow\left(\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)\right)^{\times}$denotes the inclusion map. Moreover, we define a homomorphism of groups $\gamma: G_{P, Q}(\mathbb{Q}) \rightarrow U_{P, Q}(\mathbb{Q})$ by $\gamma(\eta)=\eta / \bar{\eta}=\eta^{2} / \mathrm{Nr} \eta$. Then we have $\operatorname{Ker}\left[\gamma: G_{P, Q}(\mathbb{Q}) \rightarrow U_{P, Q}(\mathbb{Q})\right]=\mathbb{Q}^{\times}$, and γ is surjective by Hilbert 90 . Hence γ induces an isomorphism of groups $\tilde{\gamma}: G_{(P, Q)}(\mathbb{Q})=G_{P, Q}(\mathbb{Q}) / \mathbb{Q}^{\times} \xrightarrow{\sim} U_{P, Q}(\mathbb{Q})$. It is readily seen:
(a) If D is a square in \mathbb{Q}^{\times}, then $U_{P, Q}(\mathbb{Q})$ is isomorphic to the multiplicative group \mathbb{Q}^{\times};
(b) If $D=0$, then $U_{P, Q}(\mathbb{Q})$ is isomorphic to the additive group \mathbb{Q};
(c) If D is not a square in \mathbb{Q}, then $U_{P, Q}(\mathbb{Q})$ is isomorphic to the multiplicative group $\operatorname{Ker}[\mathrm{Nr}$: $\left.\mathbb{Q}(\sqrt{D})^{\times} \rightarrow \mathbb{Q}^{\times}\right]$.
Hence, if $D \neq 0$, then we obtain $\gamma(\delta)=-1$, which is a unique element of order 2 of $U_{P, Q}(\mathbb{Q})$.
Assume now $Q \neq 0$. Then θ is invertible in $\tilde{R}=\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)$. Let Θ denote the subgroup of $G_{(P, Q)}(\mathbb{Q})$ generated by θ. Then the group $G_{(P, Q)}(\mathbb{Q}) / \Theta$ is isomorphic to the group $G(f)$ defined by Laxton [2] under the assumptions: $(P, Q)=1$ and $D=P^{2}-4 Q \neq 0$ ([4, Th.4.2] and [5, Th.4.2]). Here $f(t)=t^{2}-P t+Q$.

Remark 5.3.1. The groups $G_{P, Q}(\mathbb{Q}), G_{(P, Q)}(\mathbb{Q})$ and $U_{P, Q}(\mathbb{Q})$ are the \mathbb{Q}-rational points of the group schemes $G_{P, Q}, G_{(P, Q)}$ and $U_{P, Q}$, respectively. For details, we refer to [4, Section 1] and [5, Section 1].

Hereafter, we investigate the elements of order 2 of $G_{(P, Q)}(\mathbb{Q}) / \Theta$.
Proposition 5.4. Let $\eta \in G_{P, Q}(\mathbb{Q})$. Then:
(1) There exists $\xi \in U_{P, Q}(\mathbb{Q})$ such that $\xi^{2}=\gamma(\eta)$ if and only if $\operatorname{Nr} \eta$ is a square in \mathbb{Q}. In this case, the solutions of the equation $\xi^{2}=\gamma(\eta)$ in $U_{P, Q}(\mathbb{Q})$ are given by $\xi= \pm \eta / \sqrt{\mathrm{Nr} \eta}$.
(2) Assume that $\operatorname{Nr} \eta$ is a square in \mathbb{Q}, and put $\eta=u+v \delta(u, v \in \mathbb{Q})$. If $D v \neq 0$, then we have $\pm \eta / \sqrt{\mathrm{Nr} \eta}=\gamma(\eta \pm \sqrt{\mathrm{Nr} \eta})$.

Proof. (1) Assume first that $\operatorname{Nr} \eta$ is a square in \mathbb{Q}. Then we have $\pm \eta / \sqrt{\operatorname{Nr} \eta} \in U_{P, Q}(\mathbb{Q})$ and $(\pm \eta / \sqrt{\mathrm{Nr} \eta})^{2}=\eta^{2} / \mathrm{Nr} \eta=\gamma(\eta)$.

Conversely, assume that there exists $\xi \in U_{P, Q}(\mathbb{Q})$ such that $\xi^{2}=\gamma(\eta)$. Taking $\tilde{\xi} \in G_{P, Q}(\mathbb{Q})$ such that $\gamma(\tilde{\xi})=\xi$, we obtain $\eta=a \xi^{2}$ for some $a \in \mathbb{Q}^{\times}$. This implies $\operatorname{Nr} \eta=a^{2}(\operatorname{Nr} \xi)^{2}$.
(2) Put $\tilde{\xi}=\eta \pm \sqrt{\mathrm{Nr} \eta}$. Then we obtain $\tilde{\xi}^{2}=2(u \pm \sqrt{\eta}) \eta$, and therefore $\gamma(\tilde{\xi})^{2}=\gamma(\eta)$ since Nr $\eta=u^{2}-D v^{2} \neq u^{2}$.

Remark 5.5. Assume $D=0$. Let $\eta=u+v \delta \in \tilde{R}=\mathbb{Q}[t] /\left(t^{2}-P t+Q\right)(u, v \in \mathbb{Q})$. Then we obtain $\eta^{2}=u^{2}+2 u v \delta$ and $\operatorname{Nr} \eta=u^{2}$, noting $\delta^{2}=D$. Hence, η is invertible in \tilde{R} if and only if $u \neq 0$. In this case, we have $\gamma(\eta)=1+2 v \delta / u$, and the solutions of $\xi^{2}=\gamma(\eta)$ in $U_{P, Q}(\mathbb{Q})$ are given by $\xi= \pm(1+v \delta / u)$.

Corollary 5.6. Assume that $Q \neq 0$ and $D \neq 0$. Then there exists $\xi \in U_{P, Q}(\mathbb{Q})$ such that $\xi^{2}=\gamma(\theta)$ in $U_{P, Q}(\mathbb{Q})$ if and only if $Q=\operatorname{Nr} \theta$ is a square in \mathbb{Q}. In this case, the solutions of the equation $\xi^{2}=\gamma(\theta)$ in $U_{P, Q}(\mathbb{Q})$ are given by $\xi= \pm \theta / \sqrt{Q}=\gamma(\theta \pm \sqrt{Q})$.

The following assertion is a direct consequence of Corollary 5.6.
Corollary 5.7. Assume that $Q \neq 0$ and $D \neq 0$. Then:
(1) If Q is a square in \mathbb{Q} and $P \neq 0, \pm \sqrt{Q}$, then the kernel of the square map on $G_{(P, Q)}(\mathbb{Q}) / \Theta$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(2) If Q is not a square in \mathbb{Q}, then the kernel of the square map on $G_{(P, Q)}(\mathbb{Q}) / \Theta$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.

Example 5.8. Assume $Q=1$ and $P \neq 0, \pm 1, \pm 2$. Then we have

$$
\begin{gathered}
(\theta+1)^{2}=(P+2) \theta, \mathrm{Nr}(\theta+1)=P+2, \gamma(\theta+1)=\theta \\
(\theta-1)^{2}=(P-2) \theta, \operatorname{Nr}(\theta-1)=-P+2, \gamma(\theta-1)=-\theta \\
(\theta+1)(\theta-1)=P \theta-2=\theta \delta
\end{gathered}
$$

Furthermore, the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta]=1,[\theta+1],[\theta-1],[\delta]\}$.
Observation 5.9. Put $f(t)=(2-t) /\left(1-P t+t^{2}\right)$, the generating function of the companion Lucas sequence associated to $(P, 1)$. Let $q \in \mathbb{Q}$. Theorem 3.5, Proposition 3.6.1 and Proposition 3.7.1 assert that $f(q) \in \mathbb{Z}$ if and only if $q=w_{n} / w_{n+1}$ for some $n \in \mathbb{Z}$, where $\left\{w_{k}\right\}_{k \geq 0}=\tilde{\omega}(\eta)$ and $[\eta] \in\{[\theta],[\delta],[\theta+1],[\theta-1]\} \subset G_{(P, 1)}(\mathbb{Q}) / \Theta$. The author is not sure whether this is a chance or an apperance of a deeper fact. However, the following examples suggest that there is hidden something to consider.

Example 5.10.1. Let $P=0$ and $Q=1$. Then we have

$$
\begin{gathered}
\left\{L_{k}\right\}_{k \geq 0}=\{0,1,0,-1,0,1, \ldots\},\left\{S_{k}\right\}_{k \geq 0}=\{2,0,-2,0,2,0, \ldots\} \\
\left\{L_{k+1}+L_{k}\right\}_{k \geq 0}=\{1,1,-1,-1,1,1, \ldots\},\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}=\{1,-1,-1,1,1,-1, \ldots\}
\end{gathered}
$$

and the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta]=[\delta],[\theta+1]=[\theta-1]\}$. Moreover, let $q \in \mathbb{Q}$.
(1) Put $f(t)=t /\left(1+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0$, i.e. $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=2 /\left(1+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0, \pm 1$, i.e. $q=L_{n} / L_{n+1}$ or $\left(L_{n+1}+L_{n}\right) /\left(L_{n+2}+L_{n+1}\right)$ for some $n \in \mathbb{Z}$.

Example 5.10.2. Let $P=1$ and $Q=1$. Then we have

$$
\begin{aligned}
\left\{L_{k}\right\}_{k \geq 0}=\{0,1,1,0,-1,-1,0,1, \ldots\},\left\{S_{k}\right\}_{k \geq 0}=\{2,1,-1,-2,-1,1,2,1, \ldots\}, \\
\left\{L_{k+1}+L_{k}\right\}_{k \geq 0}=\{1,2,1,-1,-2,-1,2,1, \ldots\},\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}=\{1,0,-1,-1,0,1,1,0, \ldots\},
\end{aligned}
$$

and the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta]=[\theta-1],[\delta]=[\theta+1]\}$. Moreover, let $q \in \mathbb{Q}$.
(1) Put $f(t)=t /\left(1-t+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0,1$, i.e. $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=(2-t) /\left(1-t+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0,1,2,1 / 2$, i.e. $q=L_{n} / L_{n+1}$ or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.

Example 5.10.3. Let $P=-1$ and $Q=1$. Then we have

$$
\begin{aligned}
\left\{L_{k}\right\}_{k \geq 0} & =\{0,1,-1,0,1, \ldots\},\left\{S_{k}\right\}_{k \geq 0}=\{2,-1,-1,2,-1, \ldots\} \\
\left\{L_{k+1}+L_{k}\right\}_{k \geq 0} & =\{1,0,-1,1,0, \ldots\},\left\{L_{k+1}-L_{k}\right\}_{k \geq 0}=\{1,-2,1,1,-2, \ldots\}
\end{aligned}
$$

and the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta]=[\theta+1],[\delta]=[\theta-1]\}$. Moreover, let $q \in \mathbb{Q}$.
(1) Put $f(t)=t /\left(1+t+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0,-1$, i.e. $q=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=(2+t) /\left(1+t+t^{2}\right)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=0,-1,-2,-1 / 2$, i.e. $q=L_{n} / L_{n+1}$ or S_{n} / S_{n+1} for some $n \in \mathbb{Z}$.

Example 5.10.4. Let $P=2$ and $Q=1$. Then we have

$$
L_{k}=k 1^{k-1}, S_{k}=2 \cdot 1^{k}, L_{k+1}+L_{k}=2 k 1^{k-1}+1^{k}, L_{k+1}-L_{k}=1^{k}
$$

and the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta],[\theta+1]\}$. Moreover, let $q \in \mathbb{Q}$.
(1) Put $f(t)=t /(1-t)^{2}$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=n /(n+1)=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=(2-2 t) /(1-t)^{2}=2 /(1-t)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=n /(n+1)=L_{n} / L_{n+1}$ or $q=(2 n+1) /(2 n+3)=\left(L_{n+1}+L_{n}\right) /\left(L_{n+2}+L_{n+1}\right)$ for some $n \in \mathbb{Z}$.

Example 5.10.5. Let $P=-2$ and $Q=1$. Then we have

$$
L_{k}=k(-1)^{k-1}, S_{k}=2 \cdot(-1)^{k}, L_{k+1}+L_{k}=(-1)^{k}, L_{k+1}-L_{k}=-2 k(-1)^{k-1}+(-1)^{k}
$$

and the kernel of the square map on $G_{(P, 1)}(\mathbb{Q}) / \Theta$ is given by $\{[\theta],[\theta-1]\}$. Moreover, let $q \in \mathbb{Q}$. (1) Put $f(t)=t /(1+t)^{2}$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=-n /(n+1)=L_{n} / L_{n+1}$ for some $n \in \mathbb{Z}$.
(2) Put $f(t)=(2+2 t) /(1+t)^{2}=2 /(1+t)$. Then, $f(q) \in \mathbb{Z}$ if and only if $q=-n /(n+1)=$ L_{n} / L_{n+1} or $q=-(2 n+1) /(2 n+3)=\left(L_{n+1}+L_{n}\right) /\left(L_{n+2}+L_{n+1}\right)$ for some $n \in \mathbb{Z}$.

References.

[1] D. S. Hong, When is the generating function for the Fibonacci numbers an integer? College Mathematics Journal 46 (2015) 110-112.
[2] R. R. Laxton, On groups of linear recurrences, I. Duke Math. J. 36 (1969) 721-736.
[3] P. Pongsriiam, Integer values of generating functions for the Fibonacci and Lucas numbers. College Mathematics Journal 48 (2017) 97-101.
[4] N. Suwa, Geometric aspects of Lucas sequences, I. Tokyo J. Math. 43 (2020) 75-136
[5] N. Suwa, Geometric aspects of Lucas sequences, II. Tokyo J. Math. 43 (2020) 383-454
[6] Y. Tsuno, Extended results on integer values of generating functions for sequences given by Pell's equation. The Fibonacci Quarterly 59 (2021) 158-166.
[7] Y. Tsuno, Extended results on integer values of generating functions for sequences given by Pell's equation. II. (in Japanese) The 18th Conference, Tokyo, August 21, 2020, electronically published by the Fibonacci Association Japan.

Department of Mathematics, Chuo University,
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, JAPAN
E-mail address: suwa@math.chuo-u.ac.jp

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊行年月
論文名
No． 11988 ON THE DEFORMATIONS OF WITT GROUPS TO TORI II
No． 21988 On minimal Einstein submanifold with codimension two
No． 31988 Minimal Einstein submanifolds
No． 41988 Submanifolds with parallel Ricci tensor
No． 51988 A CASE OF EXTENSIONS OF GROUP SCHEMES OVER
A DISCRETE VALUATION RING
No． 61989 ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES

No． 71989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON NONSMOOTH DOMAINS

No． 81989 SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER A DI SCRETE VALUATION RING I

No． 91989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON DOMAINS WITH CORNERS

No． 101989 MILNOR＇S INEQUALITY FOR 2－DIMENSIONAL ASYMPTOTIC CYCLES

No． 111989 ON THE SELF－INTERSECTIONS OF FOLIATION CYCLES
No． 121989 On curvature pinching of minimal submanifolds
No． 131990 The Intersection Product of Transverse Invariant Measures

No． 141990 The Transverse Euler Class for Amenable Foliations

No． 141989 The Maximum Principle for Semicontinuous Functions
No． 151989 Fully Nonliear Oblique DerivativeProblems for Nonlinear Second－Order Elliptic PDE＇s．
No． 151990 On Bundle Structure Theorem for Topological Semigroups．

No． 161990 On Linear Orthogonal Semigroup \mathfrak{O}_{n}
－Sphere bundle structure，homotopy type and Lie algebra－

No． 171990 On a hypersurface with birecurrent second fundametal tensor
No． 181990 User＇s guide to viscosity solutions of second order partial differential equationd．

No． 191991 Viscosity solutions for a class of Hamilton－Jacobi equations in Hilbert spaces
No． 201991 Perron＇s methods for monotone systems of second－order elliptic PDEs．
No． 211991 Viscosity solutions for monotone systems of second－order elliptic PDEs．
No． 221991 Viscosity solutions of nonlinear second－order partial differential equations in Hilbert spaces．

No． 23
No． 241992 On some pinching of minimal submanifolds．
No． 251992 Transverse Euler Class of Foliations on Almost Compact Foliation Cycles．

No． 261992 Local Homeo－and Diffeomorphisms：Invertibility and Convex Image．

著者
Tsutomu SEKIGUCHI
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Tsutomu SEKIGUCHI and Noriyuki SUWA

S．HURDER and Y．MITSUMATSU

Paul DUPUIS and Hitoshi ISHII

Tsutomu SEKIGUCHI and Noriyuki SUWA

Paul DUPUIS
and Hitoshi ISHII
Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Yoshio MATSUYAMA
S．HURDER
and Y．MITSUMATSU
S．HURDER and Y．MITSUMATSU
M．G．Crandall and H．ISHII
Hitoshi ISHII

Yoichi NADUMO， Masamichi TOKIZAWA and Shun SATO

Masamichi TOKIZAWA and Shun SATO Yoshio MATSUYAMA

M．G．CRANDALL，H．ISHII and P．L．LIONS
H．ISHII

H．ISHII
H．ISHII and S．KOIKE
H．ISHII

Y．MATSUYAMA

．HURDER and Y．MITSUMATSU
G．ZAMPIERI and G．GORNI

No. 271992 Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space. G. ZAMPIERI and G. GORNI
No. 281992 Uniqueness of solutions to the Cauchy problems for $u_{t}-\Delta u+r|\nabla u|^{2}=0 \mathrm{I}$. FUKUDA, H. ISHII and M. TSUTSUMI

No. 291992 Viscosity solutions of functional differential equations.
No. 301993 On submanifolds of sphere with bounded second fundamental form
No. 311993 On the equivalence of two notions of weak solutions, viscosty solutions and distributional solutions.
No. 321993 On curvature pinching for totally real submanifolds of $C P^{n}(c)$
No. 331993 On curvature pinching for totally real submanifolds of $H P^{n}(c)$
No. 341993 On curvature pinching for totally complex submanifolds of $H P^{n}(c)$
No. 351993 A new formulation of state constracts problems for first-order PDEs.
No. 361993 On Multipotent Invertible Semigroups.
No. 371993 On the uniquess and existence of sulutions of fully nonlinear parabolic PDEs underthe Osgood type condition
No. 381993 Curvatura pinching for totally real submanifolds of $C P^{n}(c)$
No. 391993 Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygones

No. 401993 Generalized motion of noncompact hypersurfaces with velocity having arbitray growth on the curvature tensor.

No. 411994 On the unified Kummer-Artin-Schreier-Witt theory
No. 421995 Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients.
No. 431995 A genaralization of Bence, Merriman and Osher algorithm for motion by mean curvature.
No. 441995 Degenerate parabolic PDEs with discontinuities and generalized

No. 451995 Normal forms of pseudodifferential operators on tori and diophantine phenomena.
No. 461996 On the dustributions of likelihood ratio criterion for equality of characteristic vectors in two populations.
No. 471996 On a quantization phenomenon for totally real submanifolds of $C P^{n}(c)$
No. 481996 A charactarization of real hypersurfaces of complex projective space.
No. 491999 A Note on Extensions of Algebraic and Formal Groups, IV.
No. 501999 On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_{a}$ over a $\mathbb{Z}_{(p)}$-algebra
No. 512003 On the descriptions of $\mathbb{Z} / p^{n} \mathbb{Z}$-torsors by the Kummer-Artin-Schreier-Witt theory
No. 522003 ON THE RELATION WITH THE UNIT GROUP SCHEME $U\left(\mathbb{Z} / p^{n}\right)$ AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME
No. 542004 ON NON-COMMUTATIVE EXTENTIONS OF $\mathbb{G}_{a, A}$ BY $\mathbb{G}_{m, A}$ OVER AN \mathbb{F}_{p}-ALGEBRA
No. 552004 ON THE EXTENSIONS OF \widehat{W}_{n} BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$-ALGEBRA
No. 562005 On inverse multichannel scattering

No. 572005 On Thurston's inequality for spinnable foliations
H. ISHII and S. KOIKE
Y. MATSUYAMA
H. ISHII
Y. MATSUYAMA
Y. MATSUYAMA
Y. MATSUYAMA
H. ISHII and S. KOIKE
M. TOKIZAWA
H. ISHII and K. KOBAYASHI
Y. MATSUYAMA
T. GRAMCHEV
P.POPIVANOV
and M.YOSHINO
H. ISHII
and P. E.SOUGANIDIS
T. SEKIGUCHI and N. SUWA

Hitoshi ISHII
and Mythily RAMASWARY

Todor GRAMCHEV
and Masafumi YOSHINO
Todor GRAMCHEV
and Masafumi YOSHINO
Shin-ichi TSUKADA
and Takakazu SUGIYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
T. SEKIGUCHI and N. SUWA

Mitsuaki YATO

Kazuyoshi TSUCHIYA

Noritsugu ENDO

Yuki HARAGUCHI

Yasuhiro NIITSUMA
V.MARCHENKO
K.MOCHIZUKI
and I.TROOSHIN
H.KODAMA, Y.MITSUMATSU
S.MIYOSHI and A.MORI

No． 582006 Tables of Percentage Points for Multiple Comparison Procedures

No． 592006 COUTING POINTS OF THE CURVE $y^{4}=x^{3}+a$ OVER A FINITE FIELD

No． 602006 TWISTED KUMMER AND KUMMER－ARTIN－SCHREIER THEORIES Noriyuki SUWA
No． 612006 Embedding a Gaussian discrete－time ARMA（3，2）process in a Gaussian continuous－time $\operatorname{ARMA}(3,2)$ process
No． 622006 Statistical test of randomness for cryptographic applications

No． 632006 ON NON－COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_{a}$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_{p}－algebra
No． 642006 Asymptotic distribution of the contribution ratio in high dimensional principal component analysis

No． 652006 Convergence of Contact Structures to Foliations
No． 662006 多様体上の流体力学への幾何学的アプローチ
No． 672006 Linking Pairing，Foliated Cohomology，and Contact Structures
No． 682006 On scattering for wave equations with time dependent coefficients
No． 692006 On decay－nondecay and scattering for Schrödinger equations with time dependent complex potentials
No． 702006 Counting Points of the Curve $y^{2}=x^{12}+a$ over a Finite Field
No． 712006 Quasi－conformally flat manifolds satisfying certain condition on the Ricci tensor

No． 722006 Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three
No． 732007 Foliations and compact leaves on 4－manifolds I Realization and self－intersection of compact leaves
No． 742007 ON A TYPE OF GENERAL RELATIVISTIC SPACETIME WITH W_{2}－CURVATURE TENSOR

No． 752008 Remark on TVD schemes to nonstationary convection equation
No． 762008 THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS
No． 772008 Reeb components and Thurston＇s inequality
No． 782008 Permutation test for equality of individual eigenvalues from covariance matrix in high－dimension
No． 792008 Asymptotic Distribution of the Studentized Cumulative Contribution Ratio in High－Dimensional PrincipalComponent Analysis
No． 802008 Table for exact critical values of multisample Lepage type statistics when $k=3$
No． 812008 AROUND KUMMER THEORIES
No． 822008 DEFORMATIONS OF THE KUMMER SEQUENCE
No． 832008 ON BENNEQUIN＇S ISOTOPY LEMMA

AND THURSTON＇S INEQUALITY

No． 842009 On solvability of Stokes problems in special Morrey space $L_{3, \text { unif }}$
No． 852009 On the Cartier Duality of Certain Finite Group Schemes of type（ p^{n}, p^{n} ）

Y．MAEDA，
T．SUGIYAMA
and Y．FUJIKOSHI
Eiji OZAKI

Mituaki HUZII

Mituaki HUZII，Yuichi TAKEDA
Norio WATANABE
Toshinari KAMAKURA
and Takakazu SUGIYAMA
Yuki HARAGUCHI

Y．FUJIKOSHI
T．SATO and T．SUGIYAMA
Yoshihiko MITSUMATSU
三松 佳彦
Yoshihiko MITSUMATSU
Kiyoshi MOCHIZUKI
K．MOCHIZUKI and T．MOTAI

Yasuhiro NIITSUMA
U．C．De and Y．MATSUYAMA

T．SUZUKI and T．TAKAKURA

Y．MITSUMATSU and E．VOGT

A．A．SHAIKH
and Y．MATSUYAMA
Hirota NISHIYAMA
Masashi TAKAMURA

S．MIYOSHI and A．MORI
H．MURAKAMI，E．HINO and T．SUGIYAMA
M．HYODO，T．YAMADA and T．SUGIYAMA

Hidetoshi MURAKAMI

Noriyuki SUWA
Yuji TSUNO
Yoshihiko MITSUMATSU

N．KIKUCHI and G．A．SEREGIN
N．AKI and M．AMANO

No． 862010 Construction of solutions to the Stokes equations

No． 872010 RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A KENMOTSU MANIFOLD

No． 882010 On the group of extensions $\operatorname{Ext}^{1}\left(\mathcal{G}^{\left(\lambda_{0}\right)}, \mathcal{E}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\right)$ over a discrete valuation ring
No． 892010 Normal basis problem for torsors under a finite flat group scheme
No． 902010 On the homomorphism of certain type of models of algebraic tori
No． 912011 Leafwise Symplectic Structures on Lawson＇s Foliation
No． 922011 Symplectic volumes of double weight varieties associated with $S U(3) / T$
No． 932011 On vector partition functions with negative weights
No． 942011 Spectral representations and scattering for
Schrodinger operators on star graphs
No． 952011 Normally contracting Lie group actions

No． 962012 Homotopy invariance of higher K－theory for abelian categories
No． 972012 CYCLE CLASSES FOR p－ADIC ÉTALE TATE TWISTS AND THE IMAGE OF p－ADIC REGULATORS

No． 982012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

No． 992013 Global solutions for the Navier－Stokes equations in the ratational framework
No． 1002013 On the cyclotomic twisted torus and some torsors

No． 1012013 Helicity in differential topology and incompressible fluids on foliated 3－manifolds
No． 1022013 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD
この論文には改訂版（No．108）があります。そちらを参照してください。
No． 1032013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM
No． 1042013 Symplectic volumes of double weight varieties associated with $S U(3)$ ，II
No． 1052013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX PROJECTIVE SPACE
No． 1062014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No． 1072014 Thurston＇s h－principle for 2－dimensional Foliations of Codimension Greater than One
No． 1082015 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD

No． 1092015 KUMMER THEORIES FOR ALGEBRAIC TORI AND NORMAL BASIS PROBLEM
No． $1102015 L^{p}$－MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS IN OPEN SETS OF \mathbb{R}^{d}

No． 1112015 Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
No． 1122015 Global solvability of the Kirchhoff equation with Gevrey data

Norio KIKUCHI

U．C．De and Y．MATSUYAMA

Takashi KONDO

Yuji TSUNO
Nobuhiro AKI
Yoshihiko MITSUMATSU
Taro SUZUKI
Tatsuru TAKAKURA
K．MOCHIZUKI
and I．TOROOSHIN
T．INABA，S．MATSUMOTO
and Y．MITSUMATSU
S．MOCHIZUKI and A．SANNAI
Kanetomo SATO

YUKINO TOMIZAWA

Tsukasa Iwabuchi
and Ryo Takada
Tsutomu Sekiguchi
and Yohei Toda
Yoshihiko Mitsumatsu

SHIGEAKI MIYOSHI

NORIYUKI SUWA
Taro Suzuki
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA
YUKINO TOMIZAWA

Yoshihiko MITSUMATSU and Elmar VOGT
SHIGEAKI MIYOSHI

NORIYUKI SUWA

TSUKASA IWABUCHI，
TOKIO MATSUYAMA
AND KOICHI TANIGUCHI
Yoshikazu Kobayashi，Naoki Tanaka
and Yukino Tomizawa
Tokio Matsuyama
and Michael Ruzhansky

No. 1132015 A small remark on flat functions

No. 1142015 Reeb components of leafwise complex foliations and their symmetries I

No. 1152015 Reeb components of leafwise complex foliations and their symmetries II No. 1162015 Reeb components of leafwise complex foliations and their symmetries III

No. 1172016 Besov spaces on open sets

No. 1182016 Decay estimates for wave equation with a potential on exterior domains

No. 1192016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A
GENERAL TYPE OF DISSIPATIVITY CONDITIONS
No. 1202017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE
No. 1212017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

No. 1222018 Geometric aspects of Lucas sequences, I
No. 1232018 Derivatives of flat functions

No. 1242018 Geometry and dynamics of Engel structures
No. 1252018 Geometric aspects of Lucas sequences, II
No. 1262018 On volume functions of special flow polytopes

No. 1272019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY
No. 1282019 On syntomic complex with modulus for semi-stable reduction case
No. 1292019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES
No. 1302020 Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces
No. 1312020 Global well-posedness of the Kirchhoff equation
No. 1322021 Sparse non-smooth atomic decomposition of quasi-Banach lattices

No. 1332021 Integer values of generating functions for Lucas sequences

Kazuo MASUDA
and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI Tomohiro HORIUCHI and Yoshihiko MITSUMATSU

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Vladimir Georgiev and Tokio Matsuyama YOSHIKAZU KOBAYASHI AND NAOKI TANAKA YOSHIO MATSUYAMA

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Noriyuki Suwa
Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Noriyuki Suwa
Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA

Noriyuki Suwa
Kento YAMAMOTO
Noriyuki Suwa
Kanetomo Sato

Tokio Matsuyama
Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano

Noriyuki Suwa

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research No.19K03408
 2005 Mathematics Subject Classification Primary 13B05; Secondary 14L15, 12G05.

