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INTEGER VALUES OF GENERATING FUNCTIONS

FOR LUCAS SEQUENCES

NORIYUKI SUWA∗)

Abstract. It is known that the generating function of the Fibonacci sequence, F (t) =

∞∑
k=0

Fkt
k

= t/(1 − t − t2), attains an integer value if and only if t = Fk/Fk+1 for some k ∈ Z. In this

article, we generalize this result for the Lucas sequences and the companion Lucas sequences

associated to (P,±1), clarifying a role of the arithmetic of real quadratic number fields.

Introduction

The Lucas sequences, including the Fibonacci sequence, have been studied widely for a long

time. There is left an enormous accumulation of research, and it seems that there remains an

abundance of ore to mine.

For example, let {Fk}k≥0 and {Λk}k≥0 denote the Fibonacci sequence and the Lucas sequence,

repectively, and put

F (t) =

∞∑
k=0

Fkt
k =

t

1− t− t2
, G(t) =

∞∑
k=0

Λkt
k =

2− t

1− t− t2
.

It was recently that Hong [1] observed that F (Fn/Fn+1), G(Fn/Fn+1) and G(Λn/Λn+1) are

integers for n ≥ 0 and posed a question which rational number q assures F (q) ∈ Z or G(q) ∈ Z.
Soon after, Pongsriiam [3] answered the question, establishing the following results:

(1) Let q ∈ Q. Then, F (q) is an integer if and only if q = Fn/Fn+1 or −Fn+1/Fn for some n;

(2) Let q ∈ Q. Then, G(q) is an integer if and only if q = Fn/Fn+1, −Fn+1/Fn, Λn/Λn+1 or

−Λn+1/Λn for some n.

Tsuno ([6],[7]) generalized Pongsriiam’s result to the generating functions for sequences given

by the Pell eqautions. Their argument depends on skillful combination of various formulas for

the sequences defined by recurrence relation of order 2.

In this article, we reexamine their results and generalize (1) and (2) for the Lucas sequences

and the companion Lucas sequences associated to (P,±1).

Main Result I (=Theorem 2.3) Let P,Q ∈ Z with P ̸= 0, Q = ±1, P 2 − 4Q > 0 and

(P,Q) ̸= (±3, 1). Put f(t) = t/(1 − Pt + Qt2), the generating function of the Lucas sequnce

associated to (P,Q). Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1 for some

n ∈ Z.

∗) Partially supported by Grant-in-Aid for Scientific Research No.19K03408

2005 Mathematics Subject Classification Primary 13B05; Secondary 14L15, 12G05.
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Main Result II (=Theorem 3.5) Let P,Q ∈ Z with P ̸= 0, Q = ±1 and P 2 − 4Q > 0.

Put f(t) = (2 − Pt)/(1 − Pt + Qt2), the generating function of the companion Lucas sequnce

associated to (P,Q).

(1) Assume Q = −1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1 or Sn/Sn+1

for some n ∈ Z.
(2) Assume Q = 1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1, Sn/Sn+1,

(Ln+1 − Ln)/(Ln+2 − Ln+1) or (Ln + Ln+1)/(Ln+2 + Ln+1) for some n ∈ Z.

Now we explain the organization of the article. In the Section 1, we recall needed facts on

the Lucas sequences though most of them are well known. We treat linear recurrence sequences

also for negative indices, which simplifies formulas and the argument. Main Result I and Main

Result II are proven in the Section 2 and in the Section 3, respectively. It should be mentioned

that two main results follow from Dirichlet’s unit theorem for real quadratic number fields. In

the Section 4, we compare preceeding results and ours. In the Section 5, we remark upon an

unlooked-for relation between our main result and the group GP,Q(Q)/Θ investigated in [4] and

[5].

Notation

For a ring R, R× denotes the multiplicative group of invertible elements of R.

L(P,Q;Z), L(P,Q;Q): defined in 1.1

{Lk}k≥0: the Lucas sequence associated to (P,Q), recalled in 1.1

{Sk}k≥0: the companion Lucas sequence associated to (P,Q), recalled in 1.1

{Fk}k≥0: the Fibonacci sequence

{Λk}k≥0: the Lucas sequence, recalled in 1.2

(a, b): the greatest common divisor of a, b ∈ Z
GP,Q(Q): defined in 5.3

G(P,Q)(Q): defined in 5.3

UP,Q(Q): defined in 5.3

G(P,Q)(Q)/Θ: defined in 5.3

1. Recall: Lucas sequences

In the section, we fix P,Q,∈ Z and put D = P 2 − 4Q.

Notation 1.1. For P,Q ∈ Z, we put

L(P,Q;Z) = {{wk}k≥0 ∈ ZN ; wk+2 − Pwk+1 +Qwk = 0 for each k ≥ 0}

and

L(P,Q;Q) = {{wk}k≥0 ∈ QN ; wk+2 − Pwk+1 +Qwk = 0 for each k ≥ 0}.
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The sequence {Lk}k≥0 ∈ L(P,Q;Z) defined by (L0, L1) = (0, 1) is called the Lucas sequence as-

sociated to (P,Q), and {Sk}k≥0 ∈ L(P,Q;Z) defined by (S0, S1) = (2, P ) is called the companion

Lucas sequence associated to (P,Q).

As is well known, for {wk}k≥0 ∈ L(P,Q;Q), we have

w2
n+1 − Pwn+1wn +Qw2

n = (w2
1 − Pw1w0 +Qw2

0)Q
n.

Example 1.2. The Lucas sequence associated to (P,Q) = (1,−1) is nothing but the Fi-

bonacci sequence {Fk}k≥0. On the other hand, the companion Lucas sequence associated to

(P,Q) = (1,−1) is traditionally called the Lucas sequence and denoted by {Lk}k≥0. To avoid

the confusion, we shall denote by {Λk}k≥0 the Lucas sequence.

Definition 1.3. Assume that Q ̸= 0. Let {wk}k≥0 ∈ L(P,Q;Q). Then we can define terms wk

for k < 0 inductively by the recurrence relation

wk =
P

Q
wk+1 −

1

Q
wk+2.

Hereinafter we enumerate several formulas concerning Lucas sequences.

Formulas 1.4. Let P,Q ∈ Z with Q ̸= 0. Then we have:

(1) w−nwn+1 −Qw−n−1wn = w0(2w1 − Pw0) for {wk}k≥0 ∈ L(P,Q;Q).

(2) L−n = −Ln

Qn
, S−n =

Sn

Qn
.

(3)
L−n−1

L−n
=

1

Q

Ln+1

Ln
,
S−n−1

S−n
=

1

Q

Sn+1

Sn
.

Proof. We can easily verify the formulas (1) and (2) by induction on n > 0. The formula (3) is

an immediate consequence of (2).

Formulas 1.5. Let P,Q ∈ Z with P 2 − 4Q ̸= 0. Let α, β denote the roots of the quadratic

equation t2 − Pt+Q = 0. Then we have:

(1) wn =
1

α− β
{(w1 − βw0)α

n − (w1 − αw0)β
n} for {wk}k≥0 ∈ L(P,Q;Q).

In particular,

(2) Ln =
αn − βn

α− β
, Sn = αn + βn.

Defintion 1.6. Let P,Q ∈ Z and {wk}k≥0 ∈ L(P,Q;Z). The generating function for {wk}k≥0

is defined by

f(t) =
∑
k≥0

wkt
k ∈ Z[[t]].

As is well known, we have

f(t) =
w0 + (w1 − Pw0)t

1− Pt+Qt2
.

For example, the generating function for the Lucas sequence {Lk}k≥0 is given by

f(t) =
t

1− Pt+Qt2
,
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and the generating function for the companion Lucas sequence {Sk}k≥0 is given by

f(t) =
2− Pt

1− Pt+Qt2
.

Formulas 1.7. Put f(t) =
w0 + (w1 − Pw0)t

1− Pt+Qt2
. Then we have:

(1) f
(s
r

)
=

r{w0r + (w1 − Pw0)s}
r2 − Prs+Qs2

for r, s ∈ Z.

(2) f
( vn
vn+1

)
=

vn+1{w0vn+1 + (w1 − Pw0)vn}
(v21 − Pv1v0 +Qv20)Q

n
for {vk}k≥0 ∈ L(P,Q;Q).

Formulas 1.8. Put f(t) =
t

1− Pt+Qt2
. Then we have:

(1) f
(s
r

)
=

rs

r2 − Prs+Qs2
for r, s ∈ Z.

(2) f
( vn
vn+1

)
=

vn+1vn
(v21 − Pv1v0 +Qv20)Q

n
for {vk}k≥0 ∈ L(P,Q;Q).

(3) f
( Ln

Ln+1

)
=

Ln+1Ln

Qn
.

(4) f
(L−n−1

L−n

)
= f

( Ln

Ln+1

)
.

Proof. We can easily deduce the formula (3) from (2), noting L2
1 − PL1L0 + QL2

0 = 1. The

formula (4) follows from (3) and 1.4 (2).

Formulas 1.9. Put f(t) =
2− Pt

1− Pt+Qt2
. Then we have:

(1) f
(s
r

)
=

r(2r − Ps)

r2 − Prs+Qs2
for r, s ∈ Z.

(2) f
( vn
vn+1

)
=

vn+1(2vn+1 − Pvn)

(v21 − Pv1v0 +Qv20)Q
n
for {vk}k≥0 ∈ L(P,Q;Z).

(3) f
( Sn

Sn+1

)
= −Sn+1Ln

Qn
.

(4) f
( Ln

Ln+1

)
=

Ln+1Sn

Qn
.

(5) f
(S−n−1

S−n

)
= f

( Ln

Ln+1

)
.

(6) f
(L−n−1

L−n

)
= f

( Sn

Sn+1

)
.

Proof. We can easily deduce the formulas (3) and from (2), noting

S2
1 − PS1S0 +QS2

0 = −P 2 + 4Q = D, 2Sn+1 − PSn = DLn, 2Ln+1 − Ln = Sn.

The formulas (5) and (6) are combinations of (3), (4) and 1.4 (2).
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2. Main result I

Lemma 2.1. Let P,Q ∈ Z with P ̸= 0, Q = ±1 and P 2 − 4Q > 0. Let α be a root of the

quadraic equation t2−Pt+Q = 0. Then α generates the multiplicative group Z[α]×/{±1} except

for (P,Q) = (±3, 1).

Proof. The multiplicative group Z[α]×/{±1} is cyclic as is well known. Assume that α does not

generate the multiplicative group Z[α]×/{±1}. Then there exists ε ∈ Z[α]× such that α = ±εk

for some k ≥ 2. Then we obtain Z[εk] = Z[ε], which implies

ε2 − ε− 1 = 0, ε2 + ε− 1 = 0, ε2 − ε+ 1 = 0 or ε2 + ε+ 1 = 0.

However, the latter two cases are excluded since ε is real. In the first case we have ε = (1±
√
5)/2,

and in the second case we have ε = (−1±
√
5)/2. These correspond to the cases of (P,Q) = (3, 1)

and (P,Q) = (−3, 1), respectively.

Lemma 2.2. Let P,Q, r, s ∈ Z with (r,Q) = 1, (r, s) = 1 and r ̸= 0. Put f(t) = t/(1−Pt+Qt2).

Then, f(s/r) is an integer if and only if r2 − Prs+Qs2 = ±1.

Proof. We can easily verify the assertion, noting that (a) f(s/r) = rs/(r2 − Prs + Qs2), (b)

(r2 − Prs+Qs2, r) = (Qs2, r) = 1 and (c) (r2 − Prs+Qs2, s) = (r2, s) = 1.

Theorem 2.3. Let P,Q ∈ Z with P ̸= 0, Q = ±1, P 2 − 4Q > 0 and (P,Q) ̸= (±3, 1). Put

f(t) = t/(1− Pt+Qt2). Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1 for some

n ∈ Z.

Proof. As is remarked in Formula 1.8, we have

f
( Ln

Ln+1

)
=

Ln+1Ln

Qn
∈ Z

for n ∈ Z (n ̸= 0).

Conversely, assume that f(q) is an integer. Put

D = P 2 − 4Q, α =
P +

√
D

2
, β =

P −
√
D

2
.

Then α is invertible in the ring Z[α] since αβ = Q = ±1. Futhermore, α generates the multi-

plicative group Z[α]×/{±1} since (P,Q) ̸= (±3, 1).

Now put

q =
s

r
, r, s ∈ Z with (r, s) = 1.

Then, by Lemma 2.2, we obtain r2 −Prs+Qs2 = ±1, which implies that r−αs is invertible in

Z[α]. Hence there exists n ∈ Z such that

r − αs = βn, r − βs = αn

or

r − αs = −βn, r − βs = −αn.
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Hence, by Lemma 2.1, we obtain

(r, s) = (Ln+1, Ln) or (−Ln+1,−Ln),

noting the formula Lk =
αk − βk

α− β
.

Propsition 2.4.1. (The case of P = 3 and Q = 1) Put f(t) = t/(1 − 3t + t2), and let q ∈ Q.

Then, f(q) is an integer if and only if q = Fn/Fn+2 for some n ∈ Z.

Proof. We can deduce

f
( Fn

Fn+2

)
= (−1)nFn+2Fn

for n ∈ Z (n ̸= −2) immediately from the equality F 2
n+2 − 3Fn+2Fn + F 2

n = (−1)n.

Conversely, put ε = (1 +
√
5)/2. Then the roots of the quadratic equation t2 − 3t + 1 = 0

are given by α = ε2 = (3 +
√
5)/2 and β = ε−2 = (3 −

√
5)/2. Furthermore, ε generates the

multiplicative group Z[ε2]×/{±1} = Z[ε]×/{±1}.
Now, let {Lk}k∈Z denote the Lucas sequence associated to (P,Q) = (3, 1). Then we have

Lk = F2k for each k ∈ Z. Now put

q =
s

r
, r, s ∈ Z with (r, s) = 1.

Then, by Lemma 2.2, we obtain r2 − 3rs + s2 = ±1, which implies that r − αs is invertible in

Z[α]. Hence there exists n ∈ Z such that

r − αs = ε−n, r − βs = εn

or

r − αs = −ε−n, r − βs = −εn.

Then we obtain

(r, s) = (Fn+2, Fn) or (−Fn+2,−Fn),

noting Fk =
εk − ε−k

ε− ε−1
and α− β = ε− ε−1.

Remark 2.4.2. Let {Lk}k≥0 denote the Lucas sequence associated to (P,Q) = (3, 1). Then we

have {F2k}k≥0 = {Lk}k≥0 and {F2k+1}k≥0 = {Lk+1 − Lk}k≥0.

Propsition 2.5.1. (The case of P = −3 and Q = 1) Put f(t) = t/(1 + 3t+ t2), and let q ∈ Q.

Then f(q) is an integer if and only if q = −Fn/Fn+2 for some n ∈ Z.

Proof. We can verify

f
(
− Fn

Fn+2

)
= (−1)n−1Fn+2Fn

for n ∈ Z (n ̸= −2) and prove the assertion as in Propsition 2.4.1.

Remark 2.5.2. Let {Lk}k≥0 denote the Lucas sequence associated to (P,Q) = (−3, 1). Then

we have {(−1)k−1F2k}k≥0 = {Lk}k≥0 and {(−1)kF2k+1}k≥0 = {Lk+1 + Lk}k≥0.
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3. Main result II

Lemma 3.1. Let P,Q ∈ Z, and put

D = P 2 − 4Q, α =
P +

√
D

2
, β =

P −
√
D

2
.

Assume that D is not a square. Let r, s, r′, s′ ∈ Q. Then, (r−sα)/(r−sβ) = (r′−s′α)/(r′−s′β)

if and only if (r : s) = (r′ : s′).

Proof. We obtain the conclusion immediately, simplifying (r− sα)(r′− s′β) = (r− sβ)(r′− s′α)

and noting that α and β are linearly independent over Q.

Lemma 3.2. Let P,Q, r, s ∈ Z with (r,Q) = 1, (r, s) = 1 and r ̸= 0, and put f(t) = (2−Pt)/(1−
Pt+Qt2). Then, f(s/r) is an integer if and only if 2r − Ps is divisible by r2 − Prs+Qs2.

Proof. First note f(s/r) = r(2r−Ps)/(r2 −Prs+Qs2). Then, f(s/r) is an integer if and only

if r(2r−Ps) is divisible by r2 −Prs+Qs2. In this case, 2r−Ps is divisible by r2 −Prs+Qs2

since (r, r2 − Prs+Qs2) = 1.

Corollary 3.3. Let P,Q, r, s ∈ Z with P 2 − 4Q ̸= 0, Q = ±1, (r, s) = 1 and r ̸= 0, and put

f(t) = (2 − Pt)/(1 − Pt + Qt2), D = P 2 − 4Q and α = (P +
√
D)/2. If f(s/r) is an integer,

then (r − sα)/(r − sβ) is an invertible element of Z[
√
D].

Proof. By Lemma 3.2, 2r−Ps is divisible by r2−Prs+Qs2. Put now η = r−sα and η̄ = r−sβ.

Then, we have Nr η = Nr η̄ = r2−Prs+Qs2 and η+ η̄ = 2r−Ps．These imply that Nr η/η̄ = 1

and 1/η + 1/η̄ ∈ Z, and therefore, η/η̄ ∈ Z[η] ⊂ Z[
√
D]. Hence the result.

Lemma 3.4. Let P,Q ∈ Z. Assume that P 2−4Q ̸= 0. Let α and β be the roots of the quadratic

equation t2 − Pt+Q = 0. Then we have:

(1)
Ln+1 − αLn

Ln+1 − βLn
=

βn

αn
=

β2n

Qn
,

(2)
Sn+1 − αSn

Sn+1 − βSn
= −βn

αn
= −β2n

Qn
,

(3)
(Ln+2 − Ln+1)− α(Ln+1 − Ln)

(Ln+2 − Ln+1)− β(Ln+1 − Ln)
= −βn+1

αn
= −β2n+1 if Q = 1,

(4)
(Ln+2 + Ln+1)− α(Ln+1 + Ln)

(Ln+2 + Ln+1)− β(Ln+1 + Ln)
=

βn+1

αn
= β2n+1 if Q = 1.

Proof. We can readily verify (1) and (2), noting

(αn+1 − βn+1)− α(αn − βn) = (α− β)βn, (αn+1 − βn+1)− β(αn − βn) = (α− β)αn,

(αn+1 + βn+1)− α(αn + βn) = −(α− β)βn, (αn+1 + βn+1)− β(αn − βn) = (α− β)αn.

Assume now Q = 1. Then we obtain αβ = 1, and therefore,
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(Ln+2 − Ln+1)− α(Ln+1 − Ln) =
βn+1 − βn

α− β
=

βn+1(1− α)

α− β
,

(Ln+2 − Ln+1)− β(Ln+1 − Ln) =
αn+1 − αn

α− β
=

αn(α− 1)

α− β
,

(Ln+2 + Ln+1)− α(Ln+1 + Ln) =
βn+1 + βn

α− β
=

βn+1(1 + α)

α− β
,

(Ln+2 + Ln+1)− β(Ln+1 + Ln) =
αn+1 + αn

α− β
=

αn(α+ 1)

α− β
.

Theorem 3.5. Let P,Q ∈ Z with P ̸= 0, Q = ±1 and P 2 − 4Q > 0. Put f(t) = (2− Pt)/(1−
Pt+Qt2).

(1) Assume Q = −1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1 or Sn/Sn+1

for some n ∈ Z.
(2) Assume Q = 1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1, Sn/Sn+1,

(Ln+1 − Ln)/(Ln+2 − Ln+1) or (Ln + Ln+1)/(Ln+2 + Ln+1) for some n ∈ Z.

Proof. As is remarked in Formulas 1.9, we have

f
( Sn

Sn+1

)
= −Sn+1Ln

Qn
∈ Z, f

( Ln

Ln+1

)
=

Ln+1Sn

Qn
∈ Z.

Moreover, in the case of Q = 1, we can verify

f
( Ln+1 − Ln

Ln+2 − Ln+1

)
= −(Ln+2 − Ln+1)(Ln+1 + Ln) ∈ Z,

f
( Ln+1 + Ln

Ln+2 + Ln+1

)
= (Ln+2 + Ln+1)(Ln+1 − Ln) ∈ Z,

noting

(Ln+2 − Ln+1)
2 − P (Ln+2 − Ln+1)(Ln+1 − Ln) + (Ln+1 − Ln)

2 = 2− P,

2(Ln+2 − Ln+1)− P (Ln+1 − Ln) = −(2− P )(Ln+1 + Ln),

and

(Ln+2 + Ln+1)
2 − P (Ln+2 + Ln+1)(Ln+1 + Ln) + (Ln+1 + Ln)

2 = 2 + P,

2(Ln+2 + Ln+1)− P (Ln+1 + Ln) = (2 + P )(Ln+1 − Ln),

repectively.

Conversely, assume that f(q) is an integer. Put

D = P 2 − 4Q, α =
P +

√
D

2
, β =

P −
√
D

2
.

Then α is invertible in the ring Z[α].
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Now we assume (P,Q) ̸= (±3, 1), which implies that α generates the multiplicative group

Z[α]×/{±1} by Lemma 2.1. Put

q =
s

r
, r, s ∈ Z with (r, s) = 1.

Then, by Corollary 3.3, (r − sα)/(r − sβ) is an invertible element of Z[α].
First assume Q = −1. Then we have

r − sα

r − sβ
= ±(−1)nβ2n

for some n ∈ Z since Nr(r − αs) = Nr(r − βs) and Nrβ = −1. Hence we obtain

(s : r) = (Ln : Ln+1) or (Sn : Sn+1)

by Lemma 3.1 and Lemma 3.4.

Assume now Q = 1. Then we have

r − sα

r − sβ
= ±β2n or

r − sα

r − sβ
= ∓β2n+1

for some n ∈ Z. Then we obtain

(s : r) = (Ln : Ln+1), (Sn : Sn+1), (Ln+1 − Ln : Ln+2 − Ln+1) or (Ln+1 + Ln : Ln+2 + Ln+1)

again by Lemma 3.1 and Lemma 3.4.

We treat the case of (p,Q) = (±3, 1) separately in 3.6 and 3.7.

Remark 3.5.1. In the case of Q = 1, we have

L−n−1 − L−n−2

L−n − L−n−1
=

Ln+2 − Ln+1

Ln+1 − Ln
,
L−n−1 + L−n−2

L−n + L−n−1
=

Ln+2 + Ln+1

Ln+1 + Ln

and

f
(Ln+2 − Ln+1

Ln+1 − Ln

)
= f

( Ln+1 + Ln

Ln+2 + Ln+1

)
, f

( Ln+1 + Ln

Ln+2 + Ln+1

)
= f

( Ln+1 − Ln

Ln+2 − Ln+1

)
.

Propsition 3.6.1. (The case of P = 3 and Q = 1) Put f(t) = (2t − 3)/(1 − 3t + t2), and let

q ∈ Q. Then f(q) is an integer if and only if q = Fn/Fn+2 or Λn/Λn+2 for some n ∈ Z.

Proof. Put ε = (1 +
√
5)/2. Then the roots of the quadratic equation t2 − 3t+ 1 = 0 are given

by α = ε2 = (3+
√
5)/2 and β = ε−2 = (3−

√
5)/2. Furthermore, ε generates the multiplicative

group Z[ε2]×/{±1} = Z[ε]×/{±1}.
Now put

q =
s

r
, r, s ∈ Z with (r, s) = 1,

and assume that f(q) is an integer. Then, By Corollary 3.3, there exists n ∈ Z such that

r − sα

r − sβ
= ±ε−2n

since Nr(r − αs) = Nr(r − βs) and Nr ε = −1. That is to say, there exists n ∈ Z such that

r − sα

r − sβ
= ±βn.
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Hence we obtain

(s : r) = (Ln : Ln+1), (Sn : Sn+1), (Ln+1 − Ln : Ln+2 − Ln+1) or (Ln+1 + Ln : Ln+2 + Ln+1)

by Lemma 3.1 and Lemma 3.4. At last, we obtain the result, noting

Ln = F2n, Sn = Λ2n, Ln+1 − Ln = F2n+1, Ln+1 + Ln = Λ2n+1.

Remark 3.6.2. Let {Lk}k≥0 denote the Lucas sequence associated to (P,Q) = (3, 1). Then

we have {F2k}k≥0 = {Lk}k≥0 and {F2k+1}k≥0 = {Lk+1 − Lk}k≥0, as is remarked in 2.4.2, and

{Λ2k}k≥0 = {Sk}k≥0 and {Λ2k+1}k≥0 = {Lk+1 + Lk}k≥0.

We can similarly prove the following:

Propsition 3.7.1. (The case of P = −3 and Q = 1) Put f(t) = (2t+ 3)/(1 + 3t+ t2), and let

q ∈ Q. Then f(q) is an integer if and only if q = −Fn/Fn+2 or −Λn/Λn+2 for some n ∈ Z.

Remark 3.7.2. Let {Lk}k≥0 denote the Lucas sequence associated to (P,Q) = (−3, 1). Then

we have {(−1)k−1F2k}k≥0 = {Lk}k≥0 and {(−1)kF2k+1}k≥0 = {Lk+1 + Lk}k≥0, as is remarked

in 2.5.2, and {(−1)kΛ2k}k≥0 = {Sk}k≥0 and {(−1)kΛ2k+1}k≥0 = {Lk+1 − Lk}k≥0.

4. Preceeding results

4.1. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal

solution of the Pell equation x2−Ny2 = ±1. Define two integer sequences {Un}n≥0 and {Vn}n≥0

by

Un =
(a+ b

√
N)n − (a− b

√
N)n

2
√
N

and

Vn =
(a+ b

√
N)n + (a− b

√
N)n

2
.

Put P = 2a and Q = a2 − Nb2 = ±1. Then {Un}n≥0, {Vn}n≥0 ∈ L(P,Q;Z). The generating

functions of {Un}n≥0 and {Vn}n≥0 are given by

bt

1− Pt+Qt2

and
1

2

1− at

1− Pt+Qt2
,

respectively. We have also

Un = bLn, Vn =
1

2
Sn

for each n ∈ Z, where {Ln}n≥0 and {Sn}n≥0 denote the Lucas sequence and the companion

Lucas sequence associated to (P,Q), respectively.

Tsuno [6] proves the following assertions:

(1) Put f(t) =
bt

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q = Un/Un+1

or QUn+1/Un for some n ≥ 0.
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(2) Put f(t) =
1

2

1− at

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q =

Un/Un+1, Vn/Vn+1, q = QUn+1/Un or QVn+1/Vn for some n ≥ 0.

Noting

Un/Un+1 = Ln/Ln+1, Un+1/Un = Ln+1/Ln, Vn/Vn+1 = Sn/Sn+1, Vn+1/Vn = Sn+1Sn

and

Ln+1/Ln = QL−n−1/L−n, Sn+1/Sn = QS−n−1/S−n,

we can restate the above assetions as follows:

(1)′ Put f(t) =
bt

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q = Ln/Ln+1

for some n ∈ Z.

(2)′ Put f(t) =
1

2

1− at

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q =

Ln/Ln+1 or Sn/Sn+1 for some n ∈ Z.

Now we deduce these assertions from ours.

In the case of (1)′ we have

f
( Ln

Ln+1

)
=

bLn+1Ln

Qn
∈ Z.

Conversely, put q = s/r (r, s ∈ Z with (r, s) = 1), and assume that f(q) is an integer. Then b

is divisible by r2−Prs+Qs2 since brs is divisible by r2−Prs+Qs2 and (rs, r2−Prs+Qs2) = 1.

Put now η = (r + sa) − sb
√
N and d = (r + sa, sb). Then Nr η = r2 − Prs + Qs2. Moreover,

η/d is invertible in Z[
√
N ],

Indeed, b is divisible by d2 and b/d2 is divisible by Nr(η/d) since b is divisible by Nr η. Assume

now Nr(η/d) ̸= ±1, and let p be a prime divisor of Nr(η/d). Then, we could conclude that b/d

and (r + sa)/d are both divisible by p, noting

Nr
η

d
=

(r + sa

d

)2
− s2

( b

d

)2
.

However, this contradicts the fact that (r + sa)/d and b/d are prime to each other.

The multiplicatve group Z[
√
N ]×/{±1} is generated by α = a + b

√
N since (a, b) is the

minimal solution of the Pell equation x2 −Ny2 = ±1. Hence, we obtain (r − sα)/d = ±βn and

(r − sβ)/d = ±αn, and therefore r/s = Ln+1/Ln for some n ∈ Z.
On the other hand, in the case of (2)′ we have

f
( Sn

Sn+1

)
=

Sn+1Ln

2
, f

( Ln

Ln+1

)
= −Ln+1Sn

2
,

f
( Ln+1 − Ln

Ln+2 − Ln+1

)
= −1

2
(Ln+2 − Ln+1)(Ln+1 + Ln),

f
( Ln+1 + Ln

Ln+2 + Ln+1

)
=

1

2
(Ln+2 + Ln+1)(Ln+1 − Ln).

Hence, we can conclude

f
( Sn

Sn+1

)
, f

( Ln

Ln+1

)
∈ Z,
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noting that Sk is even for each k ∈ Z since S0 = 2 and S1 = 2. Furtheremore, we can verify

Lk ≡ k mod 2 for each k, noting L0 = 0, L1 = 1 and L2 ≡ 0 mod 2. Hence we obtain

f
( Ln+1 − Ln

Ln+2 − Ln+1

)
, f

( Ln+1 + Ln

Ln+2 + Ln+1

)
̸∈ Z.

4.2. Let N be a positive integer. Assume that N is not a square. Let (a, b) denote the minimal

solution of the Pell equation x2−Ny2 = ±4. Define two integer sequences {Un}n≥0 and {Vn}n≥0

by

Un =
(a+ b

√
N)n − (a− b

√
N)n

2n
√
N

and

Vn =
(a+ b

√
N)n + (a− b

√
N)n

2n
.

Put P = a and Q = (a2 −Nb2)/4 = ±1. Then {Un}n≥0, {Vn}n≥0 ∈ L(P,Q Z). The generating

functions of {Un}n≥0 and {Vn}n≥0 are given by

bt

1− Pt+Qt2

and
2− at

1− Pt+Qt2
,

respectively. We have also

Un = bLn, Vn = Sn

for each n ∈ Z, where {Ln}n≥0 and {Sn}n≥0 denote the Lucas sequence and the companion

Lucas sequence associated to (P,Q), respectively.

Tsuno [7] proves the following assertions, under the assumption N ≥ 5:

(1) Put f(t) =
bt

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q = Un/Un+1

or QUn+1/Un for some n ≥ 0.

(2) Put f(t) =
1

2

1− at

1− Pt+Qt2
, and let q ∈ Q. Then:

(a) Assume Q = −1. Then, f(q) (q ∈ Q) is an integer if and only if q = Un/Un+1, −Un+1/Un,

Vn/Vn+1 or −Vn+1/Vn for some n ∈ Z.
(b) Assume Q = 1. Then, f(q) (q ∈ Q) is an integer if and only if q = ±1 or q = Un/Un+1,

Un/Un+1, Vn/Vn+1, Vn+1/Vn, U2n−1/(U2n ± U1 or U2n+1)/(U2n+1 ± U1) some n ∈ Z.

We can restate (1) and (2) as follows:

(1)′ Put f(t) =
bt

1− Pt+Qt2
, and let q ∈ Q. Then, f(q) is an integer if and only if q = Ln/Ln+1

for some n ∈ Z.

(2)′ Put f(t) =
2− at

1− Pt+Qt2
, and let q ∈ Q. Then:

(a) Assume Q = −1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1 or Sn/Sn+1

for some n ∈ Z.
(b) Assume Q = 1. Then, f(q) (q ∈ Q) is an integer if and only if q = Ln/Ln+1, Sn/Sn+1,

(Ln − Ln−1)/(Ln+1 − Ln) or (Ln − Ln−1)/(Ln+1 − Ln) some n ∈ Z.



LUCAS SEQUENCES 13

Indeed, we can deduce the assertion (1)′ from Theorem 2.3 as in 4.1. Now we deduce the

assertion (2)′ from Theorem 3.5. First note

Un/Un+1 = Ln/Ln+1, Un+1/Un = Ln+1/Ln, Vn/Vn+1 = Sn/Sn+1, Vn+1/Vn = Sn+1/Sn

and

Ln+1/Ln = QL−n−1/L−n, Sn+1/Sn = QS−n−1/S−n,

Furthermore, if Q = 1, then we have

L0 − L−1

L1 − L0
= 1,

L0 + L−1

L1 − L0
= −1

and

Ln − Ln−1

Ln+1 − Ln
=

L2n−1

L2n − 1
,
Ln + Ln−1

Ln+1 + Ln
=

L2n−1

L2n + 1
,

Ln+1 + Ln

Ln + Ln−1
=

L2n+1

L2n − L1
,
Ln+1 − Ln

Ln − Ln−1
=

L2n+1

L2n + L1
,

which follow from

(Ln − Ln−1)(L2n − 1) = L2n−1(Ln+1 − Ln), (Ln + Ln−1)(L2n + 1) = L2n−1(Ln+1 + Ln),

(Ln+1 + Ln)(L2n − L1) = L2n+1(Ln + Ln−1), (Ln+1 − Ln)(L2n + L1) = L2n+1(Ln − Ln−1),

respectively. We can honestly verify these equalities, using the formula

LnLm =
Sn+m − Sn−m

D
.

Hence, the assertion (2)′ is nothing but Theorem 3.5.

5. An observation

In this section, we fix P,Q ∈ Z and put D = P 2 − 4Q.

Notation 5.1. Let P,Q ∈ Z. As is well known, the map {wk}k≥0 7→ (w0, w1) gives rise to a

Q-linear isomorphism L(P,Q;Q)
∼→ Q2.

Now put R̃ = Q[t]/(t2 − Pt + Q) and θ = t mod (t2 − Pt + Q). We define a Q-linear map

ω : R̃ → Q by ω(a + bθ) = b (a, b ∈ Q). Moreover, we define a Q-linear map ω̃ : R̃ → QN by

ω̃(η) = {ω(ηθk)}k≥0. For η = a+ bθ ∈ R̃, we have ω̃(η) = {b, a+ Pb, . . . }.
We can verify the following statements, paraphrasing the proofs of [4, Prop.3.2 and Cor.3.3].

(1) The Q-linear map ω̃ : R̃ → L(P,Q;Q) ⊂ QN is bijective.

(2) A Q-algebra structure of L(P,Q;Q) is defined through the Q-linear isomorphism ω̃ : R̃
∼→

L(P,Q;Q). Then the Lucas sequence {Lk}k≥0 = ω̃(1) is the unit of the ring L(P,Q;Q).

More precisely, let w = {wk}k≥0,w
′ = {w′

k}k≥0 ∈ L(P,Q;Q). Then the product of w and w′

is given by

(w0w
′
1 + w1w

′
0 − Pw0w

′
0, w1w

′
1 −Qw0w

′
0, . . . ).

It is readily seen that the multiplication by θ on R̃ induces the shift operation {wk}k≥0 7→
{wk+1}k≥0 on L(P,Q;Q) through the isomorphism ω̃ : R̃

∼→ L(P,Q;Q).
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(3) Let η = a + bθ ∈ R̃ = Q[t]/(t2 − Pt + Q) (a, b ∈ Q). Then η 7→ η̄ gives rise to a Q-

automorphism of R̃. Moreover, we define Nr η ∈ Q by Nr η = ηη̄ = a2 + Pab + Qb2. For

example, we have Nr θ = Q. Obviously, η is invertible in R̃ if and only if Nr η ̸= 0.

Now let w = {wk}k≥0 ∈ L(P,Q;Q). Define ∆(w) ∈ Q by ∆(w) = w2
1 − Pw0w1 + Qw2

0. If

η ∈ R̃ and w = ω̃(η), then we have Nr η = ∆(w). Therefore, the sequence w = {wk}k≥0 is

invertible in L(P,Q;Q) if and only if ∆(w) = w2
1 − Pw0w1 +Qw2

0 ̸= 0.

Notation 5.2. We put δ = −P +2θ ∈ R̃. Then we have δ2 = D and Nr δ = −D. The sequence

ω̃(δ) is nothing but the companion Lucas sequence (Sk)k≥0 associated to (P,Q).

Notation 5.3. We define groups GP,Q(Q), G(P,Q)(Q) and UP,Q(Q) by

GP,Q(Q) = (Q[t]/(t2 − Pt+Q))×,

G(P,Q)(Q) = Coker[i : Q× → (Q[t]/(t2 − Pt+Q))×],

UP,Q(Q) = Ker[Nr : (Q[t]/(t2 − Pt+Q))× → Q×].

Here i : Q× → (Q[t]/(t2 − Pt + Q))× denotes the inclusion map. Moreover, we define a ho-

momorphism of groups γ : GP,Q(Q) → UP,Q(Q) by γ(η) = η/η̄ = η2/Nr η. Then we have

Ker[γ : GP,Q(Q) → UP,Q(Q)] = Q×, and γ is surjective by Hilbert 90. Hence γ induces an

isomorphism of groups γ̃ : G(P,Q)(Q) = GP,Q(Q)/Q× ∼→ UP,Q(Q). It is readily seen:

(a) If D is a square in Q×, then UP,Q(Q) is isomorphic to the multiplicative group Q×;

(b) If D = 0, then UP,Q(Q) is isomorphic to the additive group Q;

(c) If D is not a square in Q, then UP,Q(Q) is isomorphic to the multiplicative group Ker[Nr :

Q(
√
D)× → Q×].

Hence, if D ̸= 0, then we obtain γ(δ) = −1, which is a unique element of order 2 of UP,Q(Q).

Assume now Q ̸= 0. Then θ is invertible in R̃ = Q[t]/(t2 − Pt + Q). Let Θ denote the

subgroup of G(P,Q)(Q) generated by θ. Then the group G(P,Q)(Q)/Θ is isomorphic to the group

G(f) defined by Laxton [2] under the assumptions: (P,Q) = 1 and D = P 2−4Q ̸= 0 ([4, Th.4.2]

and [5, Th.4.2]). Here f(t) = t2 − Pt+Q.

Remark 5.3.1. The groups GP,Q(Q), G(P,Q)(Q) and UP,Q(Q) are the Q-rational points of the

group schemes GP,Q, G(P,Q) and UP,Q, respectively. For details, we refer to [4, Section 1] and

[5, Section 1].

Hereafter, we investigate the elements of order 2 of G(P,Q)(Q)/Θ.

Proposition 5.4. Let η ∈ GP,Q(Q). Then:

(1) There exists ξ ∈ UP,Q(Q) such that ξ2 = γ(η) if and only if Nr η is a square in Q. In this

case, the solutions of the equation ξ2 = γ(η) in UP,Q(Q) are given by ξ = ±η/
√
Nr η.

(2) Assume that Nr η is a square in Q, and put η = u+ vδ (u, v ∈ Q). If Dv ̸= 0, then we have

±η/
√
Nr η = γ(η ±

√
Nr η).



LUCAS SEQUENCES 15

Proof. (1) Assume first that Nr η is a square in Q. Then we have ±η/
√
Nr η ∈ UP,Q(Q) and

(±η/
√
Nr η)2 = η2/Nr η = γ(η).

Conversely, assume that there exists ξ ∈ UP,Q(Q) such that ξ2 = γ(η). Taking ξ̃ ∈ GP,Q(Q)

such that γ(ξ̃) = ξ, we obtain η = aξ2 for some a ∈ Q×. This implies Nr η = a2(Nr ξ)2.

(2) Put ξ̃ = η ±
√
Nr η. Then we obtain ξ̃2 = 2(u ± √

η)η, and therefore γ(ξ̃)2 = γ(η) since

Nr η = u2 −Dv2 ≠ u2.

Remark 5.5. Assume D = 0. Let η = u + vδ ∈ R̃ = Q[t]/(t2 − Pt + Q) (u, v ∈ Q). Then we

obtain η2 = u2 + 2uvδ and Nr η = u2, noting δ2 = D. Hence, η is invertible in R̃ if and only if

u ̸= 0. In this case, we have γ(η) = 1 + 2vδ/u, and the solutions of ξ2 = γ(η) in UP,Q(Q) are

given by ξ = ±(1 + vδ/u).

Corollary 5.6. Assume that Q ̸= 0 and D ̸= 0. Then there exists ξ ∈ UP,Q(Q) such that

ξ2 = γ(θ) in UP,Q(Q) if and only if Q = Nr θ is a square in Q. In this case, the solutions of the

equation ξ2 = γ(θ) in UP,Q(Q) are given by ξ = ±θ/
√
Q = γ(θ ±

√
Q).

The following assertion is a direct consequence of Corollary 5.6.

Corollary 5.7. Assume that Q ̸= 0 and D ̸= 0. Then:

(1) If Q is a square in Q and P ̸= 0,±
√
Q, then the kernel of the square map on G(P,Q)(Q)/Θ

is isomorphic to Z/2Z× Z/2Z.
(2) If Q is not a square in Q, then the kernel of the square map on G(P,Q)(Q)/Θ is isomorphic

to Z/2Z.

Example 5.8. Assume Q = 1 and P ̸= 0,±1,±2. Then we have

(θ + 1)2 = (P + 2)θ, Nr(θ + 1) = P + 2, γ(θ + 1) = θ,

(θ − 1)2 = (P − 2)θ, Nr(θ − 1) = −P + 2, γ(θ − 1) = −θ,

(θ + 1)(θ − 1) = Pθ − 2 = θδ.

Furthermore, the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ] = 1, [θ+1], [θ−1], [δ]}.

Observation 5.9. Put f(t) = (2− t)/(1− Pt+ t2), the generating function of the companion

Lucas sequence associated to (P, 1). Let q ∈ Q. Theorem 3.5, Proposition 3.6.1 and Proposition

3.7.1 assert that f(q) ∈ Z if and only if q = wn/wn+1 for some n ∈ Z, where {wk}k≥0 = ω̃(η)

and [η] ∈ {[θ], [δ], [θ+1], [θ−1]} ⊂ G(P,1)(Q)/Θ. The author is not sure whether this is a chance

or an apperance of a deeper fact. However, the following examples suggest that there is hidden

something to consider.

Example 5.10.1. Let P = 0 and Q = 1. Then we have

{Lk}k≥0 = {0, 1, 0,−1, 0, 1, . . . }, {Sk}k≥0 = {2, 0,−2, 0, 2, 0, . . . },

{Lk+1 + Lk}k≥0 = {1, 1,−1,−1, 1, 1, . . . }, {Lk+1 − Lk}k≥0 = {1,−1,−1, 1, 1,−1, . . . },
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and the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ] = [δ], [θ + 1] = [θ − 1]}.
Moreover, let q ∈ Q.

(1) Put f(t) = t/(1+ t2). Then, f(q) ∈ Z if and only if q = 0, i.e. q = Ln/Ln+1 for some n ∈ Z.

(2) Put f(t) = 2/(1 + t2). Then, f(q) ∈ Z if and only if q = 0,±1, i.e. q = Ln/Ln+1 or

(Ln+1 + Ln)/(Ln+2 + Ln+1) for some n ∈ Z.

Example 5.10.2. Let P = 1 and Q = 1. Then we have

{Lk}k≥0 = {0, 1, 1, 0,−1,−1, 0, 1, . . . }, {Sk}k≥0 = {2, 1,−1,−2,−1, 1, 2, 1, . . . },

{Lk+1 + Lk}k≥0 = {1, 2, 1,−1,−2,−1, 2, 1, . . . }, {Lk+1 − Lk}k≥0 = {1, 0,−1,−1, 0, 1, 1, 0, . . . },

and the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ] = [θ − 1], [δ] = [θ + 1]}.
Moreover, let q ∈ Q.

(1) Put f(t) = t/(1− t+ t2). Then, f(q) ∈ Z if and only if q = 0, 1, i.e. q = Ln/Ln+1 for some

n ∈ Z.

(2) Put f(t) = (2− t)/(1− t+ t2). Then, f(q) ∈ Z if and only if q = 0, 1, 2, 1/2, i.e. q = Ln/Ln+1

or Sn/Sn+1 for some n ∈ Z.

Example 5.10.3. Let P = −1 and Q = 1. Then we have

{Lk}k≥0 = {0, 1,−1, 0, 1, . . . }, {Sk}k≥0 = {2,−1,−1, 2,−1, . . . },

{Lk+1 + Lk}k≥0 = {1, 0,−1, 1, 0, . . . }, {Lk+1 − Lk}k≥0 = {1,−2, 1, 1,−2, . . . },

and the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ] = [θ + 1], [δ] = [θ − 1]}.
Moreover, let q ∈ Q.

(1) Put f(t) = t/(1+ t+ t2). Then, f(q) ∈ Z if and only if q = 0,−1, i.e. q = Ln/Ln+1 for some

n ∈ Z.

(2) Put f(t) = (2 + t)/(1 + t + t2). Then, f(q) ∈ Z if and only if q = 0,−1,−2,−1/2, i.e.

q = Ln/Ln+1 or Sn/Sn+1 for some n ∈ Z.

Example 5.10.4. Let P = 2 and Q = 1. Then we have

Lk = k1k−1, Sk = 2 · 1k, Lk+1 + Lk = 2k1k−1 + 1k, Lk+1 − Lk = 1k

and the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ], [θ+ 1]}. Moreover, let q ∈ Q.

(1) Put f(t) = t/(1 − t)2. Then, f(q) ∈ Z if and only if q = n/(n + 1) = Ln/Ln+1 for some

n ∈ Z.

(2) Put f(t) = (2−2t)/(1−t)2 = 2/(1−t). Then, f(q) ∈ Z if and only if q = n/(n+1) = Ln/Ln+1

or q = (2n+ 1)/(2n+ 3) = (Ln+1 + Ln)/(Ln+2 + Ln+1) for some n ∈ Z.

Example 5.10.5. Let P = −2 and Q = 1. Then we have

Lk = k(−1)k−1, Sk = 2 · (−1)k, Lk+1 + Lk = (−1)k, Lk+1 − Lk = −2k(−1)k−1 + (−1)k
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and the kernel of the square map on G(P,1)(Q)/Θ is given by {[θ], [θ− 1]}. Moreover, let q ∈ Q.

(1) Put f(t) = t/(1 + t)2. Then, f(q) ∈ Z if and only if q = −n/(n + 1) = Ln/Ln+1 for some

n ∈ Z.

(2) Put f(t) = (2 + 2t)/(1 + t)2 = 2/(1 + t). Then, f(q) ∈ Z if and only if q = −n/(n + 1) =

Ln/Ln+1 or q = −(2n+ 1)/(2n+ 3) = (Ln+1 + Ln)/(Ln+2 + Ln+1) for some n ∈ Z.
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