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Abstract. The goal of this paper is to develop the Littlewood–Paley theory
of discrete Morrey spaces. As an application, we establish the boundedness of

martingale transforms. We carefully justify the definition of martingale trans-

forms, since discrete Morrey spaces do not contain discrete Lebesgue spaces as
dense subspaces. We also obtain the boundedness of Riesz potentials.

1. Introduction

The goal of this note is to develop the Littlewood–Paley theory of discrete
Morrey spaces. As an application, we establish the boundedness of martingale
transforms.

First, we define discrete Morrey spaces. A dyadic interval is the set of integers
given by I(j, k) = Z ∩ [2jk, 2j(k + 1)) for some j ∈ N0 = {0, 1, . . .} and k ∈ Z. A
dyadic cube in Zn is a subset of the fom:

Q = I(j, k1)× I(j, k2)× · · · × I(j, kn),

where j ∈ N0 and k = (k1, k2, . . . , kn) ∈ Zn. The family D(Zn) stands for the set
of all dyadic cubes described above, while the subfamily Dj(Zn) collects all dyadic
cubes of I(j, k) = Z ∩ [2jk, 2j(k + 1)) with j ∈ N0.

Definition 1.1. Let 1 ≤ q ≤ p < ∞. The space Mp
q(Zn) is the set of all

a = {aj⃗}j⃗∈Zn for which

‖a‖Mp
q(Zn) = sup

Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|aj⃗ |
q

 1
q

is finite, where ♯Q stands for the number of elements of the dyadic cube Q.

The discrete Morrey space Mp
q(Zn) falls within the scope of the work [1] and

has been investigated in [4, 5, 6, 7]. Our goal of this paper is to obtain an equivalent
norm by means of the Littlewood–Paley decomposition.
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We describe the Littlewood–Paley decomposition. To this end, we start with
defining the 1-dimensional Littlewood–Paley operator. For a 1-dimensional se-
quence a = {aj}j∈Z, we let

Ek(a)j =
1

2k

∑
l∈Q

al,

where Q is a unique cube in Dk(Z) which contains j. Each Ek is called the average
operator of generation k. We define Dk = Ek − Ek+1. The Littlewood–Paley
operator g(a) = {g(a)j}j∈Z is defined by

g(a)j =

( ∞∑
k=0

|Dk(a)j |2
) 1

2

(j ∈ Z)

Having defined 1-dimensional operators, we move on to the definition of oper-
ators acting of n-fold indexed (multiply-indexed) sequences. We let l = 1, 2, . . . , n.

The operator E
(l)
k acts on the l-th component as Ek with other components un-

changed. The difference operator D
(l)
k is defined by D

(l)
k = E

(l)
k − E

(l)
k+1. We write

E⃗ = (E,E, . . . , E). Let X⃗ = (X1, X2, . . . , Xn) ∈ {(D,E)}n \ {E⃗}. Define the oper-

ator X⃗k by X⃗k = X
(1)
k ◦X(2)

k ◦ · · · ◦X(n)
k . The discrete Littlewood–Paley operator

g is given by the mapping a = {aj⃗}j⃗∈Zn 7→ g(a) = {g(a)⃗j}j⃗∈Zn , where

g(a)⃗j =

 ∞∑
k=0

∑
X⃗∈{(D,E)}n\{E⃗}

|X⃗k(a)⃗j |
2

 1
2

(⃗j ∈ Zn)

The next proposition is well known as the Littlewood–Paley characterization of the
discrete ℓp(Zn)-norm.

Proposition 1.2. Let 1 < p < ∞. Then there exists cp > 0 such that

cp
−1‖a‖ℓp(Zn) ≤ ‖g(a)‖ℓp(Zn) ≤ cp‖a‖ℓp(Zn)

for all a ∈ ℓp(Zn).

In this paper, we will establish the following norm equivalence and then apply
it to the boundedness of various operators:

Theorem 1.3. Let 1 < q ≤ p < ∞. Then there exists cp,q > 0 such that

cp,q
−1‖a‖Mp

q(Zn) ≤ ‖g(a)‖Mp
q(Zn) ≤ cp,q‖a‖Mp

q(Zn)

for all a ∈ Mp
q(Zn).

Theorem 1.3 is a discrete version of [8, Corollary 4.1].
We apply Theorem 1.3 to the boundedness of martingale transforms. Let

{mk}∞k=1 be a sequence of sequences in ℓ∞(Zn). Then define

Mm(a) = {Mm(a)⃗j}j⃗∈Z =

∞∑
k=0

Ek+1(m
k)Dk(a) = lim

N→∞

N∑
k=0

Ek+1(m
k)Dk(a), (1.1)

where Ek+1(m
k)Dk(a) = {Ek+1(m

k )⃗jDk(a)⃗j}j⃗∈Z. We can not use the density

argument. Recall that the support of a multiply-indexed sequence a = {aj⃗}j⃗∈Zn

is the set of all indices j⃗ for which aj⃗ 6= 0. Since Mp
q(Zn) does not contain the

space of finitely supported multiply-indexed sequences as a dense subspace (see
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Remark 4.1), we have to justify the definition of the martingale transform Mm:
The existence of the limit defining Mm(a) is not clear. Furthermore, since Theorem
1.3 is applicable for multiply-indexed sequences in Mp

q(Zn), we also have to show
that Mm(a) ∈ Mp

q(Zn) for any a ∈ Mp
q(Zn) before we use Theorem 1.3 to obtain

the norm estimate.
We perform this using the predual space Hp′

q′ (Zn) considered in [9].

Definition 1.4. Let 1 < q ≤ p < ∞.

(1) A multiply-indexed sequence a = {aj⃗}j⃗∈Zn is said to be a (p′, q′)-block

centered at Q if it is supported on Q and ‖a‖ℓq′ (Zn) ≤ (♯Q)
1
p−

1
q .

(2) The block space Hp′

q′ (Zn) is the set of all multiply-indexed sequences a

of the form: a =
∞∑
j=1

λ(j)a(j) where the convergence takes place in the

topology of ℓp
′
(Zn), λ = {λ(j)}∞j=1 ∈ ℓ1(N) and each a(j) is a (p′, q′)-block

centered at Qj ∈ D(Zn). The norm is given by ‖a‖Hp′
q′ (Z

n)
= inf ‖λ‖ℓ1(Zn),

where λ and {a(j)}∞j=1 move over all possible representations.

According to the general theory [9], Mp
q(Zn) admits a predual. One predual

of Mp
q(Zn) is the space Hp′

q′ (Zn).

Proposition 1.5. Let 1 < q′ ≤ p′ < ∞. Then Hp′

q′ (Zn) is a Banach space.

Furthermore, the dual of Hp′

q′ (Zn) is isomorphic to Mp
q(Zn). More precisely, we

have the following:

(1) For all a = {aj⃗}j⃗∈Zn ∈ Mp
q(Zn) and b = {b⃗j}j⃗∈Zn ∈ Hp′

q′ (Zn),∑
j⃗∈Zn

|aj⃗ b⃗j | ≤ ‖a‖Mp
q(Zn)‖b‖Hp′

q′ (Z
n)
.

In particular,

a 7→ La(b) =
∑
j⃗∈Zn

aj⃗ b⃗j

is a bounded linear functional.

(2) Conversely any bounded linear functional over Hp′

q′ (Zn) can be realized as

above for some a ∈ Mp
q(Zn).

By using Proposition 1.5 we will justify that the limit defining Mm(a) for
a ∈ Mp

q(Zn) exists in the weak-* topology.

Theorem 1.6. Let 1 < q ≤ p < ∞. Assume that

K = sup
k∈N

‖Ek+1(m
k)‖ℓ∞(Zn) < ∞.

Then the limit defining Mm(a) for a ∈ Mp
q(Zn) exists in the weak-* topology of

Mp
q(Zn). The martingale transform a ∈ Mp

q(Zn) 7→ Mm(a) ∈ Mp
q(Zn) is bounded.

Here we list other conventions of this paper.

• A cube in Zn is a subset which can be expressed as

Q = Q(a, r) = {m = (m1,m2, . . . ,mn) ∈ Zn : max
j=1,2,...,n

|mj − aj | ≤ r}

for some a = (a1, a2, . . . , an) and r > 0.



4 YUTO ABE, YOSHIHIRO SAWANO

• For multiply-indexed sequences a = {aj⃗}j⃗∈Zn and b = {b⃗j}j⃗∈Zn , we write

〈a, b〉 =
∑
j⃗∈Zn

aj⃗ b⃗j

as long as the right-hand side converges absolutely.
• Let A,B ≥ 0. Then A ≲ B and B ≳ A mean that there exists a constant

C > 0 such that A ≤ CB, where C depends only on the parameters of
importance. The symbol A ∼ B means that A ≲ B and B ≲ A happen
simultaneously, while A ' B means that there exists a constant C > 0
such that A = CB. When we need to emphasize or keep in mind that the
constant C depends on the parameters α, β, γ etc, we write A ≲α,β,γ,... B
instead of A ≲ B.

Before we conclude this section, we collect some elementary facts that can be derived
directly from the above definitions. Observe that any cube Q ∈ Q(Zn) can be
included in the union of dyadic cubes Q1, Q2, . . . , Q3n satisfying ℓ(Qj) ≤ ℓ(Q) <
2ℓ(Qj) for each j = 1, 2, . . . , 3n. A direct consequence of this observation is the
norm equivalence: for

‖a‖Mp
q(Zn) ∼ sup

Q∈Q(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|aj⃗ |
q

 1
q

.

We organize this paper as follows: Section 2 collects some preliminary facts.
Section 3 proves Theorem 1.3. As an application, we prove Theorem 1.6 in Section
4. Section 5 is an appendix where we prove the boundedness of the fractional
integral operator.

2. Preliminaries

2.1. Embedding. We invoke a fundamental embedding result [5, 7]: If 1 ≤
r ≤ q ≤ p < ∞, then

‖a‖Mp
r(Zn) ≤ ‖a‖Mp

q(Zn) (2.1)

for any multiply-indexed sequence a = {aj⃗}j⃗∈Zn by Hölder’s inequality.

2.2. Maximal operator. For a multiply-indexed sequence a = {aj⃗}j⃗∈Zn ,
write

Mdyadicaj⃗ = sup
j⃗∈Q∈D(Zn)

1

♯Q

∑
j⃗∗∈Q

|aj⃗∗ |.

We define Mdyadica = {Mdyadicaj⃗}j⃗∈Zn . The correspondence a 7→ Mdyadica is called

the dyadic maximal operator. Gunawan and Schwanke established that the dyadic
maximal operator is bounded on D(Zn) [4, Theorem 3.2].

Proposition 2.1. Let 1 < q ≤ p < ∞. Then there exists cq > 0 such that

‖Mdyadica‖Mp
q(Zn) ≤ cq‖a‖Mp

q(Zn)

for all a ∈ Mp
q(Zn).
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2.3. Predual spaces. We invoke the following elementary facts: Since the
proof is similar to the classical case as in [3], se content ourselves with the statement.

Lemma 2.2. [3, (9.2)] For any (p′, q′)-block a = {aj⃗}j⃗∈Zn , we have ‖a‖ℓp′ (Zn) ≤
1.

A direct consequence of Lemma 2.2 is the following embedding result:

Corollary 2.3. Let 1 < q ≤ p < ∞. Then Hp′

q′ (Zn) is a subset of ℓp
′
(Zn).

More quantitatively, ‖a‖ℓp′ (Zn) ≤ ‖a‖Hp′
q′ (Z

n)
for all a = {aj⃗}j⃗∈Zn .

Finally, we invoke [3, Lemma 341].

Proposition 2.4. Let 1 < q ≤ p < ∞ and Q ∈ D(Zn). Define

RQ(a)⃗j =

{
aj⃗ j⃗ ∈ Q,

0 j⃗ /∈ Q

for a ∈ ℓq
′
(Zn). Then we have

‖RQ(a)‖Hp′
q′ (Z

n)
≤ (♯Q)

1
q−

1
p ‖a‖ℓq′ (Zn)

for all a ∈ ℓq
′
(Zn).

3. Littlewood–Paley decomposition–Proof of Theorem 1.3

Recall that g(a) contains the operators Dk in its definition, which annihilate
the constant multiply-indexed sequence {1}j⃗∈Zn . Therefore, seemingly the quantity

‖g(a)‖Mp
q(Zn) loses something that ‖a‖Mp

q(Zn) has. This is the case if we consider

a multiply-indexed sequence a that does not necessarily belong to Mp
q(Zn). To

establish that this does not apply for any multiply-indexed sequence in Mp
q(Zn),

we use the following lemma:

Lemma 3.1. Let R ∈ D(Zn) and 1 < q ≤ p < ∞. Then for each a ∈ Mp
q(Zn)

and for each multiply-indexed sequence b which is supported on R, we have

lim
N→∞

〈EN (a), EN (b)〉 = 0.

Proof. A normalization allows us to assume
∑
j⃗∈R

|b⃗j |
q′ = 1. Let ♯R = 2nM .

Consider an increasing sequence {Qm}∞m=1 ⊂ D(Zn) satisfying Q0 = R, ♯Qm+1 =

2n♯Qm. A geometric observation shows that

∞⋃
m=0

Qm is nothing but a quadrant S of

Zn. That is, S is the Cartesian n-fold product of the sets [0,∞)∩Z or (−∞, 0)∩Z.
We decompose

∞⋃
m=0

Qm = Q0 ∪
∞⋃

m=0

(Qm+1 \Qm).
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Then we have

|〈EN (a), EN (b)〉| =

∣∣∣∣∣∣
∑
j⃗∈Zn

EN (a)⃗jEN (b)⃗j

∣∣∣∣∣∣
≤
∑
j⃗∈Zn

|EN (a)⃗j ||EN (b)⃗j |

=
∑
j⃗∈Q0

|EN (a)⃗j ||EN (b)⃗j |+
∞∑

m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j ||EN (b)⃗j |.

For the first term, we employ Hölder’s inequality and Proposition 2.1 to have∑
j⃗∈Q0

|EN (a)⃗j ||EN (b)⃗j | ≤ ‖EN (a)‖ℓq(Q0)‖EN (b)‖ℓq′ (Q0)

≤ (♯Q0)
1
q−

1
p ‖EN (a)‖Mp

q(Zn)

∑
j⃗∈Q0

∣∣∣∣∣∣ 1

2nN

∑
j⃗∗∈Q0

bj⃗∗

∣∣∣∣∣∣
q′


1
q′

≤ 1

2nN
(♯Q0)

1
q−

1
p+

1
q′ ‖EN (a)‖Mp

q(Zn)

∣∣∣∣∣∣
∑

j⃗∗∈Q0

bj⃗∗

∣∣∣∣∣∣
≤ 1

2nN
(♯Q0)

1
q−

1
p+

1
q′ ‖Mdyadica‖Mp

q(Zn)

∣∣∣∣∣∣
∑

j⃗∗∈Q0

bj⃗∗

∣∣∣∣∣∣
≲ 1

2nN
(♯Q0)

1− 1
p ‖a‖Mp

q(Zn)

∣∣∣∣∣∣
∑

j⃗∗∈Q0

bj⃗∗

∣∣∣∣∣∣ .
This term tends to 0 as N → ∞.

For the second term, we first choose a dyadic cube S ∈ DN (Zn) which contains
Q0. Then we obtain an increasing sequence Q0 ⊊ Q1 ⊊ · · · ⊊ Ql = S with the
property that there is no intermediate dyadic cube between Qj−1 and Qj for all

j = 1, 2, . . . , l, where l = N −M . Suppose j⃗ ∈ Qm+1 \Qm with m = 0, 1, . . .. Then

EN (b)⃗j =


1

2nN

∑
j⃗∗∈Q0

b⃗j∗ if m+ 1 ≤ l,

0 if m+ 1 > l.

If we insert this expression into the second term, then we have

∞∑
m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j ||EN (b)⃗j | =
l−1∑
m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j |

∣∣∣∣∣∣ 1

2nN

∑
j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣
=

1

2nN

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣
l−1∑
m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j |.
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By the triangle inequality, the definition of the Morrey norm ‖·‖Mp
q(Zn) and Propo-

sition 2.1,
∞∑

m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j ||EN (b)⃗j |

≤ 1

2nN

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣
l−1∑
m=0

∑
j⃗∈Qm+1

|EN (a)⃗j |

≤ 1

2nN

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣
l−1∑
m=0

(♯Qm+1)
1− 1

p ‖EN (a)‖Mp
q(Zn)

≤ 1

2nN

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣ ‖Mdyadica‖Mp
q(Zn)

l−1∑
m=0

(♯Qm+1)
1− 1

p

≲ 1

2nN

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣ ‖a‖Mp
q(Zn)

l−1∑
m=0

(♯Qm+1)
1− 1

p .

Since ♯Qm+1 = 2n(M+m+1), p < ∞ and l = N −M ,

l−1∑
m=0

(♯Qm+1)
1− 1

p ≲ 2
nN
p′ .

As a result,

∞∑
m=0

∑
j⃗∈Qm+1\Qm

|EN (a)⃗j ||EN (b)⃗j | ≲
1

2nN
× 2

nN
p′ ×

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣ ‖a‖Mp
q(Zn)

= 2−
nN
p ×

∣∣∣∣∣∣
∑

j⃗∗∈Q0

b⃗j∗

∣∣∣∣∣∣ ‖a‖Mp
q(Zn)

→ 0 (N → ∞).

This completes the estimate for the second term. □

3.1. Proof of the right inequality. It suffices to show that

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a)q
j⃗

 1
q

≤ cp,q‖a‖Mp
q(Zn)

for each Q ∈ D(Zn). To specify we let Q ∈ DN (Zn).
We write a = a+Q + a−Q = {(a+Q)⃗j}j⃗∈Zn + {(a−Q)⃗j}j⃗∈Zn , where

(a+Q)⃗j = χQ(⃗j)aj⃗ , (a−Q)⃗j = aj⃗ − (a+Q)⃗j .

Matters are reduced to the proof of

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a+Q)
q

j⃗

 1
q

+ (♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a−Q)
q

j⃗

 1
q

≤ cp,q‖a‖Mp
q(Zn)
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for each Q ∈ D(Zn).
As for a+Q, we employ Proposition 1.2 to have

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a+Q)
q

j⃗

 1
q

≤ (♯Q)
1
p−

1
q ‖g(a+Q)‖ℓq(Zn)

≤ cq(♯Q)
1
p−

1
q ‖a+Q‖ℓq(Zn)

= cq(♯Q)
1
p−

1
q

∑
j⃗∈Q

|aj⃗ |
q

 1
q

.

Thus, we are left with the task of dealing with a−Q.

It follows from the definition of g(a−Q) that

g(a−Q)⃗j =

( ∞∑
k=0

|Dk(a
−
Q)⃗j |

2

) 1
2

.

Suppose j⃗ ∈ Q. Then we have

g(a−Q)⃗j ≤
∞∑
k=0

|Dk(a
−
Q)⃗j | ≤

∞∑
k=0

(|Ek(a
−
Q)⃗j |+ |Ek+1(a

−
Q)⃗j |) ≤ 2

∞∑
k=0

|Ek(a
−
Q)⃗j |

by the triangle inequality. Denote by Qk the unique cube in Dk(Zn) that contains
Q. A geometric observation shows that

Ek(a
−
Q)⃗j =

0 if k ≤ N,
1

2nk

∑
j⃗∗∈Qk

(a−Q)j⃗∗ if k < N.

If we insert this expression into the definition of g(a−Q), then we obtain

g(a−Q)⃗j ≤ 2

∞∑
k=N+1

|Ek(a
−
Q)⃗j | = 2

∞∑
k=N+1

1

2nk

∣∣∣∣∣∣
∑

j⃗∗∈Qk

(a−Q)j⃗∗

∣∣∣∣∣∣
≤ 2

∞∑
k=N+1

1

2nk

∑
j⃗∗∈Qk

|(a−Q)j⃗∗ |

≤ 2

∞∑
k=N+1

1

2nk

∑
j⃗∗∈Qk

|aj⃗∗ |.

Consequently,

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a−Q)
q

j⃗

 1
q

≤ 2(♯Q)
1
p

∞∑
k=N+1

1

2nk

∑
j⃗∗∈Qk

|aj⃗∗ |.

Recall that ♯Q = 2nN and that ♯Qk = 2nk. Therefore,

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a−Q)
q

j⃗

 1
q

≤ 21+
nN
p

∞∑
k=N+1

(♯Qk)
−1

∑
j⃗∗∈Qk

|aj⃗∗ |.
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By the definition of the Morrey norm ‖a‖Mp
1(Zn) and embedding (2.1),

(♯Q)
1
p−

1
q

∑
j⃗∈Q

g(a−Q)
q

j⃗

 1
q

≤ 21+
nN
p

∞∑
k=N+1

(2nk)−
1
p ‖a‖Mp

1(Zn)

≲ ‖a‖Mp
q(Zn).

Thus, the proof is complete.

3.2. Proof of the left inequality. Let R ∈ D(Zn). It suffices to show that

(♯R)
1
p−

1
q

∑
j⃗∈R

|aj⃗ |
q

 1
q

≤ cp,q‖g(a)‖Mp
q(Zn).

We linearize the left-hand side. By Hölder’s inequality,∑
j⃗∈R

|aj⃗ |
q

 1
q

= sup


∣∣∣∣∣∣
∑
j⃗∈R

aj⃗ b⃗j

∣∣∣∣∣∣ : b = {b⃗j}j⃗∈R,

∑
j⃗∈R

|b⃗j |
q′

 1
q′

≤ 1

 (3.1)

Extend b to an element in ℓq
′
(Zn) by letting b⃗j = 0 outside R. Then we have∣∣∣∣∣∣

∑
j⃗∈R

aj⃗ b⃗j

∣∣∣∣∣∣ = |〈a, b〉| =

∣∣∣∣∣〈EN (a), EN (b)〉+
N−1∑
k=0

〈Dk(a), Dk(b)〉

∣∣∣∣∣
≤ |〈EN (a), EN (b)〉|+

∞∑
k=0

|〈Dk(a), Dk(b)〉|

for all N ∈ N. By using the Cauchy–Schwarz inequality twice, we have
∞∑
k=0

|〈Dk(a), Dk(b)〉| ≤
∑
j⃗∈Zn

∞∑
k=0

|Dk(a)⃗j ||Dk(b)⃗j |

≤
∑
j⃗∈Zn

√√√√ ∞∑
k=0

|Dk(a)⃗j |2

√√√√ ∞∑
k=0

|Dk(b)⃗j |2

=
∑
j⃗∈Zn

g(a)⃗jg(b)⃗j .

Inserting this inequality into (3.1), we have∑
j⃗∈R

|aj⃗ |
q

 1
q

≤ sup

|〈EN (a), EN (b)〉|+
∑
j⃗∈Zn

g(a)⃗jg(b)⃗j : supp(b) ⊂ R, ‖b‖ℓq′ (Zn) ≤ 1


for all N ∈ N. Fix b ∈ ℓq

′
(Zn) such that

‖b‖ℓq′ (Zn) = 1, supp(b) ⊂ R. (3.2)
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Recall that

lim
N→∞

〈EN (a), EN (b)〉 = 0

according to Lemma 3.1. Thus, it remains to show∑
j⃗∈Zn

g(a)⃗jg(b)⃗j ≤ cp,q‖g(a)‖Mp
q(Zn)

for all b ∈ ℓq
′
(Zn) supported in R with ‖b‖ℓq′ (Zn) = 1. Let {Qm}∞m=0 be the same

exhausting sequence of a quadrant S as in the proof of Lemma 3.1. In particular,
we let Q0 = R. Then notice that g(b)⃗j = 0 outside S. Thus,

∑
j⃗∈Zn

g(a)⃗jg(b)⃗j =
∑
j⃗∈Q0

g(a)⃗jg(b)⃗j +

∞∑
m=0

∑
j⃗∈Qm+1\Qm

g(a)⃗jg(b)⃗j .

As for the first term, we employ Hölder’s inequality and Proposition 1.2 to have∑
j⃗∈Q0

g(a)⃗jg(b)⃗j ≤ ‖g(a)‖ℓq(Q0)‖g(b)‖ℓq′ (Q0)

≤ cq′‖g(a)‖ℓq(Q0)‖b‖ℓq′ (Q0)

≤ cq′‖g(a)‖ℓq(Q0)

= cq′

∑
j⃗∈Q0

|g(a)|q
 1

q

≤ cq′(♯Q0)
1
q−

1
p ‖g(a)‖Mp

q(Zn).

It remains to handle the second term. Fix j⃗ ∈ Qm+1 \Qm and consider

g(b)⃗j =

( ∞∑
k=0

|Dk(b)⃗j |
2

) 1
2

.

Then, since ♯Qm = 2n(N+m) and ♯Qm+1 = 2n(N+m+1), we have

Ek(b)⃗j =


0 if k ≤ N +m,
1

2nk

∑
j⃗∗∈Q0

b⃗j∗ if k > N +m.

Inserting this expression into Dk(b)⃗j , we obtain

Dk(b)⃗j = Ek(b)⃗j − Ek+1(b)⃗j

=



0 if k < N +m,

− 1

2n(N+m+1)

∑
j⃗∗∈Q0

b⃗j∗ if k = N +m,

1

2nk

∑
j⃗∗∈Q0

b⃗j∗ −
1

2n(k+1)

∑
j⃗∗∈Q0

b⃗j∗ if k > N +m.



LITTLEWOOD–PALEY CHARACTERIZATION OF DISCRETE MORREY SPACES 11

As a result,

∞∑
k=0

|Dk(b)⃗j |
2 ∼

 ∑
j⃗∗∈Q0

b⃗j∗

2
∞∑

k=N+m+1

1

22nk
∼

 ∑
j⃗∗∈Q0

b⃗j∗

2

1

22n(N+m+1)
.

Hence from (3.2), we conclude

g(b)⃗j ≲
1

2n(N+m+1)
‖b‖ℓq′ (Zn) ≲

1

2n(N+m+1)
.

If we insert ♯Qm+1 = 2n(N+m+1) into the above estimate and use embedding (2.1),
then we obtain

∞∑
m=0

∑
j⃗∈Qm+1\Qm

g(a)⃗jg(b)⃗j ≲
∞∑

m=0

1

2n(N+m+1)

∑
j⃗∈Qm+1\Qm

g(a)⃗j

≲ ‖g(a)‖Mp
1(Zn)

∞∑
m=0

(
1

2n(N+m+1)

) 1
p

≲p,q (♯Q0)
− 1

p ‖g(a)‖Mp
1(Zn)

≲p,q (♯Q0)
− 1

p ‖g(a)‖Mp
q(Zn).

In total,∑
j⃗∈R

|aj⃗ |
q

 1
q

≲ (♯Q0)
1
q−

1
p ‖g(a)‖Mp

q(Zn) + (♯Q0)
− 1

p ‖g(a)‖Mp
q(Zn).

Multiply both sides by (♯Q0)
1
p−

1
q and use the norm ‖g(a)‖Mp

q(Zn) to have

(♯Q0)
1
p−

1
q

∑
j⃗∈Q0

|aj⃗ |
q

 1
q

≲p,q ‖g(a)‖Mp
q(Zn).

The cube R = Q0 being arbitrary, we obtain the desired result.

4. Applications to martingale transforms

We apply Theorem 1.3 to martingale transforms. For N ∈ N, b ∈ Mp
q(Zn) and

multiply-indexed sequences m0,m1, . . . satisfying |Ek+1(m
k)| ≤ K for each k ∈ N0,

we define the martingale transform Mm(b) of a multiply-indexed sequence b by

Mm(b) =

∞∑
k=0

Ek+1(m
k)Dk(b).

If mk = 0 for k � 1, then we call Mm(b) a finite martingale transform. Thus, a
finite martingale transform takes the form

Mm,(N)(b) =

N∑
k=0

Ek+1(m
k)Dk(b).

We consider finite martingale transforms in Section 4.1. Based on the observations
in Section 4.1, we move on to the general case in Section 4.2.
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4.1. Finite martingale transform. For N ∈ N, b ∈ Mp
q(Zn) and multiply-

indexed sequences m0,m1, . . . satisfying

|Ek+1(m
k)| ≤ K (4.1)

for each k ∈ N0, we deal with the finite martingale transform Mm,(N)(b) of a
multiply-indexed sequence b by

Mm,(N)(b) =

N∑
k=0

Ek+1(m
k)Dk(b).

Note that Mm,(N)(b) ∈ Mp
q(Zn) whenever b ∈ Mp

q(Zn). In fact,

sup
Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|Mm,(N)(b)⃗j |
q

 1
q

≤ (N + 1) sup
Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

max
k

|Ek+1(m
k )⃗jDk(b)⃗j |

q

 1
q

.

From Proposition 2.1 and (4.1), we have

sup
Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|Mm,(N)(b)⃗j |
q

 1
q

≤ K(N + 1) sup
Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

max
k

|Dk(b)⃗j |
q

 1
q

≤ K(N + 1) sup
Q∈D(Zn)

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|Mdyadicb⃗j |
q

 1
q

≲ K(N + 1)‖b‖Mp
q(Zn)

< ∞.

Hence, the linear functional LMm,(N)(b) : H
p′

q′ (Zn) → C, given by

LMm,(N)(b)(a) = 〈Mm,(N)(b), a〉 (a ∈ Hp′

q′ (Z
n)),

is bounded. In Section 4.2, we will show that

lim
N→∞

〈Mm,(N)(b), a〉

exists for all a ∈ Hp′

q′ (Zn). Once this is achieved, we can say that there exists an

element Mm(b) ∈ Mp
q(Zn) such that

Mm,(N)(b) → Mm(b) (N → ∞)

in the weak-* topology. By considering the coupling of this equality with ej⃗ , we

learn that

Mm,(N)(b)⃗j → Mm(b)⃗j (N → ∞)

for each j⃗ ∈ Zn.
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We concentrate on the proof of Theorem 1.6 for finite martingale transforms. In
this case, there is no need to consider the convergence defining the finite martingale
transform.

Theorem 1.6 for finite martingale transforms. Let b ∈ Mp
q(Zn). As

we have remarked above, Mm,(N)(b) ∈ Mp
q(Zn). Thus, from Theorem 1.3, we

deduce

‖g(Mm,(N)(b))‖Mp
q(Zn) ≳ ‖Mm,(N)(b)‖Mp

q(Zn).

Thus, it suffices to show that

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q

 1
q

≲p,q ‖b‖Mp
q(Zn)

for all Q ∈ D(Zn). It follows from the definition of g(b) that

g(Mm,(N)(b))⃗j =

( ∞∑
k=0

|Dk(Mm,(N)(b))⃗j |
2

) 1
2

=

( ∞∑
k=0

|Ek+1(m
k )⃗jDk(b)⃗j |

2

) 1
2

.

Thus, ∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q =

∑
j⃗∈Q

( ∞∑
k=0

|Ek+1(m
k )⃗jDk(b)⃗j |

2

) q
2

.

Recall that we are assuming

|Ek+1(m
k )⃗j | ≤ ‖Ek+1(m

k)‖ℓ∞(Zn) ≤ K < ∞

for each j⃗ ∈ Zn and k = 0, 1, 2, . . .. Thus,

∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q ≤

∑
j⃗∈Q

( ∞∑
k=0

‖Ek+1(m
k)‖2ℓ∞(Zn)|Dk(b)⃗j |

2

) q
2

≤ sup
k

‖Ek+1(m
k)‖ℓ∞(Zn)

q
∑
j⃗∈Q

( ∞∑
k=0

|Dk(b)⃗j |
2

) q
2

.

Once again from the definition of g(b), we have( ∞∑
k=0

|Dk(b)⃗j |
2

) q
2

= g(b)⃗j
q.

If we insert this expression into the above inequality, then we obtain∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q ≲q Kq

∑
j⃗∈Q

|g(b)⃗j |
q.

Hence,

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q

 1
q

≲q K(♯Q)
1
p−

1
q

∑
j⃗∈Q

|g(b)⃗j |
q

 1
q

≲q K‖g(b)‖Mp
q(Zn).
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Once again from Theorem 1.3, we have

(♯Q)
1
p−

1
q

∑
j⃗∈Q

|g(Mm,(N)(b)⃗j)|
q

 1
q

≲p,q K‖g(b)‖Mp
q(Zn)

≲p,q K‖b‖Mp
q(Zn).

This proves Theorem 1.6 for finite martingale transforms. □

4.2. Proof of Theorem 1.6–General case. We will establish that the limit
〈Mm,(N)(b), a〉 asN → ∞ exists for all b ∈ Mp

q(Zn) and a ∈ Hp′

q′ (Zn). This amounts

to showing that {〈Mm,(N)(b), a〉}∞N=1 is a Cauchy sequence.
Let us start with the case where a is a (p′, q′)-block centered at Q. Let n1, n2 ∈

N satisfy n1 > n2. Suppose ♯Q = 2nN . By linearity, we have

〈Mm,(n1)(b), a〉 − 〈Mm,(n2)(b), a〉 = 〈Mm,(n1)(b)−Mm,(n2)(b), a〉.

By the Cauchy–Schwarz inequality, we have

|〈Mm,(n1)(b)−Mm,(n2)(b), a〉|

≤
∞∑
k=0

|〈Dk(Mm,(n1)(b)−Mm,(n2)(b)), Dk(a)〉|

≤
∑
j⃗∈Zn

n1∑
k=n2

|Dk(Mm,(n1)(b)−Mm,(n2)(b))⃗j ||Dk(a)⃗j |.

By the Cauchy–Schwarz inequality and Proposition 1.5, we have

|〈Mm,(n1)(b)−Mm,(n2)(b), a〉|

≤
∑
j⃗∈Zn

√√√√ n1∑
k=n2

|Dk(Mm,(n1)(b)−Mm,(n2)(b))⃗j |2
√√√√ n1∑

k=n2

|Dk(a)⃗j |2

≤

∥∥∥∥∥∥
√√√√ n1∑

k=n2

|Dk(Mm,(n1)(b)−Mm,(n2)(b))|2

∥∥∥∥∥∥
Mp

q(Zn)

∥∥∥∥∥∥
√√√√ n1∑

k=n2

|Dk(a)|2

∥∥∥∥∥∥
Hp′

q′ (Z
n)

.

Since |Ek+1(m
k)| ≤ K, thanks to what we did for finite martingale transforms,∥∥∥∥∥∥

√√√√ n1∑
k=n2

|Dk(Mm,(n1)(b)−Mm,(n2)(b))|2

∥∥∥∥∥∥
Mp

q(Zn)

≲ K‖b‖Mp
q(Zn).

Let j⃗ ∈ Zn. We decompose√√√√ n1∑
k=n2

|Dk(a)⃗j |2 = χQ(⃗j)

√√√√ n1∑
k=n2

|Dk(a)⃗j |2 + χZn\Q(⃗j)

√√√√ n1∑
k=n2

|Dk(a)⃗j |2.

As for the first term, we have∥∥∥∥∥∥χQ

√√√√ n1∑
k=n2

|Dk(a)|2

∥∥∥∥∥∥
Hp′

q′ (Z
n)

≤ (♯Q)
1
q−

1
p

∥∥∥∥∥∥χQ

√√√√ n1∑
k=n2

|Dk(a)|2

∥∥∥∥∥∥
ℓq′ (Zn)
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thanks to Proposition 2.4. Due to Proposition 1.2, we have∥∥∥∥∥∥χQ

√√√√ n1∑
k=n2

|Dk(a)|2

∥∥∥∥∥∥
ℓq′ (Zn)

≤ ‖g(a)‖ℓq′ (Zn) ≲ ‖a‖ℓq′ (Zn)

whenever integers n1 and n2 satisfy n1 > n2 ≥ 1. By the dominated convergence
theorem, we have

lim
n1,n2→∞

∥∥∥∥∥∥χQ

√√√√ n1∑
k=n2

|Dk(a)|2

∥∥∥∥∥∥
ℓq′ (Zn)

=

∥∥∥∥∥∥ lim
n1,n2→∞

χQ

√√√√ n1∑
k=n2

|Dk(a)|2

∥∥∥∥∥∥
ℓq′ (Zn)

= 0.

We move on to the second term. Let j⃗ /∈ Q. Then for each k ∈ N0,

Ek(a)⃗j =


χQk

(⃗j)

2nk

∑
j⃗∗∈Q

aj⃗∗ if k > N and Q ⊂ Qk,

0 otherwise,

where ♯Qk = 2nk. Furthermore, since√√√√ n1∑
k=n2

|Dk(a)⃗j |2 ≤
n1∑

k=n2

|Dk(a)⃗j | =
n1∑

k=n2

|Ek(a)⃗j − Ek+1(a)⃗j | ≤ 2

n1+1∑
k=n2

|Ek(a)⃗j |,

if n2 > N , then we have∥∥∥∥∥∥∥

√√√√ n1∑

k=n2

|Dk(a)⃗j |2


j⃗∈Zn

∥∥∥∥∥∥∥
Hp′

q′ (Z
n)

≤

∥∥∥∥∥∥
n1∑

k=n2

2

∣∣∣∣∣∣χQk

1

2nk

∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣
∥∥∥∥∥∥
Hp′

q′ (Z
n)

≲
n1∑

k=n2

∥∥∥∥∥∥χQk

1

2nk

∑
j⃗∗∈Q

aj⃗∗

∥∥∥∥∥∥
Hp′

q′ (Z
n)

≲
n1∑

k=n2

(♯Qk)
1
q−

1
p

2nk

∥∥∥∥∥∥∥
∑

j⃗∗∈Q

aj⃗∗


j⃗∈Zn

∥∥∥∥∥∥∥
ℓq′ (Qk)

.

Since ♯Qk = 2nk,∥∥∥∥∥∥∥
 1

2nk

∑
j⃗∗∈Q

aj⃗∗


j⃗∈Zn

∥∥∥∥∥∥∥
ℓq′ (Qk)

=

∑
j⃗∈Qk

∣∣∣∣∣∣ 1

2nk

∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣
q′


1
q′

= (♯Qk)
1
q′ −1

∣∣∣∣∣∣
∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣ .
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If we insert this equality into the above estimate, then we have∥∥∥∥∥∥∥

√√√√ n1∑

k=n2

|Dk(a)⃗j |2


j⃗∈Zn

∥∥∥∥∥∥∥
Hp′

q′ (Z
n)

≲

∣∣∣∣∣∣
∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣
n1∑

k=n2

(♯Qk)
− 1

p

≲

∣∣∣∣∣∣
∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣
∞∑

k=n2

(♯Qk)
− 1

p

=

∣∣∣∣∣∣
∑
j⃗∗∈Q

aj⃗∗

∣∣∣∣∣∣ 2−
n2k
p

1− 2−
n
p
.

Since p, n < ∞, the last term vanishes as n2 → ∞. This implies that the limit
defining 〈Mm,(N)(b), a〉 exists as long as a is a (p′, q′)-block.

Next, we remove the assumption that a is a (p′, q′)-block. Let a ∈ Hp′

q′ (Zn).

Then there exist λ = {λ(j)}∞j=1 ∈ ℓ1(N) and a collection {a(j)}∞j=1 of (p′, q′)-blocks

such that a =
∞∑
j=1

λ(j)a(j). From this expression of a, we deduce

〈Mm,(N)(b), a〉 =

〈
Mm,(N)(b),

∞∑
j=1

λ(j)a(j)

〉
=

∞∑
j=1

λ(j)〈Mm,(N)(b), a
(j)〉.

As we have established, the limit of 〈Mm,(N)(b), a
(j)〉 as N → ∞ exists for each j.

Meanwhile, since Mm,(N)(b) ∈ Mp
q(Zn),

|〈Mm,(N)(b), a
(j)〉| ≤ ‖Mm,(N)(b)‖Mp

q(Zn)‖a(j)‖Hp′
q′ (Z

n)
≲ K‖b‖Mp

q(Zn)

by virtue of what we proved in Section 4.1. By the dominated convergence theorem,
we conclude

lim
N→∞

∞∑
j=1

λ(j)〈Mm,(N)(b), a
(j)〉 =

∞∑
j=1

lim
N→∞

λ(j)〈Mm,(N)(b), a
(j)〉.

In particular, the limit lim
N→∞

〈Mm,(N)(b), a
(j)〉 exists.

We end this section with the remark that finitely supported multiply-indexed
sequences do not form a dense subspace in Mp

q(Zn); if we let X be the set of

all finitely supported sequences, then X ⊊ Mp
q(Zn). This means that we are not

allowed to use the “so called” density argument.

Remark 4.1. Let n = 1. Define a = {χZ(log2 |j|)}j∈Z, where it is understood
that log2 0 = −∞ and hence χZ(log2 |0|) = 0. Notice that any cube Q ∈ Dk can
contain at most k points in the support of a: ♯(Q ∩ supp(a)) ≤ k. If we take
Q = Z ∩ [0, 2k), then ♯(Q ∩ supp(a)) = k. Observe also that

‖a‖Mp
q(Zn) = sup

Q∈D(Zn)

(♯Q)
1
p−

1
q (♯(Q ∩ supp(a)))

1
q = sup

k∈N0

2
k
p−

k
q k

1
q < ∞.

Therefore, a ∈ Mp
q(Zn) whenever 1 ≤ q < p < ∞. However, since

‖a− b‖Mp
q(Zn) ≥ 1
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for any b ∈ X, a is not in the closure of the space of finitely supported multiply-
indexed sequences.

5. Appendix–dyadic Riesz potential

For a ∈ Mp
q(Zn), we set

Rαa =

∞∑
N=0

2NαDNa.

For the time being let 0 < α < n. The next lemma contains a flavor of the original
observation by Morrey. This observation allows us to conclude that the function f
is Hölder continuous if f has a derivative in some classical Morrey spaces.

Lemma 5.1. For all a ∈ Mp
q(Zn) ‖DNa‖ℓ∞(Zn) ≲ 2−

nN
p ‖a‖Mp

q(Zn).

Proof. Observe that DNa is constant on each Q ∈ DN (Zn). Hence

‖DNa‖ℓ∞(Zn) = sup
Q∈DN

(♯Q)−
1
q ‖DNa‖ℓq(Q).

Let Q ∈ DN (Zn), or equivalently ♯Q = 2nN . It follows from the definition of
Mdyadica and Proposition 2.1 that

sup
Q∈DN

(♯Q)−
1
q ‖DNa‖ℓq(Q) ≤ sup

Q∈DN

(♯Q)−
1
q 2‖Mdyadica‖ℓq(Q)

≲ sup
Q∈DN

(♯Q)−
1
p (♯Q)

1
p−

1
q ‖Mdyadica‖ℓq(Q)

≤ sup
Q∈DN

(♯Q)−
1
p ‖Mdyadica‖Mp

q(Zn)

≤ cq2
−nN

p ‖a‖Mp
q(Zn).

Putting together these observations, we obtain the desired result. □

A direct consequence of Lemma 5.1 is that

|(Rαa)⃗j | ≤
∞∑

N=0

2Nα|(DNa)⃗j | ≲
∞∑

N=0

min

(
2Nα sup

k∈N
|Dk(a)⃗j |, 2

Nα−nN
p ‖a‖Mp

q(Zn)

)
.

If

0 < α <
n

p
,

then

|(Rαa)⃗j | ≤
∞∑

N=0

2Nα|DNa| ≤ K‖a‖
pα
n

Mp
q(Zn)

sup
k∈N

|Dk(a)⃗j |
1− pα

n

for some positive constant K > 0. As a result, by taking the Ms
t (Zn)-norm, we

obtain the following theorem, which corresponds to the discrete version of a result
in [2, ?, 11]:

Theorem 5.2. Let 1 < q ≤ p < ∞ and 1 < t ≤ s < ∞ satisfy 1
p − α

n = 1
s and

t
s = q

p . Then ∥∥∥∥∥
∞∑

N=0

2Nα|DNa|

∥∥∥∥∥
Ms

t (Zn)

≲ ‖a‖Mp
q(Zn)
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for all a ∈ Mp
q(Zn). In particular,

‖Rαa‖Ms
t (Zn) ≲ ‖a‖Mp

q(Zn)

for all a ∈ Mp
q(Zn).
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AND THE IMAGE OF p-ADIC REGULATORS

No. 98 2012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED YUKINO TOMIZAWA

EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE

MAPPINGS IN BANACH SPACES

No. 99 2013 Global solutions for the Navier-Stokes equations Tsukasa Iwabuchi

in the ratational framework and Ryo Takada

No.100 2013 On the cyclotomic twisted torus and some torsors Tsutomu Sekiguchi

and Yohei Toda

No.101 2013 Helicity in differential topology and incompressible fluids Yoshihiko Mitsumatsu

on foliated 3-manifolds

No.102 2013 LINKS AND SUBMERSIONS TO THE PLANE SHIGEAKI MIYOSHI

ON AN OPEN 3-MANIFOLD

この論文には改訂版（No.108）があります。そちらを参照してください。
No.103 2013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM NORIYUKI SUWA

No.104 2013 Symplectic volumes of double weight varieties associated with SU(3), II Taro Suzuki

No.105 2013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC SHYAMAL KUMAR HUI

COMPLEX PROJECTIVE SPACE AND YOSHIO MATSUYAMA

No.106 2014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF YUKINO TOMIZAWA

NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No.107 2014 Thurston’s h-principle for 2-dimensional Foliations Yoshihiko MITSUMATSU

of Codimension Greater than One and Elmar VOGT

No.108 2015 LINKS AND SUBMERSIONS TO THE PLANE SHIGEAKI MIYOSHI

ON AN OPEN 3-MANIFOLD

No.109 2015 KUMMER THEORIES FOR ALGEBRAIC TORI NORIYUKI SUWA

AND NORMAL BASIS PROBLEM

No.110 2015 Lp−MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS TSUKASA IWABUCHI,
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