CHUO MATH NO.134(2022)

Littlewood-Paley characterization of discrete Morrey spacesand its application to the discrete martingale transform

by
Yuto Abe, Yoshihiro Sawano

DEPARTMENT OF MATHEMATICS - CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

Littlewood-Paley characterization of discrete Morrey spaces and its application to the discrete martingale transform

Yuto Abe, Yoshihiro Sawano

2010 Classification: Primary 42B35, Secondary 42B25
Keywords: Littlewood-Paley theory, discrete Morrey spaces, Martingale transform

Abstract

The goal of this paper is to develop the Littlewood-Paley theory of discrete Morrey spaces. As an application, we establish the boundedness of martingale transforms. We carefully justify the definition of martingale transforms, since discrete Morrey spaces do not contain discrete Lebesgue spaces as dense subspaces. We also obtain the boundedness of Riesz potentials.

1. Introduction

The goal of this note is to develop the Littlewood-Paley theory of discrete Morrey spaces. As an application, we establish the boundedness of martingale transforms.

First, we define discrete Morrey spaces. A dyadic interval is the set of integers given by $I(j, k)=\mathbb{Z} \cap\left[2^{j} k, 2^{j}(k+1)\right.$) for some $j \in \mathbb{N}_{0}=\{0,1, \ldots\}$ and $k \in \mathbb{Z}$. A dyadic cube in \mathbb{Z}^{n} is a subset of the fom:

$$
Q=I\left(j, k_{1}\right) \times I\left(j, k_{2}\right) \times \cdots \times I\left(j, k_{n}\right)
$$

where $j \in \mathbb{N}_{0}$ and $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$. The family $\mathcal{D}\left(\mathbb{Z}^{n}\right)$ stands for the set of all dyadic cubes described above, while the subfamily $\mathcal{D}_{j}\left(\mathbb{Z}^{n}\right)$ collects all dyadic cubes of $I(j, k)=\mathbb{Z} \cap\left[2^{j} k, 2^{j}(k+1)\right)$ with $j \in \mathbb{N}_{0}$.

Definition 1.1. Let $1 \leq q \leq p<\infty$. The space $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ is the set of all $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$ for which

$$
\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}=\sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}}
$$

is finite, where $\sharp Q$ stands for the number of elements of the dyadic cube Q.
The discrete Morrey space $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ falls within the scope of the work [1] and has been investigated in $[\mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}]$. Our goal of this paper is to obtain an equivalent norm by means of the Littlewood-Paley decomposition.

We describe the Littlewood-Paley decomposition. To this end, we start with defining the 1-dimensional Littlewood-Paley operator. For a 1-dimensional sequence $a=\left\{a_{j}\right\}_{j \in \mathbb{Z}}$, we let

$$
E_{k}(a)_{j}=\frac{1}{2^{k}} \sum_{l \in Q} a_{l}
$$

where Q is a unique cube in $\mathcal{D}_{k}(\mathbb{Z})$ which contains j. Each E_{k} is called the average operator of generation k. We define $D_{k}=E_{k}-E_{k+1}$. The Littlewood-Paley operator $g(a)=\left\{g(a)_{j}\right\}_{j \in \mathbb{Z}}$ is defined by

$$
g(a)_{j}=\left(\sum_{k=0}^{\infty}\left|D_{k}(a)_{j}\right|^{2}\right)^{\frac{1}{2}} \quad(j \in \mathbb{Z})
$$

Having defined 1-dimensional operators, we move on to the definition of operators acting of n-fold indexed (multiply-indexed) sequences. We let $l=1,2, \ldots, n$. The operator $E_{k}^{(l)}$ acts on the l-th component as E_{k} with other components unchanged. The difference operator $D_{k}^{(l)}$ is defined by $D_{k}^{(l)}=E_{k}^{(l)}-E_{k+1}^{(l)}$. We write $\vec{E}=(E, E, \ldots, E)$. Let $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in\{(D, E)\}^{n} \backslash\{\vec{E}\}$. Define the operator \vec{X}_{k} by $\vec{X}_{k}=X_{k}^{(1)} \circ X_{k}^{(2)} \circ \cdots \circ X_{k}^{(n)}$. The discrete Littlewood-Paley operator g is given by the mapping $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}} \mapsto g(a)=\left\{g(a)_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$, where

$$
g(a)_{\vec{j}}=\left(\sum_{k=0}^{\infty} \sum_{\vec{X} \in\{(D, E)\}^{n} \backslash\{\vec{E}\}}\left|\vec{X}_{k}(a)_{\vec{j}}\right|^{2}\right)^{\frac{1}{2}} \quad\left(\vec{j} \in \mathbb{Z}^{n}\right)
$$

The next proposition is well known as the Littlewood-Paley characterization of the discrete $\ell^{p}\left(\mathbb{Z}^{n}\right)$-norm.

Proposition 1.2. Let $1<p<\infty$. Then there exists $c_{p}>0$ such that

$$
c_{p}{ }^{-1}\|a\|_{\ell^{p}\left(\mathbb{Z}^{n}\right)} \leq\|g(a)\|_{\ell^{p}\left(\mathbb{Z}^{n}\right)} \leq c_{p}\|a\|_{\ell^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \ell^{p}\left(\mathbb{Z}^{n}\right)$.
In this paper, we will establish the following norm equivalence and then apply it to the boundedness of various operators:

TheOrem 1.3. Let $1<q \leq p<\infty$. Then there exists $c_{p, q}>0$ such that

$$
c_{p, q}^{-1}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \leq\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \leq c_{p, q}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$.
Theorem 1.3 is a discrete version of [8, Corollary 4.1].
We apply Theorem 1.3 to the boundedness of martingale transforms. Let $\left\{m^{k}\right\}_{k=1}^{\infty}$ be a sequence of sequences in $\ell^{\infty}\left(\mathbb{Z}^{n}\right)$. Then define

$$
\begin{equation*}
M_{m}(a)=\left\{M_{m}(a)_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}}=\sum_{k=0}^{\infty} E_{k+1}\left(m^{k}\right) D_{k}(a)=\lim _{N \rightarrow \infty} \sum_{k=0}^{N} E_{k+1}\left(m^{k}\right) D_{k}(a) \tag{1.1}
\end{equation*}
$$

where $E_{k+1}\left(m^{k}\right) D_{k}(a)=\left\{E_{k+1}\left(m^{k}\right)_{\vec{j}} D_{k}(a)_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}}$. We can not use the density argument. Recall that the support of a multiply-indexed sequence $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$ is the set of all indices \vec{j} for which $a_{\vec{j}} \neq 0$. Since $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ does not contain the space of finitely supported multiply-indexed sequences as a dense subspace (see

Remark 4.1), we have to justify the definition of the martingale transform M_{m} : The existence of the limit defining $M_{m}(a)$ is not clear. Furthermore, since Theorem 1.3 is applicable for multiply-indexed sequences in $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$, we also have to show that $M_{m}(a) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ for any $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ before we use Theorem 1.3 to obtain the norm estimate.

We perform this using the predual space $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ considered in [9].
Definition 1.4. Let $1<q \leq p<\infty$.
(1) A multiply-indexed sequence $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$ is said to be a $\left(p^{\prime}, q^{\prime}\right)$-block centered at Q if it is supported on Q and $\|a\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}$.
(2) The block space $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ is the set of all multiply-indexed sequences a of the form: $a=\sum_{j=1}^{\infty} \lambda^{(j)} a^{(j)}$ where the convergence takes place in the topology of $\ell^{p^{\prime}}\left(\mathbb{Z}^{n}\right), \lambda=\left\{\lambda^{(j)}\right\}_{j=1}^{\infty} \in \ell^{1}(\mathbb{N})$ and each $a^{(j)}$ is a $\left(p^{\prime}, q^{\prime}\right)$-block centered at $Q_{j} \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$. The norm is given by $\|a\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}\left(\mathbb{Z}^{n}\right)}}=\inf \|\lambda\|_{\ell^{1}\left(\mathbb{Z}^{n}\right)}$, where λ and $\left\{a^{(j)}\right\}_{j=1}^{\infty}$ move over all possible representations.
According to the general theory [9], $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ admits a predual. One predual of $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ is the space $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$.

Proposition 1.5. Let $1<q^{\prime} \leq p^{\prime}<\infty$. Then $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ is a Banach space. Furthermore, the dual of $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ is isomorphic to $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. More precisely, we have the following:
(1) For all $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}} \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ and $b=\left\{b_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}} \in \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$,

$$
\sum_{\vec{j} \in \mathbb{Z}^{n}}\left|a_{\vec{j}} b_{\vec{j}}\right| \leq\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\|b\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)}
$$

In particular,

$$
a \mapsto L_{a}(b)=\sum_{\vec{j} \in \mathbb{Z}^{n}} a_{\vec{j}} b_{\vec{j}}
$$

is a bounded linear functional.
(2) Conversely any bounded linear functional over $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ can be realized as above for some $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$.
By using Proposition 1.5 we will justify that the limit defining $M_{m}(a)$ for $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ exists in the weak-* topology.

Theorem 1.6. Let $1<q \leq p<\infty$. Assume that

$$
K=\sup _{k \in \mathbb{N}}\left\|E_{k+1}\left(m^{k}\right)\right\|_{\ell \infty\left(\mathbb{Z}^{n}\right)}<\infty
$$

Then the limit defining $M_{m}(a)$ for $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ exists in the weak-* topology of $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. The martingale transform $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right) \mapsto M_{m}(a) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ is bounded.

Here we list other conventions of this paper.

- A cube in \mathbb{Z}^{n} is a subset which can be expressed as

$$
Q=Q(a, r)=\left\{m=\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}: \max _{j=1,2, \ldots, n}\left|m_{j}-a_{j}\right| \leq r\right\}
$$

for some $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $r>0$.

- For multiply-indexed sequences $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$ and $b=\left\{b_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$, we write

$$
\langle a, b\rangle=\sum_{\vec{j} \in \mathbb{Z}^{n}} a_{\vec{j}} b_{\vec{j}}
$$

as long as the right-hand side converges absolutely.

- Let $A, B \geq 0$. Then $A \lesssim B$ and $B \gtrsim A$ mean that there exists a constant $C>0$ such that $A \leq \widetilde{C B}$, where C depends only on the parameters of importance. The symbol $A \sim B$ means that $A \lesssim B$ and $B \lesssim A$ happen simultaneously, while $A \simeq B$ means that there exists a constant $C>0$ such that $A=C B$. When we need to emphasize or keep in mind that the constant C depends on the parameters α, β, γ etc, we write $A \lesssim \alpha, \beta, \gamma, \ldots B$ instead of $A \lesssim B$.
Before we conclude this section, we collect some elementary facts that can be derived directly from the above definitions. Observe that any cube $Q \in \mathcal{Q}\left(\mathbb{Z}^{n}\right)$ can be included in the union of dyadic cubes $Q_{1}, Q_{2}, \ldots, Q_{3^{n}}$ satisfying $\ell\left(Q_{j}\right) \leq \ell(Q)<$ $2 \ell\left(Q_{j}\right)$ for each $j=1,2, \ldots, 3^{n}$. A direct consequence of this observation is the norm equivalence: for

$$
\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \sim \sup _{Q \in \mathcal{Q}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} .
$$

We organize this paper as follows: Section 2 collects some preliminary facts. Section 3 proves Theorem 1.3. As an application, we prove Theorem 1.6 in Section 4. Section 5 is an appendix where we prove the boundedness of the fractional integral operator.

2. Preliminaries

2.1. Embedding. We invoke a fundamental embedding result [5, 7]: If $1 \leq$ $r \leq q \leq p<\infty$, then

$$
\begin{equation*}
\|a\|_{\mathcal{M}_{r}^{p}\left(\mathbb{Z}^{n}\right)} \leq\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \tag{2.1}
\end{equation*}
$$

for any multiply-indexed sequence $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$ by Hölder's inequality.
2.2. Maximal operator. For a multiply-indexed sequence $a=\left\{a_{j}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$, write

$$
M_{\text {dyadic }} a_{\vec{j}}=\sup _{\vec{j} \in Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)} \frac{1}{\sharp Q} \sum_{j^{*} \in Q}\left|a_{\vec{j}^{*}}\right| .
$$

We define $M_{\text {dyadic }} a=\left\{M_{\text {dyadic }} a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$. The correspondence $a \mapsto M_{\text {dyadic }} a$ is called the dyadic maximal operator. Gunawan and Schwanke established that the dyadic maximal operator is bounded on $\mathcal{D}\left(\mathbb{Z}^{n}\right)$ [4, Theorem 3.2].

Proposition 2.1. Let $1<q \leq p<\infty$. Then there exists $c_{q}>0$ such that

$$
\left\|M_{\text {dyadic }} a\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \leq c_{q}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$.
2.3. Predual spaces. We invoke the following elementary facts: Since the proof is similar to the classical case as in [3], se content ourselves with the statement.

Lemma 2.2. $[3,(9.2)]$ For any $\left(p^{\prime}, q^{\prime}\right)$-block $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$, we have $\|a\|_{\ell^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq$ 1.

A direct consequence of Lemma 2.2 is the following embedding result:
Corollary 2.3. Let $1<q \leq p<\infty$. Then $\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$ is a subset of $\ell^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$. More quantitatively, $\|a\|_{\ell_{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq\|a\|_{\left.\mathcal{H}_{q^{\prime}}^{p^{\prime}} \mathbb{Z}^{n}\right)}$ for all $a=\left\{a_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$.

Finally, we invoke [3, Lemma 341].
Proposition 2.4. Let $1<q \leq p<\infty$ and $Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$. Define

$$
R_{Q}(a)_{\vec{j}}= \begin{cases}a_{\vec{j}} & \vec{j} \in Q, \\ 0 & \vec{j} \notin Q\end{cases}
$$

for $a \in \ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)$. Then we have

$$
\left\|R_{Q}(a)\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq(\nVdash Q)^{\frac{1}{q}-\frac{1}{p}}\|a\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)$.

3. Littlewood-Paley decomposition-Proof of Theorem 1.3

Recall that $g(a)$ contains the operators D_{k} in its definition, which annihilate the constant multiply-indexed sequence $\{1\}_{\vec{j} \in \mathbb{Z}^{n}}$. Therefore, seemingly the quantity $\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}$ loses something that $\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}$ has. This is the case if we consider a multiply-indexed sequence a that does not necessarily belong to $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. To establish that this does not apply for any multiply-indexed sequence in $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$, we use the following lemma:

Lemma 3.1. Let $R \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$ and $1<q \leq p<\infty$. Then for each $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ and for each multiply-indexed sequence b which is supported on R, we have

$$
\lim _{N \rightarrow \infty}\left\langle E_{N}(a), E_{N}(b)\right\rangle=0
$$

Proof. A normalization allows us to assume $\sum_{\vec{j} \in R}\left|b_{\vec{j}}\right|^{q^{\prime}}=1$. Let $\sharp R=2^{n M}$. Consider an increasing sequence $\left\{Q_{m}\right\}_{m=1}^{\infty} \subset \mathcal{D}\left(\mathbb{Z}^{n}\right)$ satisfying $Q_{0}=R, \sharp Q_{m+1}=$ $2^{n} \sharp Q_{m}$. A geometric observation shows that $\bigcup_{m=0}^{\infty} Q_{m}$ is nothing but a quadrant S of \mathbb{Z}^{n}. That is, S is the Cartesian n-fold product of the sets $[0, \infty) \cap \mathbb{Z}$ or $(-\infty, 0) \cap \mathbb{Z}$. We decompose

$$
\bigcup_{m=0}^{\infty} Q_{m}=Q_{0} \cup \bigcup_{m=0}^{\infty}\left(Q_{m+1} \backslash Q_{m}\right)
$$

Then we have

$$
\begin{aligned}
\left|\left\langle E_{N}(a), E_{N}(b)\right\rangle\right| & =\left|\sum_{\vec{j} \in \mathbb{Z}^{n}} E_{N}(a)_{\vec{j}} E_{N}(b)_{\vec{j}}\right| \\
& \leq \sum_{\vec{j} \in \mathbb{Z}^{n}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right| \\
& =\sum_{\vec{j} \in Q_{0}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right|+\sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right| .
\end{aligned}
$$

For the first term, we employ Hölder's inequality and Proposition 2.1 to have

$$
\begin{aligned}
\sum_{\vec{j} \in Q_{0}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right| & \leq\left\|E_{N}(a)\right\|_{\ell q}\left(Q_{0}\right)\left\|E_{N}(b)\right\|_{\ell^{q^{\prime}}\left(Q_{0}\right)} \\
& \leq\left(\sharp Q_{0}\right)^{\frac{1}{q}-\frac{1}{p}}\left\|E_{N}(a)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\left(\sum_{\vec{j} \in Q_{0}}\left|\frac{1}{2^{n N}} \sum_{\overrightarrow{j * \in Q_{0}}} b_{\overrightarrow{j *}}\right|^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} \\
& \leq \frac{1}{2^{n N}}\left(\sharp Q_{0}\right)^{\frac{1}{q}-\frac{1}{p}+\frac{1}{q^{\prime}}}\left\|E_{N}(a)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\left|\sum_{\overrightarrow{j * \in Q_{0}}} b_{\overrightarrow{j *}}\right| \\
& \leq \frac{1}{2^{n N}}\left(\sharp Q_{0}\right)^{\frac{1}{q}-\frac{1}{p}+\frac{1}{q^{\prime}}}\left\|M_{\text {dyadic }} a\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\left|\sum_{\overrightarrow{j * \in Q_{0}}} b_{\overrightarrow{j *}}\right| \\
& \lesssim \frac{1}{2^{n N}}\left(\sharp Q_{0}\right)^{1-\frac{1}{p}}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\left|\sum_{\overrightarrow{j * \in Q_{0}}} b_{\overrightarrow{j *}}\right|
\end{aligned}
$$

This term tends to 0 as $N \rightarrow \infty$.
For the second term, we first choose a dyadic cube $S \in \mathcal{D}_{N}\left(\mathbb{Z}^{n}\right)$ which contains Q_{0}. Then we obtain an increasing sequence $Q_{0} \subsetneq Q_{1} \subsetneq \cdots \subsetneq Q_{l}=S$ with the property that there is no intermediate dyadic cube between Q_{j-1} and Q_{j} for all $j=1,2, \ldots, l$, where $l=N-M$. Suppose $\vec{j} \in Q_{m+1} \backslash Q_{m}$ with $m=0,1, \ldots$ Then

$$
E_{N}(b)_{\vec{j}}= \begin{cases}\frac{1}{2^{n N}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *} & \text { if } m+1 \leq l \\ 0 & \text { if } m+1>l\end{cases}
$$

If we insert this expression into the second term, then we have

$$
\begin{aligned}
\sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right| & =\sum_{m=0}^{l-1} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}}\right|\left|\frac{1}{2^{n N}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right| \\
& =\frac{1}{2^{n N}}\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right| \sum_{m=0}^{l-1} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}}\right| .
\end{aligned}
$$

By the triangle inequality, the definition of the Morrey norm $\|\cdot\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}$ and Proposition 2.1,

$$
\begin{aligned}
& \sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}}\right|\left|E_{N}(b)_{\vec{j}}\right| \\
& \leq \frac{1}{2^{n N}}\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right| \sum_{m=0}^{l-1} \sum_{\vec{j} \in Q_{m+1}}\left|E_{N}(a)_{\vec{j}}\right| \\
& \leq \frac{1}{2^{n N}}\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right| \sum_{m=0}^{l-1}\left(\sharp Q_{m+1}\right)^{1-\frac{1}{p}}\left\|E_{N}(a)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \leq \frac{1}{2^{n N}}\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right|\left\|M_{\text {dyadic }} a\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}^{l} \sum_{m=0}^{l-1}\left(\sharp Q_{m+1}\right)^{1-\frac{1}{p}} \\
& \lesssim \frac{1}{2^{n N}}\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right|\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}^{l-1} \sum_{m=0}^{l}\left(\sharp Q_{m+1}\right)^{1-\frac{1}{p}}
\end{aligned}
$$

Since $\sharp Q_{m+1}=2^{n(M+m+1)}, p<\infty$ and $l=N-M$,

$$
\sum_{m=0}^{l-1}\left(\sharp Q_{m+1}\right)^{1-\frac{1}{p}} \lesssim 2^{\frac{n N}{p^{\prime}}} .
$$

As a result,

$$
\begin{aligned}
\sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}}\left|E_{N}(a)_{\vec{j}} \| E_{N}(b)_{\vec{j}}\right| & \lesssim \frac{1}{2^{n N}} \times 2^{\frac{n N}{p^{\prime}}} \times\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right|\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& =2^{-\frac{n N}{p}} \times\left|\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right|\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \rightarrow 0 \quad(N \rightarrow \infty) .
\end{aligned}
$$

This completes the estimate for the second term.

3.1. Proof of the right inequality. It suffices to show that

$$
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g(a)_{\vec{j}}^{q}\right)^{\frac{1}{q}} \leq c_{p, q}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for each $Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$. To specify we let $Q \in \mathcal{D}_{N}\left(\mathbb{Z}^{n}\right)$.
We write $a=a_{Q}^{+}+a_{Q}^{-}=\left\{\left(a_{Q}^{+}\right)_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}+\left\{\left(a_{Q}^{-}\right)_{\vec{j}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}$, where

$$
\left(a_{Q}^{+}\right)_{\vec{j}}=\chi_{Q}(\vec{j}) a_{\vec{j}}, \quad\left(a_{Q}^{-}\right)_{\vec{j}}=a_{\vec{j}}-\left(a_{Q}^{+}\right)_{\vec{j}} .
$$

Matters are reduced to the proof of

$$
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{+}\right)_{\vec{j}}^{q}\right)^{\frac{1}{q}}+(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{-}\right)_{\vec{j}}^{q}\right)^{\frac{1}{q}} \leq c_{p, q}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for each $Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$.
As for a_{Q}^{+}, we employ Proposition 1.2 to have

$$
\begin{aligned}
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{+}\right)_{\vec{j}}^{q}\right)^{\frac{1}{q}} & \leq(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left\|g\left(a_{Q}^{+}\right)\right\|_{\ell^{q}\left(\mathbb{Z}^{n}\right)} \\
& \leq c_{q}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left\|a_{Q}^{+}\right\|_{\ell^{q}}\left(\mathbb{Z}^{n}\right) \\
& =c_{q}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Thus, we are left with the task of dealing with a_{Q}^{-}.
It follows from the definition of $g\left(a_{Q}^{-}\right)$that

$$
g\left(a_{Q}^{-}\right)_{\vec{j}}=\left(\sum_{k=0}^{\infty}\left|D_{k}\left(a_{Q}^{-}\right)_{\vec{j}}\right|^{2}\right)^{\frac{1}{2}}
$$

Suppose $\vec{j} \in Q$. Then we have

$$
g\left(a_{Q}^{-}\right)_{\vec{j}} \leq \sum_{k=0}^{\infty}\left|D_{k}\left(a_{Q}^{-}\right)_{\vec{j}}\right| \leq \sum_{k=0}^{\infty}\left(\left|E_{k}\left(a_{Q}^{-}\right)_{\vec{j}}\right|+\left|E_{k+1}\left(a_{Q}^{-}\right)_{\vec{j}}\right|\right) \leq 2 \sum_{k=0}^{\infty}\left|E_{k}\left(a_{Q}^{-}\right)_{\vec{j}}\right|
$$

by the triangle inequality. Denote by Q_{k} the unique cube in $\mathcal{D}_{k}\left(\mathbb{Z}^{n}\right)$ that contains Q. A geometric observation shows that

$$
E_{k}\left(a_{Q}^{-}\right)_{\vec{j}}= \begin{cases}0 & \text { if } k \leq N \\ \frac{1}{2^{n k}} \sum_{\overrightarrow{j^{*}} \in Q_{k}}\left(a_{Q}^{-}\right)_{\overrightarrow{j^{*}}} & \text { if } k<N\end{cases}
$$

If we insert this expression into the definition of $g\left(a_{Q}^{-}\right)$, then we obtain

$$
\begin{aligned}
g\left(a_{Q}^{-}\right)_{\vec{j}} \leq 2 \sum_{k=N+1}^{\infty}\left|E_{k}\left(a_{Q}^{-}\right)_{\vec{j}}\right| & =2 \sum_{k=N+1}^{\infty} \frac{1}{2^{n k}}\left|\sum_{\vec{j}^{*} \in Q_{k}}\left(a_{Q}^{-}\right)_{\overrightarrow{j^{*}}}\right| \\
& \leq 2 \sum_{k=N+1}^{\infty} \frac{1}{2^{n k}} \sum_{\overrightarrow{j^{*} \in Q_{k}}}\left|\left(a_{Q}^{-}\right)_{\overrightarrow{j^{*}}}\right| \\
& \leq 2 \sum_{k=N+1}^{\infty} \frac{1}{2^{n k}} \sum_{\overrightarrow{j^{*}} \in Q_{k}}\left|a_{\overrightarrow{j^{*}}}\right| .
\end{aligned}
$$

Consequently,

$$
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{-}\right)_{\vec{j}}^{q}\right)^{\frac{1}{q}} \leq 2(\sharp Q)^{\frac{1}{p}} \sum_{k=N+1}^{\infty} \frac{1}{2^{n k}} \sum_{j^{*} \in Q_{k}}\left|a_{j^{*}}\right| .
$$

Recall that $\sharp Q=2^{n N}$ and that $\sharp Q_{k}=2^{n k}$. Therefore,

$$
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{-}\right)_{\vec{j}}^{q}\right)^{\frac{1}{q}} \leq 2^{1+\frac{n N}{p}} \sum_{k=N+1}^{\infty}\left(\sharp Q_{k}\right)^{-1} \sum_{j^{*} \in Q_{k}}\left|a_{\vec{j}^{*}}\right| .
$$

By the definition of the Morrey norm $\|a\|_{\mathcal{M}_{1}^{p}\left(\mathbb{Z}^{n}\right)}$ and embedding (2.1),

$$
\begin{aligned}
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} g\left(a_{Q}^{-}\right)^{\frac{q}{j}}\right)^{\frac{1}{q}} & \leq 2^{1+\frac{n N}{p}} \sum_{k=N+1}^{\infty}\left(2^{n k}\right)^{-\frac{1}{p}}\|a\|_{\mathcal{M}_{1}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \lesssim\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
\end{aligned}
$$

Thus, the proof is complete.
3.2. Proof of the left inequality. Let $R \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$. It suffices to show that

$$
(\sharp R)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in R}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \leq c_{p, q}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
$$

We linearize the left-hand side. By Hölder's inequality,

$$
\begin{equation*}
\left(\sum_{\vec{j} \in R}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}}=\sup \left\{\left|\sum_{\vec{j} \in R} a_{\vec{j}} b_{\vec{j}}\right|: b=\left\{b_{\vec{j}}\right\}_{\vec{j} \in R},\left(\sum_{\vec{j} \in R}\left|b_{\vec{j}}\right|^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} \leq 1\right\} \tag{3.1}
\end{equation*}
$$

Extend b to an element in $\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)$ by letting $b_{\vec{j}}=0$ outside R. Then we have

$$
\begin{aligned}
\left|\sum_{\vec{j} \in R} a_{\vec{j}} b_{\vec{j}}\right| & =|\langle a, b\rangle|=\left|\left\langle E_{N}(a), E_{N}(b)\right\rangle+\sum_{k=0}^{N-1}\left\langle D_{k}(a), D_{k}(b)\right\rangle\right| \\
& \leq\left|\left\langle E_{N}(a), E_{N}(b)\right\rangle\right|+\sum_{k=0}^{\infty}\left|\left\langle D_{k}(a), D_{k}(b)\right\rangle\right|
\end{aligned}
$$

for all $N \in \mathbb{N}$. By using the Cauchy-Schwarz inequality twice, we have

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|\left\langle D_{k}(a), D_{k}(b)\right\rangle\right| & \leq \sum_{\vec{j} \in \mathbb{Z}^{n}} \sum_{k=0}^{\infty}\left|D_{k}(a)_{\vec{j}}\right|\left|D_{k}(b)_{\vec{j}}\right| \\
& \leq \sum_{\vec{j} \in \mathbb{Z}^{n}} \sqrt{\sum_{k=0}^{\infty}\left|D_{k}(a)_{\vec{j}}\right|^{2}} \sqrt{\sum_{k=0}^{\infty}\left|D_{k}(b)_{\vec{j}}\right|^{2}} \\
& =\sum_{\vec{j} \in \mathbb{Z}^{n}} g(a)_{\vec{j}} g(b)_{\vec{j}} .
\end{aligned}
$$

Inserting this inequality into (3.1), we have

$$
\begin{aligned}
& \left(\sum_{\vec{j} \in R}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \leq \sup \left\{\left|\left\langle E_{N}(a), E_{N}(b)\right\rangle\right|+\sum_{\vec{j} \in \mathbb{Z}^{n}} g(a)_{\vec{j}} g(b)_{\vec{j}}: \operatorname{supp}(b) \subset R,\|b\|_{\ell^{\prime}\left(\mathbb{Z}^{n}\right)} \leq 1\right\}
\end{aligned}
$$

for all $N \in \mathbb{N}$. Fix $b \in \ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)$ such that

$$
\begin{equation*}
\|b\|_{\ell^{\prime}\left(\mathbb{Z}^{n}\right)}=1, \quad \operatorname{supp}(b) \subset R \tag{3.2}
\end{equation*}
$$

Recall that

$$
\lim _{N \rightarrow \infty}\left\langle E_{N}(a), E_{N}(b)\right\rangle=0
$$

according to Lemma 3.1. Thus, it remains to show

$$
\sum_{\vec{j} \in \mathbb{Z}^{n}} g(a)_{\vec{j}} g(b)_{\vec{j}} \leq c_{p, q}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $b \in \ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)$ supported in R with $\|b\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)}=1$. Let $\left\{Q_{m}\right\}_{m=0}^{\infty}$ be the same exhausting sequence of a quadrant S as in the proof of Lemma 3.1. In particular, we let $Q_{0}=R$. Then notice that $g(b)_{\vec{j}}=0$ outside S. Thus,

$$
\sum_{\vec{j} \in \mathbb{Z}^{n}} g(a)_{\vec{j}} g(b)_{\vec{j}}=\sum_{\vec{j} \in Q_{0}} g(a)_{\vec{j}} g(b)_{\vec{j}}+\sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}} g(a)_{\vec{j}} g(b)_{\vec{j}}
$$

As for the first term, we employ Hölder's inequality and Proposition 1.2 to have

$$
\begin{aligned}
\sum_{\vec{j} \in Q_{0}} g(a)_{\vec{j}} g(b)_{\vec{j}} & \leq\|g(a)\|_{\ell^{q}\left(Q_{0}\right)}\|g(b)\|_{\ell^{q^{\prime}}\left(Q_{0}\right)} \\
& \leq c_{q^{\prime}}\|g(a)\|_{\ell^{q}\left(Q_{0}\right)}\|b\|_{\ell^{q^{\prime}}\left(Q_{0}\right)} \\
& \leq c_{q^{\prime}}\|g(a)\|_{\ell^{q}\left(Q_{0}\right)} \\
& =c_{q^{\prime}}\left(\sum_{\vec{j} \in Q_{0}}|g(a)|^{q}\right)^{\frac{1}{q}} \\
& \leq c_{q^{\prime}}\left(\sharp Q_{0}\right)^{\frac{1}{q}-\frac{1}{p}}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
\end{aligned}
$$

It remains to handle the second term. Fix $\vec{j} \in Q_{m+1} \backslash Q_{m}$ and consider

$$
g(b)_{\vec{j}}=\left(\sum_{k=0}^{\infty}\left|D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{1}{2}}
$$

Then, since $\sharp Q_{m}=2^{n(N+m)}$ and $\sharp Q_{m+1}=2^{n(N+m+1)}$, we have

$$
E_{k}(b)_{\vec{j}}= \begin{cases}0 & \text { if } k \leq N+m \\ \frac{1}{2^{n k}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *} & \text { if } k>N+m\end{cases}
$$

Inserting this expression into $D_{k}(b)_{\vec{j}}$, we obtain

$$
\begin{aligned}
D_{k}(b)_{\vec{j}} & =E_{k}(b)_{\vec{j}}-E_{k+1}(b)_{\vec{j}} \\
& = \begin{cases}0 & \text { if } k<N+m, \\
-\frac{1}{2^{n(N+m+1)}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *} & \text { if } k=N+m, \\
\frac{1}{2^{n k}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}-\frac{1}{2^{n(k+1)}} \sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *} & \text { if } k>N+m .\end{cases}
\end{aligned}
$$

As a result,

$$
\sum_{k=0}^{\infty}\left|D_{k}(b)_{\vec{j}}\right|^{2} \sim\left(\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right)^{2} \sum_{k=N+m+1}^{\infty} \frac{1}{2^{2 n k}} \sim\left(\sum_{\vec{j} * \in Q_{0}} b_{\vec{j} *}\right)^{2} \frac{1}{2^{2 n(N+m+1)}}
$$

Hence from (3.2), we conclude

$$
g(b)_{\vec{j}} \lesssim \frac{1}{2^{n(N+m+1)}}\|b\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)} \lesssim \frac{1}{2^{n(N+m+1)}}
$$

If we insert $\sharp Q_{m+1}=2^{n(N+m+1)}$ into the above estimate and use embedding (2.1), then we obtain

$$
\begin{aligned}
\sum_{m=0}^{\infty} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}} g(a)_{\vec{j}} g(b)_{\vec{j}} & \lesssim \sum_{m=0}^{\infty} \frac{1}{2^{n(N+m+1)}} \sum_{\vec{j} \in Q_{m+1} \backslash Q_{m}} g(a)_{\vec{j}} \\
& \lesssim\|g(a)\|_{\mathcal{M}_{1}^{p}\left(\mathbb{Z}^{n}\right)} \sum_{m=0}^{\infty}\left(\frac{1}{2^{n(N+m+1)}}\right)^{\frac{1}{p}} \\
& \lesssim_{p, q}\left(\sharp Q_{0}\right)^{-\frac{1}{p}}\|g(a)\|_{\mathcal{M}_{1}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \lesssim_{p, q}\left(\sharp Q_{0}\right)^{-\frac{1}{p}}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
\end{aligned}
$$

In total,

$$
\left(\sum_{\vec{j} \in R}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \lesssim\left(\sharp Q_{0}\right)^{\frac{1}{q}-\frac{1}{p}}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}+\left(\sharp Q_{0}\right)^{-\frac{1}{p}}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
$$

Multiply both sides by $\left(\sharp Q_{0}\right)^{\frac{1}{p}-\frac{1}{q}}$ and use the norm $\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}$ to have

$$
\left(\sharp Q_{0}\right)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q_{0}}\left|a_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \lesssim_{p, q}\|g(a)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
$$

The cube $R=Q_{0}$ being arbitrary, we obtain the desired result.

4. Applications to martingale transforms

We apply Theorem 1.3 to martingale transforms. For $N \in \mathbb{N}, b \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ and multiply-indexed sequences m^{0}, m^{1}, \ldots satisfying $\left|E_{k+1}\left(m^{k}\right)\right| \leq K$ for each $k \in \mathbb{N}_{0}$, we define the martingale transform $M_{m}(b)$ of a multiply-indexed sequence b by

$$
M_{m}(b)=\sum_{k=0}^{\infty} E_{k+1}\left(m^{k}\right) D_{k}(b)
$$

If $m^{k}=0$ for $k \gg 1$, then we call $M_{m}(b)$ a finite martingale transform. Thus, a finite martingale transform takes the form

$$
M_{m,(N)}(b)=\sum_{k=0}^{N} E_{k+1}\left(m^{k}\right) D_{k}(b)
$$

We consider finite martingale transforms in Section 4.1. Based on the observations in Section 4.1, we move on to the general case in Section 4.2.
4.1. Finite martingale transform. For $N \in \mathbb{N}, b \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ and multiplyindexed sequences m^{0}, m^{1}, \ldots satisfying

$$
\begin{equation*}
\left|E_{k+1}\left(m^{k}\right)\right| \leq K \tag{4.1}
\end{equation*}
$$

for each $k \in \mathbb{N}_{0}$, we deal with the finite martingale transform $M_{m,(N)}(b)$ of a multiply-indexed sequence b by

$$
M_{m,(N)}(b)=\sum_{k=0}^{N} E_{k+1}\left(m^{k}\right) D_{k}(b)
$$

Note that $M_{m,(N)}(b) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ whenever $b \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. In fact,

$$
\begin{aligned}
& \sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|M_{m,(N)}(b)_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \leq(N+1) \sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} \max _{k}\left|E_{k+1}\left(m^{k}\right)_{\vec{j}} D_{k}(b)_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

From Proposition 2.1 and (4.1), we have

$$
\begin{aligned}
& \sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|M_{m,(N)}(b)_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \leq K(N+1) \sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q} \max _{k}\left|D_{k}(b)_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \leq K(N+1) \sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|M_{\text {dyadic }} b_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \lesssim K(N+1)\|b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& <\infty .
\end{aligned}
$$

Hence, the linear functional $L_{M_{m,(N)}(b)}: \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right) \rightarrow \mathbb{C}$, given by

$$
L_{M_{m,(N)}(b)}(a)=\left\langle M_{m,(N)}(b), a\right\rangle \quad\left(a \in \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)\right)
$$

is bounded. In Section 4.2, we will show that

$$
\lim _{N \rightarrow \infty}\left\langle M_{m,(N)}(b), a\right\rangle
$$

exists for all $a \in \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$. Once this is achieved, we can say that there exists an element $M_{m}(b) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ such that

$$
M_{m,(N)}(b) \rightarrow M_{m}(b) \quad(N \rightarrow \infty)
$$

in the weak-* topology. By considering the coupling of this equality with $\mathbf{e}_{\vec{j}}$, we learn that

$$
M_{m,(N)}(b)_{\vec{j}} \rightarrow M_{m}(b)_{\vec{j}} \quad(N \rightarrow \infty)
$$

for each $\vec{j} \in \mathbb{Z}^{n}$.

We concentrate on the proof of Theorem 1.6 for finite martingale transforms. In this case, there is no need to consider the convergence defining the finite martingale transform.

Theorem 1.6 for finite martingale transforms. Let $b \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. As we have remarked above, $M_{m,(N)}(b) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. Thus, from Theorem 1.3, we deduce

$$
\left\|g\left(M_{m,(N)}(b)\right)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \gtrsim\left\|M_{m,(N)}(b)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

Thus, it suffices to show that

$$
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q}\right)^{\frac{1}{q}} \lesssim_{p, q}\|b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)$. It follows from the definition of $g(b)$ that

$$
g\left(M_{m,(N)}(b)\right)_{\vec{j}}=\left(\sum_{k=0}^{\infty}\left|D_{k}\left(M_{m,(N)}(b)\right)_{\vec{j}}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{k=0}^{\infty}\left|E_{k+1}\left(m^{k}\right)_{\vec{j}} D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{1}{2}}
$$

Thus,

$$
\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q}=\sum_{\vec{j} \in Q}\left(\sum_{k=0}^{\infty}\left|E_{k+1}\left(m^{k}\right)_{\vec{j}} D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{q}{2}}
$$

Recall that we are assuming

$$
\left|E_{k+1}\left(m^{k}\right)_{\vec{j}}\right| \leq\left\|E_{k+1}\left(m^{k}\right)\right\|_{\ell \infty}\left(\mathbb{Z}^{n}\right) \leq K<\infty
$$

for each $\vec{j} \in \mathbb{Z}^{n}$ and $k=0,1,2, \ldots$ Thus,

$$
\begin{aligned}
\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q} & \leq \sum_{\vec{j} \in Q}\left(\sum_{k=0}^{\infty}\left\|E_{k+1}\left(m^{k}\right)\right\|_{\ell \infty\left(\mathbb{Z}^{n}\right)}^{2}\left|D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{q}{2}} \\
& \leq \sup _{k}\left\|E_{k+1}\left(m^{k}\right)\right\|_{\ell \infty\left(\mathbb{Z}^{n}\right)}^{q} \sum_{\vec{j} \in Q}\left(\sum_{k=0}^{\infty}\left|D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{q}{2}}
\end{aligned}
$$

Once again from the definition of $g(b)$, we have

$$
\left(\sum_{k=0}^{\infty}\left|D_{k}(b)_{\vec{j}}\right|^{2}\right)^{\frac{q}{2}}=g(b)_{\vec{j}}^{q} .
$$

If we insert this expression into the above inequality, then we obtain

$$
\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q} \lesssim_{q} K^{q} \sum_{\vec{j} \in Q}\left|g(b)_{\vec{j}}\right|^{q} .
$$

Hence,

$$
\begin{aligned}
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q}\right)^{\frac{1}{q}} & \lesssim_{q} K(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|g(b)_{\vec{j}}\right|^{q}\right)^{\frac{1}{q}} \\
& \lesssim q K\|g(b)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
\end{aligned}
$$

Once again from Theorem 1.3, we have

$$
\begin{aligned}
(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left(\sum_{\vec{j} \in Q}\left|g\left(M_{m,(N)}(b)_{\vec{j}}\right)\right|^{q}\right)^{\frac{1}{q}} & \lesssim_{p, q} K\|g(b)\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \lesssim_{p, q} K\|b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
\end{aligned}
$$

This proves Theorem 1.6 for finite martingale transforms.
4.2. Proof of Theorem 1.6-General case. We will establish that the limit $\left\langle M_{m,(N)}(b), a\right\rangle$ as $N \rightarrow \infty$ exists for all $b \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ and $a \in \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$. This amounts to showing that $\left\{\left\langle M_{m,(N)}(b), a\right\rangle\right\}_{N=1}^{\infty}$ is a Cauchy sequence.

Let us start with the case where a is a $\left(p^{\prime}, q^{\prime}\right)$-block centered at Q. Let $n_{1}, n_{2} \in$ \mathbb{N} satisfy $n_{1}>n_{2}$. Suppose $\sharp Q=2^{n N}$. By linearity, we have

$$
\left\langle M_{m,\left(n_{1}\right)}(b), a\right\rangle-\left\langle M_{m,\left(n_{2}\right)}(b), a\right\rangle=\left\langle M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b), a\right\rangle
$$

By the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \left|\left\langle M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b), a\right\rangle\right| \\
& \leq \sum_{k=0}^{\infty}\left|\left\langle D_{k}\left(M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b)\right), D_{k}(a)\right\rangle\right| \\
& \leq \sum_{\vec{j} \in \mathbb{Z}^{n}} \sum_{k=n_{2}}^{n_{1}}\left|D_{k}\left(M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b)\right)_{\vec{j}}\right|\left|D_{k}(a)_{\vec{j}}\right| .
\end{aligned}
$$

By the Cauchy-Schwarz inequality and Proposition 1.5, we have

$$
\begin{aligned}
& \left|\left\langle M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b), a\right\rangle\right| \\
& \leq \sum_{\vec{j} \in \mathbb{Z}^{n}} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}\left(M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b)\right)_{\vec{j}}\right|^{2}} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}} \\
& \leq \| \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}\left(M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b)\right)\right|^{2}\left\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\right\| \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}} \|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)}} .
\end{aligned}
$$

Since $\left|E_{k+1}\left(m^{k}\right)\right| \leq K$, thanks to what we did for finite martingale transforms,

$$
\left\|\sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}\left(M_{m,\left(n_{1}\right)}(b)-M_{m,\left(n_{2}\right)}(b)\right)\right|^{2}}\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \lesssim K\|b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

Let $\vec{j} \in \mathbb{Z}^{n}$. We decompose

$$
\sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}}=\chi_{Q}(\vec{j}) \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}}+\chi_{\mathbb{Z}^{n} \backslash Q}(\vec{j}) \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}}
$$

As for the first term, we have

$$
\left\|\chi_{Q} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}}\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq(\sharp Q)^{\frac{1}{q}-\frac{1}{p}}\left\|\chi_{Q} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}}\right\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)}
$$

thanks to Proposition 2.4. Due to Proposition 1.2, we have

$$
\left\|\chi_{Q} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}}\right\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)} \leq\|g(a)\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)} \lesssim\|a\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)}
$$

whenever integers n_{1} and n_{2} satisfy $n_{1}>n_{2} \geq 1$. By the dominated convergence theorem, we have

$$
\lim _{n_{1}, n_{2} \rightarrow \infty}\left\|\chi_{Q} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}}\right\|_{\ell^{q^{\prime}}\left(\mathbb{Z}^{n}\right)}=\left\|\lim _{n_{1}, n_{2} \rightarrow \infty} \chi_{Q} \sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)\right|^{2}}\right\|_{\ell^{\prime}\left(\mathbb{Z}^{n}\right)}=0 .
$$

We move on to the second term. Let $\vec{j} \notin Q$. Then for each $k \in \mathbb{N}_{0}$,

$$
E_{k}(a)_{\vec{j}}= \begin{cases}\frac{\chi_{Q_{k}}(\vec{j})}{2^{n k}} \sum_{\overrightarrow{j *} \in Q} a_{\overrightarrow{j *}} & \text { if } k>N \text { and } Q \subset Q_{k} \\ 0 & \text { otherwise }\end{cases}
$$

where $\sharp Q_{k}=2^{n k}$. Furthermore, since

$$
\sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}} \leq \sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|=\sum_{k=n_{2}}^{n_{1}}\left|E_{k}(a)_{\vec{j}}-E_{k+1}(a)_{\vec{j}}\right| \leq 2 \sum_{k=n_{2}}^{n_{1}+1}\left|E_{k}(a)_{\vec{j}}\right|
$$

if $n_{2}>N$, then we have

$$
\begin{aligned}
\left\|\left\{\sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} & \leq\left\|\sum_{k=n_{2}}^{n_{1}} 2\left|\chi_{Q_{k}} \frac{1}{2^{n k}} \sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right|\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \\
& \lesssim \sum_{k=n_{2}}^{n_{1}}\left\|\chi_{Q_{k}} \frac{1}{2^{n k}} \sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \\
& \lesssim \sum_{k=n_{2}}^{n_{1}} \frac{\left(\sharp Q_{k}\right)^{\frac{1}{q}-\frac{1}{p}}}{2^{n k}}\left\|\left\{\sum_{j \overrightarrow{j * Q}} a_{\overrightarrow{j *}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}\right\| \|_{\ell^{q^{\prime}}\left(Q_{k}\right)} .
\end{aligned}
$$

Since $\sharp Q_{k}=2^{n k}$,

$$
\begin{aligned}
\left\|\left\{\frac{1}{2^{n k}} \sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}\right\|_{\ell \ell^{\prime}\left(Q_{k}\right)} & =\left(\sum_{\vec{j} \in Q_{k}}\left|\frac{1}{2^{n k}} \sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right|^{q^{\prime}}\right)^{\frac{1}{q^{\prime}}} \\
& =\left(\sharp Q_{k}\right)^{\frac{1}{q^{\prime}}-1}\left|\sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right|
\end{aligned}
$$

If we insert this equality into the above estimate, then we have

$$
\begin{aligned}
\left\|\left\{\sqrt{\sum_{k=n_{2}}^{n_{1}}\left|D_{k}(a)_{\vec{j}}\right|^{2}}\right\}_{\vec{j} \in \mathbb{Z}^{n}}\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} & \lesssim\left|\sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right| \sum_{k=n_{2}}^{n_{1}}\left(\sharp Q_{k}\right)^{-\frac{1}{p}} \\
& \lesssim\left|\sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right| \sum_{k=n_{2}}^{\infty}\left(\sharp Q_{k}\right)^{-\frac{1}{p}} \\
& =\left|\sum_{\overrightarrow{j * \in Q}} a_{\overrightarrow{j *}}\right| \frac{2^{-\frac{n_{2} k}{p}}}{1-2^{-\frac{n}{p}}} .
\end{aligned}
$$

Since $p, n<\infty$, the last term vanishes as $n_{2} \rightarrow \infty$. This implies that the limit defining $\left\langle M_{m,(N)}(b), a\right\rangle$ exists as long as a is a $\left(p^{\prime}, q^{\prime}\right)$-block.

Next, we remove the assumption that a is a $\left(p^{\prime}, q^{\prime}\right)$-block. Let $a \in \mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)$. Then there exist $\lambda=\left\{\lambda^{(j)}\right\}_{j=1}^{\infty} \in \ell^{1}(\mathbb{N})$ and a collection $\left\{a^{(j)}\right\}_{j=1}^{\infty}$ of $\left(p^{\prime}, q^{\prime}\right)$-blocks such that $a=\sum_{j=1}^{\infty} \lambda^{(j)} a^{(j)}$. From this expression of a, we deduce

$$
\left\langle M_{m,(N)}(b), a\right\rangle=\left\langle M_{m,(N)}(b), \sum_{j=1}^{\infty} \lambda^{(j)} a^{(j)}\right\rangle=\sum_{j=1}^{\infty} \lambda^{(j)}\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle .
$$

As we have established, the limit of $\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle$ as $N \rightarrow \infty$ exists for each j. Meanwhile, since $M_{m,(N)}(b) \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$,

$$
\left|\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle\right| \leq\left\|M_{m,(N)}(b)\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\left\|a^{(j)}\right\|_{\mathcal{H}_{q^{\prime}}^{p^{\prime}}\left(\mathbb{Z}^{n}\right)} \lesssim K\|b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

by virtue of what we proved in Section 4.1. By the dominated convergence theorem, we conclude

$$
\lim _{N \rightarrow \infty} \sum_{j=1}^{\infty} \lambda^{(j)}\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle=\sum_{j=1}^{\infty} \lim _{N \rightarrow \infty} \lambda^{(j)}\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle
$$

In particular, the limit $\lim _{N \rightarrow \infty}\left\langle M_{m,(N)}(b), a^{(j)}\right\rangle$ exists.
We end this section with the remark that finitely supported multiply-indexed sequences do not form a dense subspace in $\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$; if we let X be the set of all finitely supported sequences, then $\bar{X} \subsetneq \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. This means that we are not allowed to use the "so called" density argument.

Remark 4.1. Let $n=1$. Define $a=\left\{\chi_{\mathbb{Z}}\left(\log _{2}|j|\right)\right\}_{j \in \mathbb{Z}}$, where it is understood that $\log _{2} 0=-\infty$ and hence $\chi_{\mathbb{Z}}\left(\log _{2}|0|\right)=0$. Notice that any cube $Q \in \mathcal{D}_{k}$ can contain at most k points in the support of $a: \sharp(Q \cap \operatorname{supp}(a)) \leq k$. If we take $Q=\mathbb{Z} \cap\left[0,2^{k}\right)$, then $\sharp(Q \cap \operatorname{supp}(a))=k$. Observe also that

$$
\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}=\sup _{Q \in \mathcal{D}\left(\mathbb{Z}^{n}\right)}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}(\sharp(Q \cap \operatorname{supp}(a)))^{\frac{1}{q}}=\sup _{k \in \mathbb{N}_{0}} 2^{\frac{k}{p}-\frac{k}{q}} k^{\frac{1}{q}}<\infty .
$$

Therefore, $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$ whenever $1 \leq q<p<\infty$. However, since

$$
\|a-b\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \geq 1
$$

for any $b \in X, a$ is not in the closure of the space of finitely supported multiplyindexed sequences.

5. Appendix-dyadic Riesz potential

For $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$, we set

$$
R_{\alpha} a=\sum_{N=0}^{\infty} 2^{N \alpha} D_{N} a
$$

For the time being let $0<\alpha<n$. The next lemma contains a flavor of the original observation by Morrey. This observation allows us to conclude that the function f is Hölder continuous if f has a derivative in some classical Morrey spaces.

Lemma 5.1. For all $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)\left\|D_{N} a\right\|_{\ell \infty\left(\mathbb{Z}^{n}\right)} \lesssim 2^{-\frac{n N}{p}}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}$.
Proof. Observe that $D_{N} a$ is constant on each $Q \in \mathcal{D}_{N}\left(\mathbb{Z}^{n}\right)$. Hence

$$
\left\|D_{N} a\right\|_{\ell \infty\left(\mathbb{Z}^{n}\right)}=\sup _{Q \in \mathcal{D}_{N}}(\sharp Q)^{-\frac{1}{q}}\left\|D_{N} a\right\|_{\ell q}(Q) .
$$

Let $Q \in \mathcal{D}_{N}\left(\mathbb{Z}^{n}\right)$, or equivalently $\sharp Q=2^{n N}$. It follows from the definition of $M_{\text {dyadic }} a$ and Proposition 2.1 that

$$
\begin{aligned}
\sup _{Q \in \mathcal{D}_{N}}(\sharp Q)^{-\frac{1}{q}}\left\|D_{N} a\right\|_{\ell q}(Q) & \leq \sup _{Q \in \mathcal{D}_{N}}(\sharp Q)^{-\frac{1}{q}} 2\left\|M_{\text {dyadic }} a\right\|_{\ell^{q}(Q)} \\
& \lesssim \sup _{Q \in \mathcal{D}_{N}}(\sharp Q)^{-\frac{1}{p}}(\sharp Q)^{\frac{1}{p}-\frac{1}{q}}\left\|M_{\text {dyadic }} a\right\|_{\ell^{q}(Q)} \\
& \leq \sup _{Q \in \mathcal{D}_{N}}(\sharp Q)^{-\frac{1}{p}}\left\|M_{\text {dyadic }} a\right\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} \\
& \leq c_{q} 2^{-\frac{n N}{p}}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)} .
\end{aligned}
$$

Putting together these observations, we obtain the desired result.
A direct consequence of Lemma 5.1 is that

$$
\left|\left(R_{\alpha} a\right)_{\vec{j}}\right| \leq \sum_{N=0}^{\infty} 2^{N \alpha}\left|\left(D_{N} a\right)_{\vec{j}}\right| \lesssim \sum_{N=0}^{\infty} \min \left(2^{N \alpha} \sup _{k \in \mathbb{N}}\left|D_{k}(a)_{\vec{j}}\right|, 2^{N \alpha-\frac{n N}{p}}\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}\right)
$$

If

$$
0<\alpha<\frac{n}{p}
$$

then

$$
\left|\left(R_{\alpha} a\right)_{\vec{j}}\right| \leq \sum_{N=0}^{\infty} 2^{N \alpha}\left|D_{N} a\right| \leq K\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}^{\frac{p \alpha}{n}} \sup _{k \in \mathbb{N}}\left|D_{k}(a)_{\vec{j}}\right|^{1-\frac{p \alpha}{n}}
$$

for some positive constant $K>0$. As a result, by taking the $\mathcal{M}_{t}^{s}\left(\mathbb{Z}^{n}\right)$-norm, we obtain the following theorem, which corresponds to the discrete version of a result in $[2, ?, 11]$:

Theorem 5.2. Let $1<q \leq p<\infty$ and $1<t \leq s<\infty$ satisfy $\frac{1}{p}-\frac{\alpha}{n}=\frac{1}{s}$ and $\frac{t}{s}=\frac{q}{p}$. Then

$$
\left\|\sum_{N=0}^{\infty} 2^{N \alpha}\left|D_{N} a\right|\right\|_{\mathcal{M}_{t}^{s}\left(\mathbb{Z}^{n}\right)} \lesssim\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$. In particular,

$$
\left\|R_{\alpha} a\right\|_{\mathcal{M}_{t}^{s}\left(\mathbb{Z}^{n}\right)} \lesssim\|a\|_{\mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)}
$$

for all $a \in \mathcal{M}_{q}^{p}\left(\mathbb{Z}^{n}\right)$.

References

[1] Y.H. Cao and J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal. 2013, Art. ID 196459, 8 pp.
[2] D. Chamorro and P.G. Lemari 辿-Rieusset, Real interpolation method, Lorentz spaces and refined Sobolev inequalities, J. Funct. Anal. 265 (2013), no. 12, 3219-3232.
[3] G. Di Fazio, D.I. Hakim and Y. Sawano, Morrey Spaces. Vol. I. Introduction and applications to integral operators and PDE's. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2020. 479 pp. ISBN: 978-1-4987-6551-0; 978-0-429-08592-5 46-02 (2020)
[4] H. Gunawan and C. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math. 16 (2019), no. 1, Paper No. 24, 12 pp.
[5] H. Gunawan, D.I. Hakim and M. Idris, On inclusion properties of discrete Morrey spaces, Georgian Math. J. 29 (2022), no. 1, 37-44.
[6] H. Gunawan, E. Kikianty, Y. Sawano and C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean Math. Soc.. 56 (2019), No. 6, pp. 1569-1575.
[7] H. Gunawan, E. Kikianty and C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr. 291 (2018), no. 8-9, 1283-1296.
[8] A. Mazzucato, Decomposition of Besov-Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 279-294, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003.
[9] M. Mastyło, Y. Sawano and H. Tanaka, Morrey type space and its Köthe dual space, Bull. Malaysian Mathematical Society 41 (2018), 1181-1198.
[10] Y. Mizuta, E. Nakai, Y. Sawano and T. Shimomura, Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials, J. Math. Soc. Japan 65 (2013), no. 2, 633-670.
[11] Y. Sawano, S. Sugano and H. Tanaka, Identification of the image of Morrey spaces by the fractional integral operators, Proc. A. Razmadze Math. Inst., 149 (2009), 87-93.
Yuto Abe,
Graduate School of Science and Engineering,
Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo, 112-8551, Japan.
E-mail: a17.wwwd@g.chuo-u.ac.jp
Yoshihiro Sawano(Corresponding author),
Graduate School of Science and Engineering,
Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo, 112-8551, Japan.
E-mail: yoshihiro-sawano@celery.ocn.ne.jp

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊行年月
No． 11988 ON THE DEFORMATIONS OF WITT GROUPS TO TORI II
No． 21988 On minimal Einstein submanifold with codimension two
No． 31988 Minimal Einstein submanifolds
No． 41988 Submanifolds with parallel Ricci tensor
No． 51988 A CASE OF EXTENSIONS OF GROUP SCHEMES OVER
A DISCRETE VALUATION RING
No． 61989 ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES

No． 71989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON NONSMOOTH DOMAINS

No． 81989 SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER
A DI SCRETE VALUATION RING I
No． 91989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR
SECOND－ORDER ELLIPTIC PDE＇S ON DOMAINS WITH CORNERS
No． 101989 MILNOR＇S INEQUALITY FOR 2－DIMENSIONAL ASYMPTOTIC CYCLES

No． 111989 ON THE SELF－INTERSECTIONS OF FOLIATION CYCLES
No． 121989 On curvature pinching of minimal submanifolds
No． 131990 The Intersection Product of Transverse Invariant Measures

No． 141990 The Transverse Euler Class for Amenable Foliations

No． 141989 The Maximum Principle for Semicontinuous Functions
No． 151989 Fully Nonliear Oblique DerivativeProblems for Nonlinear Second－Order Elliptic PDE＇s．
No． 151990 On Bundle Structure Theorem for Topological Semigroups．

No． 161990 On Linear Orthogonal Semigroup \mathfrak{O}_{n}
－Sphere bundle structure，homotopy type and Lie algebra－

No． 171990 On a hypersurface with birecurrent second fundametal tensor．
No． 181990 User＇s guide to viscosity solutions of second order partial differential equationd．
No． 191991 Viscosity solutions for a class of Hamilton－Jacobi equations in Hilbert spaces．
No． 201991 Perron＇s methods for monotone systems of second－order elliptic PDEs．
No． 211991 Viscosity solutions for monotone systems of second－order elliptic PDEs．
No． 221991 Viscosity solutions of nonlinear second－order partial differential equations in Hilbert spaces．
No． 23
No． 241992 On some pinching of minimal submanifolds．
No． 251992 Transverse Euler Class of Foliations on Almost Compact Foliation Cycles．

No． 261992 Local Homeo－and Diffeomorphisms：Invertibility and Convex Image．

著者

Tsutomu SEKIGUCHI
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Tsutomu SEKIGUCHI and Noriyuki SUWA

S．HURDER and Y．MITSUMATSU
Paul DUPUIS and Hitoshi ISHII

Tsutomu SEKIGUCHI and Noriyuki SUWA

Paul DUPUIS
and Hitoshi ISHII
Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Yoshio MATSUYAMA
S．HURDER
and Y．MITSUMATSU
S．HURDER and Y．MITSUMATSU
M．G．Crandall and H．ISHII
Hitoshi ISHII

Yoichi NADUMO， Masamichi TOKIZAWA and Shun SATO

Masamichi TOKIZAWA and Shun SATO Yoshio MATSUYAMA

M．G．CRANDALL，H．ISHII and P．L．LIONS

H．ISHII

H．ISHII
H．ISHII and S．KOIKE
H．ISHII

Y．MATSUYAMA

S．HURDER
and Y．MITSUMATSU
G．ZAMPIERI and G．GORNI

No. 271992 Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space. G. ZAMPIERI and G. GORNI
No. 281992 Uniqueness of solutions to the Cauchy problems for $u_{t}-\Delta u+r|\nabla u|^{2}=0$ I. FUKUDA, H. ISHII and M. TSUTSUMI

No. 291992 Viscosity solutions of functional differential equations.
No. 301993 On submanifolds of sphere with bounded second fundamental form
No. 311993 On the equivalence of two notions of weak solutions, viscosty solutions and distributional solutions.
No. 321993 On curvature pinching for totally real submanifolds of $C P^{n}(c)$
No. 331993 On curvature pinching for totally real submanifolds of $H P^{n}(c)$
No. 341993 On curvature pinching for totally complex submanifolds of $H P^{n}(c)$
No. 351993 A new formulation of state constracts problems for first-order PDEs.
No. 361993 On Multipotent Invertible Semigroups.
No. 371993 On the uniquess and existence of sulutions of fully nonlinear parabolic PDEs underthe Osgood type condition
No. 381993 Curvatura pinching for totally real submanifolds of $C P^{n}(c)$
No. 391993 Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygones

No. 401993 Generalized motion of noncompact hypersurfaces with velocity having arbitray growth on the curvature tensor.
No. 411994 On the unified Kummer-Artin-Schreier-Witt theory
No. 421995 Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients.
No. 431995 A genaralization of Bence, Merriman and Osher algorithm for motion by mean curvature.
No. 441995 Degenerate parabolic PDEs with discontinuities and generalized

No. 451995 Normal forms of pseudodifferential operators on tori and diophantine phenomena.
No. 461996 On the dustributions of likelihood ratio criterion for equality of characteristic vectors in two populations.
No. 471996 On a quantization phenomenon for totally real submanifolds of $C P^{n}(c)$
No. 481996 A charactarization of real hypersurfaces of complex projective space.
No. 491999 A Note on Extensions of Algebraic and Formal Groups, IV.
No. 501999 On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_{a}$ over a $\mathbb{Z}_{(p)}$-algebra
No. 512003 On the descriptions of $\mathbb{Z} / p^{n} \mathbb{Z}$-torsors by the Kummer-Artin-Schreier-Witt theory
No. 522003 ON THE RELATION WITH THE UNIT GROUP SCHEME $U\left(\mathbb{Z} / p^{n}\right)$ AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME
No. 542004 ON NON-COMMUTATIVE EXTENTIONS OF $\mathbb{G}_{a, A}$ BY $\mathbb{G}_{m, A}$ OVER AN \mathbb{F}_{p}-ALGEBRA
No. 552004 ON THE EXTENSIONS OF \widehat{W}_{n} BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$-ALGEBRA
No. 562005 On inverse multichannel scattering

No. 572005 On Thurston's inequality for spinnable foliations
H. ISHII and S. KOIKE
Y. MATSUYAMA
H. ISHII
Y. MATSUYAMA
Y. MATSUYAMA
Y. MATSUYAMA
H. ISHII and S. KOIKE
M. TOKIZAWA
H. ISHII and K. KOBAYASHI
Y. MATSUYAMA
T. GRAMCHEV
P.POPIVANOV
and M.YOSHINO
H. ISHII
and P. E.SOUGANIDIS
T. SEKIGUCHI and N. SUWA

Hitoshi ISHII
and Mythily RAMASWARY

Todor GRAMCHEV
and Masafumi YOSHINO
Todor GRAMCHEV
and Masafumi YOSHINO
Shin-ichi TSUKADA
and Takakazu SUGIYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
T. SEKIGUCHI and N. SUWA

Mitsuaki YATO

Kazuyoshi TSUCHIYA

Noritsugu ENDO

Yuki HARAGUCHI

Yasuhiro NIITSUMA
V.MARCHENKO
K.MOCHIZUKI
and I.TROOSHIN
H.KODAMA, Y.MITSUMATSU
S.MIYOSHI and A.MORI

No． 582006 Tables of Percentage Points for Multiple Comparison Procedures

No． 592006 COUTING POINTS OF THE CURVE $y^{4}=x^{3}+a$ OVER A FINITE FIELD

No． 602006 TWISTED KUMMER AND KUMMER－ARTIN－SCHREIER THEORIES Noriyuki SUWA
No． 612006 Embedding a Gaussian discrete－time ARMA（3，2）process in a Gaussian continuous－time $\operatorname{ARMA}(3,2)$ process
No． 622006 Statistical test of randomness for cryptographic applications

No． 632006 ON NON－COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_{a}$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_{p}－algebra
No． 642006 Asymptotic distribution of the contribution ratio in high dimensional principal component analysis
No． 652006 Convergence of Contact Structures to Foliations
No． 662006 多様体上の流体力学への幾何学的アプローチ
No． 672006 Linking Pairing，Foliated Cohomology，and Contact Structures
No． 682006 On scattering for wave equations with time dependent coefficients
No． 692006 On decay－nondecay and scattering for Schrödinger equations with time dependent complex potentials
No． 702006 Counting Points of the Curve $y^{2}=x^{12}+a$ over a Finite Field
No． 712006 Quasi－conformally flat manifolds satisfying certain condition on the Ricci tensor

No． 722006 Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three
No． 732007 Foliations and compact leaves on 4－manifolds I Realization and self－intersection of compact leaves
No． 742007 ON A TYPE OF GENERAL RELATIVISTIC SPACETIME WITH W_{2}－CURVATURE TENSOR

No． 752008 Remark on TVD schemes to nonstationary convection equation
No． 762008 THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS
No． 772008 Reeb components and Thurston＇s inequality
No． 782008 Permutation test for equality of individual eigenvalues from covariance matrix in high－dimension
No． 792008 Asymptotic Distribution of the Studentized Cumulative Contribution Ratio in High－Dimensional PrincipalComponent Analysis

No． 802008 Table for exact critical values of multisample Lepage type statistics when $k=3$
No． 812008 AROUND KUMMER THEORIES
No． 822008 DEFORMATIONS OF THE KUMMER SEQUENCE
No． 832008 ON BENNEQUIN＇S ISOTOPY LEMMA AND THURSTON＇S INEQUALITY
No． 842009 On solvability of Stokes problems in special Morrey space $L_{3, \text { unif }}$
No． 852009 On the Cartier Duality of Certain Finite Group Schemes of type（ p^{n}, p^{n} ）

Y．MAEDA，
T．SUGIYAMA
and Y．FUJIKOSHI
Eiji OZAKI
ri HUZII
Mituaki HUZII

Mituaki HUZII，Yuichi TAKEDA
Norio WATANABE
Toshinari KAMAKURA
and Takakazu SUGIYAMA
Yuki HARAGUCHI

Y．FUJIKOSHI

T．SATO and T．SUGIYAMA
Yoshihiko MITSUMATSU
三松 佳彦
Yoshihiko MITSUMATSU
Kiyoshi MOCHIZUKI
K．MOCHIZUKI and T．MOTAI

Yasuhiro NIITSUMA
U．C．De and Y．MATSUYAMA

T．SUZUKI and T．TAKAKURA

Y．MITSUMATSU and E．VOGT

A．A．SHAIKH
and Y．MATSUYAMA
Hirota NISHIYAMA
Masashi TAKAMURA

S．MIYOSHI and A．MORI
H．MURAKAMI，E．HINO and T．SUGIYAMA
M．HYODO，T．YAMADA and T．SUGIYAMA

Hidetoshi MURAKAMI

Noriyuki SUWA
Yuji TSUNO
Yoshihiko MITSUMATSU

N．KIKUCHI and G．A．SEREGIN
N．AKI and M．AMANO

No． 862010 Construction of solutions to the Stokes equations

No． 872010 RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A KENMOTSU MANIFOLD

No． 882010 On the group of extensions $\operatorname{Ext}^{1}\left(\mathcal{G}^{\left(\lambda_{0}\right)}, \mathcal{E}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\right)$ over a discrete valuation ring
No． 892010 Normal basis problem for torsors under a finite flat group scheme
No． 902010 On the homomorphism of certain type of models of algebraic tori
No． 912011 Leafwise Symplectic Structures on Lawson＇s Foliation
No． 922011 Symplectic volumes of double weight varieties associated with $S U(3) / T$
No． 932011 On vector partition functions with negative weights
No． 942011 Spectral representations and scattering for
Schrodinger operators on star graphs
No． 952011 Normally contracting Lie group actions

No． 962012 Homotopy invariance of higher K－theory for abelian categories
No． 972012 CYCLE CLASSES FOR p－ADIC ÉTALE TATE TWISTS AND THE IMAGE OF p－ADIC REGULATORS

No． 982012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

No． 992013 Global solutions for the Navier－Stokes equations in the ratational framework
No． 1002013 On the cyclotomic twisted torus and some torsors

No． 1012013 Helicity in differential topology and incompressible fluids on foliated 3－manifolds
No． 1022013 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD
この論文には改訂版（No．108）があります。そちらを参照してください。
No． 1032013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM
No． 1042013 Symplectic volumes of double weight varieties associated with $S U(3)$ ，II
No． 1052013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX PROJECTIVE SPACE
No． 1062014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No． 1072014 Thurston＇s h－principle for 2－dimensional Foliations of Codimension Greater than One
No． 1082015 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD

No． 1092015 KUMMER THEORIES FOR ALGEBRAIC TORI AND NORMAL BASIS PROBLEM
No． $1102015 L^{p}$－MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS IN OPEN SETS OF \mathbb{R}^{d}

No． 1112015 Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
No． 1122015 Global solvability of the Kirchhoff equation with Gevrey data

Norio KIKUCHI

U．C．De and Y．MATSUYAMA

Takashi KONDO

Yuji TSUNO
Nobuhiro AKI
Yoshihiko MITSUMATSU
Taro SUZUKI
Tatsuru TAKAKURA
K．MOCHIZUKI
and I．TOROOSHIN
T．INABA，S．MATSUMOTO
and Y．MITSUMATSU
S．MOCHIZUKI and A．SANNAI
Kanetomo SATO

YUKINO TOMIZAWA

Tsukasa Iwabuchi
and Ryo Takada
Tsutomu Sekiguchi
and Yohei Toda
Yoshihiko Mitsumatsu

SHIGEAKI MIYOSHI

NORIYUKI SUWA
Taro Suzuki
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA
YUKINO TOMIZAWA

Yoshihiko MITSUMATSU
and Elmar VOGT
SHIGEAKI MIYOSHI

NORIYUKI SUWA

TSUKASA IWABUCHI，
TOKIO MATSUYAMA
AND KOICHI TANIGUCHI
Yoshikazu Kobayashi，Naoki Tanaka
and Yukino Tomizawa
Tokio Matsuyama
and Michael Ruzhansky

No. 1132015 A small remark on flat functions

No. 1142015 Reeb components of leafwise complex foliations and their symmetries I

No. 1152015 Reeb components of leafwise complex foliations and their symmetries II No. 1162015 Reeb components of leafwise complex foliations and their symmetries III

No. 1172016 Besov spaces on open sets

No. 1182016 Decay estimates for wave equation with a potential on exterior domains

No. 1192016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A GENERAL TYPE OF DISSIPATIVITY CONDITIONS

No. 1202017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE
No. 1212017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

No. 1222018 Geometric aspects of Lucas sequences, I
No. 1232018 Derivatives of flat functions

No. 1242018 Geometry and dynamics of Engel structures
No. 1252018 Geometric aspects of Lucas sequences, II
No. 1262018 On volume functions of special flow polytopes

No. 1272019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY
No. 1282019 On syntomic complex with modulus for semi-stable reduction case
No. 1292019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES
No. 1302020 Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces
No. 1312020 Global well-posedness of the Kirchhoff equation
No. 1322021 Sparse non-smooth atomic decomposition of quasi-Banach lattices

No. 1332021 Integer values of generating functions for Lucas sequences
No. 1342022 Littlewood-Paley characterization of discrete Morrey spaces and its application to the discrete martingale transform

Kazuo MASUDA
and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Vladimir Georgiev and Tokio Matsuyama YOSHIKAZU KOBAYASHI
AND NAOKI TANAKA
YOSHIO MATSUYAMA

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi

Noriyuki Suwa
Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU
Yoshihiko MITSUMATSU
Noriyuki Suwa
Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA

Noriyuki Suwa
Kento YAMAMOTO
Noriyuki Suwa
Kanetomo Sato

Tokio Matsuyama
Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano
Noriyuki Suwa
Yuto Abe, Yoshihiro Sawano

