On volume functions of special flow polytopes associated to the root system of type A and
 On equivariant index of a generalized Bott manifold

Yuki Sugiyama
Department of Mathematics
Graduate School of Science and Engineering Chuo University

March, 2022

Acknowledgements

I would like to express my gratitude and respect to my supervisor Tatsuru Takakura. I would like to thank Professors Kazuo Akutagawa, Yoshihiko Mitsumatsu, and Shigeaki Miyoshi for their consideration and support. I would like to thank Mr. Takayuki Negishi for useful discussion for the Part I. I would also like to thank all Professors and staffs of Department of Mathematics for their consideration and support.

Contents

Acknowledgements 1
Preface 3
I On volume functions of special flow polytopes associated to the root system of type A 4
1 Introduction 5
2 Preliminaries 7
2.1 Flow polytopes and its volumes 7
2.2 Total residue and iterated residue 8
2.3 Chambers and Jeffrey-Kirwan residue 9
2.4 Nice chamber 9
2.5 Examples 10
3 Main theorems of Part I 12
II On equivariant index of a generalized Bott manifold 21
4 Introduction 22
5 Preliminaries 25
5.1 Generalized Bott manifolds 25
5.2 Torus action on generalized Bott towers 26
5.3 Generalized twisted cubes 26
5.4 Equivariant index 28
6 Main theorems of Part II 29
6.1 Multiplicity function of the equivariant index 29
6.2 Character formula for the equivariant index 32

Preface

In this thesis, we treat two themes.
In Part I, we consider a flow polytope associated to the root system of type A. The cone spanned by the positive roots is divided into several polyhedral cones called chambers. There is a specific chamber called the nice chamber. In this part, we call a flow polytope for the nice chamber a special flow polytope. Baldoni and Vergne showed the volume function of a special flow polytope is written as an iterated residue. In this case, we show that the volume function satisfies a certain system of differential equations, and conversely, the solution of the system of differential equations is unique up to a constant multiple. In addition, we give an inductive formula for the volume with respect to the rank of the root system of type A.

In Part II, we consider the equivariant index of a generalized Bott manifold. Grossberg and Karshon showed the multiplicity function of the equivariant index for a holomorphic line bundle over a Bott manifold is given by the density function of a twisted cube, which is determined by the structure of the Bott manifold and the line bundle over it. From this, they derived a Demazure-type character formula. In this part, we generalize the above results to generalized Bott manifolds. We show the multiplicity function of the equivariant index is given by the density function of a generalized twisted cube. In addition, we give a Demazure-type character formula of this representation.

Part I

On volume functions of special flow polytopes associated to the root system of type A

Chapter 1

Introduction

The number of lattice points and the volume of a convex polytope are important and interesting objects and have been studied from various points of view (see, e.g., [4]). For example, the number of lattice points of a convex polytope associated to a root system is called the Kostant partition function, and it plays an important role in representation theory of Lie groups (see, e.g., [9]).

We consider a flow polytope associated to the root system of type A. As explained in $[2,3]$, the cone spanned by the positive roots is divided into several polyhedral cones called chambers, and the combinatorial property of a flow polytope depends on a chamber. Moreover, there is a specific chamber called the nice chamber, which plays a significant role in [11]. In this part, we call a flow polytope for the nice chamber a special flow polytope. Also in $[2,3]$, a number of theoretical results related to the Kostant partition function and the volume function of a flow polytope can be found. In particular, it is shown that these functions for the nice chamber are written as iterated residues ([3, Lemma 21]). We also refer to [1] for similar formulas for other chambers in more general settings. Moreover, we mention that a generalization of the Lidskii formula is shown in [3, Theorem 38], there is a geometric proof of the Lidskii formula in [12], and combinatorial applications of this formula are given in $[5,7]$.

The purpose of this part is to characterize the volume function of a flow polytope for the nice chamber in terms of a system of differential equations, based on a result in [3]. In order to state the main results, we give some notation. Let e_{1}, \ldots, e_{r+1} be the standard basis of \mathbb{R}^{r+1} and let

$$
A_{r}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq r+1\right\}
$$

be the positive root system of type A with rank r. We assign a positive integer $m_{i, j}$ to each i and j with $1 \leq i<j \leq r+1$. Let us set $m=\left(m_{i, j}\right)$ and $M=\sum_{1 \leq i<j \leq r+1} m_{i, j}$. For $a=a_{1} e_{1}+\cdots+a_{r} e_{r}-\left(a_{1}+\cdots+a_{r}\right) e_{r+1} \in \mathbb{R}^{r+1}$, where $a_{1}+\cdots+a_{i} \geq 0(i=1, \ldots, r)$, the following polytope $P_{A_{r}^{+}, m}(a)$ is called the flow polytope associated to the root system of type A :

$$
P_{A_{r}^{+}, m}(a)=\left\{\begin{array}{l|l}
\left(y_{i, j, k}\right) \in \mathbb{R}^{M} & \begin{array}{l}
1 \leq i<j \leq r+1,1 \leq k \leq m_{i, j}, y_{i, j, k} \geq 0 \\
\sum_{1 \leq i<j \leq r+1} \sum_{1 \leq k \leq m_{i, j}} y_{i, j, k}\left(e_{i}-e_{j}\right)=a
\end{array}
\end{array}\right\} .
$$

Note that the flow polytopes in [3] include the case that some of $m_{i, j}$'s are zero, whereas we exclude such cases in this part. We denote the volume of $P_{A_{r}^{+}, m}(a)$ by $v_{A_{r}^{+}, m}(a)$.

The open set

$$
\mathfrak{c}_{\text {nice }}:=\left\{a=a_{1} e_{1}+\cdots+a_{r} e_{r}-\left(a_{1}+\cdots+a_{r}\right) e_{r+1} \in \mathbb{R}^{r+1} \mid a_{i}>0, i=1, \ldots, r\right\}
$$

in \mathbb{R}^{r+1} is called the nice chamber. We are interested in the volume $v_{A_{r}^{+}, m}(a)$ when a is in the closure of the nice chamber, and then it is written by $v_{A_{r}^{+}, m, \mathfrak{r}_{\text {nice }}}$. It is a homogeneous polynomial of degree $M-r$. The first result of this part is the following.

Theorem 1.0.1 Let $a=\sum_{i=1}^{r} a_{i}\left(e_{i}-e_{r+1}\right) \in \overline{\mathfrak{c}_{\text {nice }}}$, and let $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ be the volume of $P_{A_{r}^{+}, m}(a)$. Then $v=v_{A_{r}^{+}, m, \boldsymbol{c}_{\text {nice }}}(a)$ satisfies the system of differential equations as follows:

$$
\left\{\begin{array}{l}
\partial_{r}^{m_{r, r+1}} v=0 \\
\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} v=0 \\
\quad \vdots \\
\left(\partial_{1}-\partial_{2}\right)^{m_{1,2}}\left(\partial_{1}-\partial_{3}\right)^{m_{1,3}} \cdots\left(\partial_{1}-\partial_{r}\right)^{m_{1, r}} \partial_{1}^{m_{1, r+1}} v=0
\end{array}\right.
$$

where $\partial_{i}=\frac{\partial}{\partial a_{i}}$ for $i=1, \ldots, r$. Conversely, the polynomial $v=v(a)$ of degree $M-r$ satisfying the above equations is equal to a constant multiple of $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$.

We remark that it is known that the volume function $v_{A_{r}^{+}, m}(a)$ of $P_{A_{r}^{+}, m}(a)$, as a distribution on \mathbb{R}^{r}, satisfies the differential equation

$$
L v_{A_{r}^{+}, m}(a)=\delta(a)
$$

in general, where $L=\prod_{i<j}\left(\partial_{i}-\partial_{j}\right)^{m_{i, j}}$ and $\delta(a)$ is the Dirac delta function on $\mathbb{R}^{r}([8,11])$. Note that ∂_{r+1} in the definition of L is supposed to be zero. The above theorem characterizes the function $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ on $\overline{\mathfrak{c}_{\text {nice }}}$ more explicitly. It might be interesting to see what kind of properties of the volume can be derived from Theorem 1.0.1.

In addition, in Theorem 3.0.6, we show the volume $v_{A_{r}^{+}, m, \boldsymbol{c}_{\text {nice }}}(a)$ is written by a linear combination of $v_{A_{r-1}^{+}, m^{\prime}, \mathfrak{c}_{\text {nice }}^{\prime}}\left(a^{\prime}\right)$ and its partial derivatives, where $m^{\prime}=\left(m_{i, j}\right)_{2 \leq i<j \leq r+1}, \mathfrak{c}_{\text {nice }}^{\prime}$ is the nice chamber of A_{r-1}^{+}, and $a^{\prime}=\sum_{i=2}^{r} a_{i}\left(e_{i}-e_{r+1}\right) \in \overline{\mathfrak{c}_{\text {nice }}^{\prime}}$. It might be interesting to ask whether there is a relaton between this theorem and the inductive formulas of Schmidt-Bincer [14, (4.1), (4.24)].

This part is organized as follows. In Chapter 2, we recall the iterated residue, the Jeffrey-Kirwan residue, and the nice chamber based on [2], [3], [6] and [10]. Also, we give some examples of $P_{A_{r}^{+}, m}(a)$ and the calculations of the volume $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$. In Chapter 3, we prove the main theorems.

Chapter 2

Preliminaries

In this chapter, we set up the tools to prove the main theorems based on [2], [3], [6] and [10].

2.1 Flow polytopes and its volumes

Let e_{1}, \ldots, e_{r+1} be the standard basis of \mathbb{R}^{r+1}, and let

$$
V=\left\{a=\sum_{i=1}^{r+1} a_{i} e_{i} \in \mathbb{R}^{r+1} \mid \sum_{i=1}^{r+1} a_{i}=0\right\} .
$$

We consider the positive root system of type A with rank r as follows:

$$
A_{r}^{+}=\left\{e_{i}-e_{j} \mid 1 \leq i<j \leq r+1\right\} .
$$

Let $C\left(A_{r}^{+}\right)$be the convex cone generated by A_{r}^{+}:

$$
C\left(A_{r}^{+}\right)=\left\{a \in V \mid a_{1}+\cdots+a_{i} \geq 0 \text { for all } i, 1 \leq i \leq r\right\} .
$$

We assign a positive integer $m_{i, j}$ to each i and j with $1 \leq i<j \leq r+1$, and it is called a multiplicity. Let us set $m=\left(m_{i, j}\right)$ and $M=\sum_{1 \leq i<j \leq r+1} m_{i, j}$.

Definition 2.1.1 Let $a=a_{1} e_{1}+\cdots+a_{r} e_{r}-\left(a_{1}+\cdots+a_{r}\right) e_{r+1} \in C\left(A_{r}^{+}\right)$. We consider the following polytope:

$$
P_{A_{r}^{+}, m}(a)=\left\{\begin{array}{l|l}
\left(y_{i, j, k}\right) \in \mathbb{R}^{M} & \begin{array}{l}
1 \leq i<j \leq r+1,1 \leq k \leq m_{i, j}, y_{i, j, k} \geq 0 \\
\sum_{1 \leq i<j \leq r+1} \sum_{1 \leq k \leq m_{i, j}} y_{i, j, k}\left(e_{i}-e_{j}\right)=a
\end{array}
\end{array}\right\}
$$

which is called the flow polytope associated to the root system of type A.
Remark 2.1.2 The flow polytopes in [3] include the case that $m_{i, j}=0$ for some i and j.

The elements of A_{r}^{+}generate a lattice $V_{\mathbb{Z}}$ in V. The lattice $V_{\mathbb{Z}}$ determines a measure $d a$ on V.

Let $d u$ be the Lebesgue measure on \mathbb{R}^{M}. Let $\left[\alpha_{1}, \ldots, \alpha_{M}\right]$ be a sequence of elements of A_{r}^{+}with multiplicity $m_{i, j}$, and let φ be the surjective linear map from \mathbb{R}^{M} to V defined by $\varphi\left(e_{k}\right)=\alpha_{k}$. The vector space $\operatorname{ker}(\varphi)=\varphi^{-1}(0)$ is of dimension $d=M-r$ and it is equipped with the quotient Lebesgue measure $d u / d a$. For $a \in V$, the affine space $\varphi^{-1}(a)$ is parallel to $\operatorname{ker}(\varphi)$, and thus also equipped with the Lebesgue measure $d u / d a$. Volumes of subsets of $\varphi^{-1}(a)$ are computed for this measure. In particular, we can consider the volume $v_{A_{r}^{+}, m}(a)$ of the polytope $P_{A_{r}^{+}, m}(a)$.

2.2 Total residue and iterated residue

Let $A_{r}=A_{r}^{+} \cup\left(-A_{r}^{+}\right)$, and let U be the dual vector space of V. We denote by $R_{A_{r}}$ the ring of rational functions $f\left(x_{1}, \ldots, x_{r}\right)$ on the complexification $U_{\mathbb{C}}$ of U with poles on the hyperplanes $x_{i}-x_{j}=0(1 \leq i<j \leq r+1)$ or $x_{i}=0(1 \leq i \leq r)$. A subset σ of A_{r} is called a basis of A_{r} if the elements $\alpha \in \sigma$ form a basis of V. In this case, we set

$$
f_{\sigma}(x):=\frac{1}{\prod_{\alpha \in \sigma} \alpha(x)}
$$

and call such an element a simple fraction. We denote by $S_{A_{r}}$ the linear subspace of $R_{A_{r}}$ spanned by simple fractions. The space U acts on $R_{A_{r}}$ by differentiation: $(\partial(u) f)(x)=$ $\left.\left(\frac{d}{d \varepsilon}\right) f(x+\varepsilon u)\right|_{\varepsilon=0}$. We denote by $\partial(U) R_{A_{r}}$ the space spanned by derivatives of functions in $R_{A_{r}}$. It is shown in [6, Proposition 7] that $R_{A_{r}}=\partial(U) R_{A_{r}} \oplus S_{A_{r}}$. The projection map $\operatorname{Tres}_{A_{r}}: R_{A_{r}} \rightarrow S_{A_{r}}$ with respect to this decomposition is called the total residue map.

We extend the definition of the total residue to the space $\hat{R}_{A_{r}}$ consisting of functions P / Q where Q is a finite product of powers of the linear forms $\alpha \in A_{r}$ and $P=\sum_{k=0}^{\infty} P_{k}$ is a formal power series with P_{k} of degree k. As the total residue vanishes outside the homogeneous component of degree $-r$ of A_{r}, we can define $\operatorname{Tres}_{A_{r}}(P / Q)=\operatorname{Tres}_{A_{r}}\left(P_{q-r} / Q\right)$, where q is degree of Q. For $a \in V$ and multiplicities $m=\left(m_{i, j}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{M}$ of elements of A_{r}^{+}, the function

$$
F:=\frac{e^{a_{1} x_{1}+\cdots+a_{r} x_{r}}}{\prod_{i=1}^{r} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}
$$

is in $\hat{R}_{A_{r}}$. We define $J_{A_{r}^{+}, m}(a) \in S_{A_{r}}$ by

$$
J_{A_{r}^{+}, m}(a)=\operatorname{Tres}_{A_{r}} F .
$$

Next, we describe the iterated residue.
Definition 2.2.1 For $f \in R_{A_{r}}$, we define the iterated residue by

$$
\operatorname{Ires}_{x=0} f=\operatorname{Res}_{x_{1}=0} \operatorname{Res}_{x_{2}=0} \cdots \operatorname{Res}_{x_{r}=0} f\left(x_{1}, \ldots, x_{r}\right) .
$$

Since the iterated residue $\operatorname{Ires}_{x=0} f$ vanishes on the space $\partial(U) R_{A_{r}}$ as in [3], we have

$$
\begin{equation*}
\operatorname{Ires}_{x=0} J_{A_{r}^{+}, m}(a)=\operatorname{Ires}_{x=0} F \tag{2.2.1}
\end{equation*}
$$

2.3 Chambers and Jeffrey-Kirwan residue

Definition 2.3.1 Let $C(\nu)$ be the closed cone generated by ν for any subset ν of A_{r}^{+} and let $C\left(A_{r}^{+}\right)_{\operatorname{sing}}$ be the union of the cones $C(\nu)$ where ν is any subset of A_{r}^{+}of cardinal strictly less than $r=\operatorname{dim} V$. By definition, the set $C\left(A_{r}^{+}\right)_{\text {reg }}$ of A_{r}^{+}-regular elements is the complement of $C\left(A_{r}^{+}\right)_{\operatorname{sing}}$. A connected component of $C\left(A_{r}^{+}\right)_{\mathrm{reg}}$ is called a chamber.

The Jeffrey-Kirwan residue [10] associated to a chamber \mathfrak{c} of $C\left(A_{r}^{+}\right)$is a linear form $f \mapsto\langle\langle\mathfrak{c}, f\rangle\rangle$ on the vector space $S_{A_{r}}$ of simple fractions. Any function f in $S_{A_{r}}$ can be written as a linear combination of functions f_{σ}, with a basis σ of A_{r} contained in A_{r}^{+}. To determine the linear map $f \mapsto\langle\langle\mathfrak{c}, f\rangle\rangle$, it is enough to determine it on this set of functions f_{σ}. So we assume that σ is a basis of A_{r} contained in A_{r}^{+}.

Definition 2.3.2 For a chamber \mathfrak{c} and $f_{\sigma} \in S_{A_{r}}$, we define the Jeffrey-Kirwan residue $\left\langle\left\langle\mathfrak{c}, f_{\sigma}\right\rangle\right\rangle$ associated to a chamber \mathfrak{c} as follows:

- If $\mathfrak{c} \subset C(\sigma)$, then $\left\langle\left\langle\mathfrak{c}, f_{\sigma}\right\rangle\right\rangle=1$.
- If $\mathfrak{c} \cap C(\sigma)=\emptyset$, then $\left\langle\left\langle\mathfrak{c}, f_{\sigma}\right\rangle\right\rangle=0$,
where $C(\sigma)$ is the convex cone generated by σ.
Remark 2.3.3 More generally, as in [3, Definition 11], the Jeffrey-Kirwan residue $\left\langle\left\langle\mathfrak{c}, f_{\sigma}\right\rangle\right\rangle$ is defined to be $\frac{1}{\operatorname{vol}(\sigma)}$ if $\mathfrak{c} \subset C(\sigma)$, where $\operatorname{vol}(\sigma)$ is the volume of the parallelepiped $\oplus_{\alpha \in \sigma}[0,1] \alpha$, relative to our Lebesgue measure $d a$. In our case, the volume $\operatorname{vol}(\sigma)$ is equal to 1 since A_{r} is unimodular.

The volume $v_{A_{r}^{+}, m}(a)$ of the flow polytope $P_{A_{r}^{+}, m}(a)$ is written by the function $J_{A_{r}^{+}, m}(a)$ and the Jeffrey-Kirwan residue in the following.

Theorem 2.3.4 (Baldoni-Vergne [3]) Let \mathfrak{c} be a chamber of $C\left(A_{r}^{+}\right)$. Then, for $a \in \overline{\mathfrak{c}}$, the volume $v_{A_{r}^{+}, m}(a)$ of $P_{A_{r}^{+}, m}(a)$ is given by

$$
v_{A_{r}^{+}, m}(a)=\left\langle\left\langle\mathfrak{c}, J_{A_{r}^{+}, m}(a)\right\rangle\right\rangle .
$$

We denote by $v_{A_{r}^{+}, m, \mathbf{c}}(a)$ the polynomial function of a coinciding with $v_{A_{r}^{+}, m}(a)$ when $a \in \overline{\mathfrak{c}}$. It is a homogeneous polynomial of degree $M-r$.

2.4 Nice chamber

Definition 2.4.1 The open subset $\boldsymbol{c}_{\text {nice }}$ of $C\left(A_{r}^{+}\right)$is defined by

$$
\mathfrak{c}_{\text {nice }}=\left\{a \in C\left(A_{r}^{+}\right) \mid a_{i}>0(i=1, \ldots, r)\right\} .
$$

The set $\boldsymbol{c}_{\text {nice }}$ is in fact a chamber for the root system $A_{r}^{+}([3])$. The chamber $\mathfrak{c}_{\text {nice }}$ is called the nice chamber.

Lemma 2.4.2 (Baldoni-Vergne [3]) For the nice chamber $\mathfrak{c}_{\text {nice }}$ of A_{r}^{+}and $f \in S_{A_{r}}$, we have

$$
\left\langle\left\langle\mathfrak{c}_{\text {nice }}, f\right\rangle\right\rangle=\operatorname{Ires}_{x=0} f .
$$

From Theorem 2.3.4, Lemma 2.4.2 and (2.2.1), we have the following corollary.
Corollary 2.4.3 (Lidskii formula [3]) Let $a \in \overline{\mathfrak{c}_{\text {nice }}}$. Then the volume function $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ is given by

$$
v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)=\operatorname{Ires}_{x=0} F .
$$

2.5 Examples

In this section, we give some examples of the flow polytopes for A_{1}, A_{2}, and A_{3}, and calculate their volumes.

Example 2.5.1 When $r=1$, the nice chamber of A_{1}^{+}is $\mathfrak{c}_{\text {nice }}=\left\{a=a_{1}\left(e_{1}-e_{2}\right) \mid a_{1}>0\right\}$. For $a=a_{1}\left(e_{1}-e_{2}\right) \in \overline{\mathfrak{c}_{\text {nice }}}$,

$$
P_{A_{1}^{+}, m}(a)=\left\{\left(y_{i, j, k}\right) \in \mathbb{R}^{m_{1,2}} \mid y_{i, j, k} \geq 0, y_{1,2,1}+y_{1,2,2}+\cdots+y_{1,2, m_{1,2}}=a_{1}\right\} .
$$

From Corollary 2.4.3, we have

$$
v_{A_{1}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)=\operatorname{Res}_{x_{1}=0}\left(\frac{e^{a_{1} x_{1}}}{x_{1}^{m_{1,2}}}\right)=\frac{1}{\left(m_{1,2}-1\right)!} a_{1}^{m_{1,2}-1} .
$$

Example 2.5.2 When $r=2$, there are two chambers $\mathfrak{c}_{1}, \mathfrak{c}_{2}$ of A_{2}^{+}as below, and the nice chamber $\mathfrak{c}_{\text {nice }}$ of A_{2}^{+}is \mathfrak{c}_{1}.

Figure 1 : The chamber of A_{2}^{+}.

For example, we set $m_{1,2}=n\left(n \in \mathbb{Z}_{>0}\right), m_{1,3}=1$, and $m_{2,3}=1$. For $a=a_{1} e_{1}+a_{2} e_{2}-$ $\left(a_{1}+a_{2}\right) e_{3} \in \overline{\mathfrak{c}_{\text {nice }}}$,

$$
P_{A_{2}^{+}, m}(a)=\left\{\begin{array}{l|l}
\left(y_{i, j, k}\right) \in \mathbb{R}^{n+2} & \begin{array}{l}
y_{i, j, k} \geq 0 \\
y_{1,2,1}+y_{1,2,2}+\cdots+y_{1,2, n}+y_{1,3,1}=a_{1} \\
-y_{1,2,1}-y_{1,2,2}-\cdots-y_{1,2, n}+y_{2,3,1}=a_{2}
\end{array}
\end{array}\right\} .
$$

From Corollary 2.4.3, we have

$$
v_{A_{2}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)=\operatorname{Ires}_{x=0}\left(\frac{e^{a_{1} x_{1}+a_{2} x_{2}}}{x_{1} x_{2}\left(x_{1}-x_{2}\right)^{n}}\right)=\operatorname{Res}_{x_{1}=0} \operatorname{Res}_{x_{2}=0}\left(\frac{e^{a_{1} x_{1}+a_{2} x_{2}}}{x_{1} x_{2}\left(x_{1}-x_{2}\right)^{n}}\right)=\frac{1}{n!} a_{1}^{n} .
$$

Example 2.5.3 When $r=3$, there are seven chambers of A_{3}^{+}as below ([1]), and the nice chamber $\mathfrak{c}_{\text {nice }}$ of A_{3}^{+}is \mathfrak{c}_{1}.

Figure 2 : The chamber of A_{3}^{+}.

For example, we set $m_{1,2}=1, m_{1,3}=1, m_{1,4}=2, m_{2,3}=1, m_{2,4}=2$, and $m_{3,4}=2$. For $a=\sum_{i=1}^{3} a_{i}\left(e_{i}-e_{4}\right) \in \overline{\mathfrak{c}_{\text {nice }}}$,

$$
P_{A_{3}^{+}, m}(a)=\left\{\begin{array}{l|l}
\left(y_{i, j, k}\right) \in \mathbb{R}^{9} & \begin{array}{l}
y_{i, j, k} \geq 0 \\
y_{1,2,1}+y_{1,3,1}+y_{1,4,1}+y_{1,4,2}=a_{1} \\
-y_{1,2,1}+y_{2,3,1}+y_{2,4,1}+y_{2,4,2}=a_{2} \\
-y_{1,3,1}-y_{2,3,1}+y_{3,4,1}+y_{3,4,2}=a_{3}
\end{array}
\end{array}\right\} .
$$

From Corollary 2.4.3, we have

$$
\begin{aligned}
v_{A_{3}^{+}, m, \mathfrak{c}_{\text {nice }}}(a) & =\operatorname{Ires}_{x=0}\left(\frac{e^{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}}}{x_{1}^{2} x_{2}^{2} x_{3}^{2}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{2}-x_{3}\right)}\right) \\
& =\frac{1}{360} a_{1}^{3}\left(a_{1}^{3}+6 a_{1}^{2} a_{2}+3 a_{1}^{2} a_{3}+15 a_{1} a_{2}^{2}+15 a_{1} a_{2} a_{3}+10 a_{2}^{3}+30 a_{2}^{2} a_{3}\right) .
\end{aligned}
$$

Chapter 3

Main theorems of Part I

In this chapter, we prove the main theorems of this part. Let $\boldsymbol{c}_{\text {nice }}$ be the nice chamber of A_{r}^{+}and let $a=\sum_{i=1}^{r} a_{i}\left(e_{i}-e_{r+1}\right) \in \overline{\mathfrak{c}_{\text {nice }}}$.

Theorem 3.0.1 For $a \in \overline{\overline{\mathfrak{c}_{\text {nice }}}}$, let $P_{A_{r}^{+}, m}(a)$ be the flow polytope as in Definition 2.1.1 and let $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ be the volume of $P_{A_{r}^{+}, m}(a)$. Then $v=v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ satisfies the system of differential equations as follows:

$$
\left\{\begin{array}{l}
\partial_{r}^{m_{r, r+1}} v=0 \\
\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} v=0 \\
\quad \vdots \\
\left(\partial_{1}-\partial_{2}\right)^{m_{1,2}}\left(\partial_{1}-\partial_{3}\right)^{m_{1,3}} \cdots\left(\partial_{1}-\partial_{r}\right)^{m_{1, r}} \partial_{1}^{m_{1, r+1}} v=0
\end{array}\right.
$$

where $\partial_{i}=\frac{\partial}{\partial a_{i}}$ for $i=1, \ldots, r$.
Proof. We will prove the first two relations. Let $F=\frac{e^{a_{1} x_{1}+\cdots+a_{r} x_{r}}}{\prod_{i=1}^{r} x_{i}^{m_{i}, r+1} \Pi_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}$. It is easy to see that

$$
\begin{equation*}
P\left(\partial_{1}, \ldots, \partial_{r}\right)\left(\operatorname{Ires}_{x=0} F\right)=\operatorname{Ires}_{x=0}\left(P\left(\partial_{1}, \ldots, \partial_{r}\right) F\right)=\operatorname{Ires}_{x=0}\left(P\left(x_{1}, \ldots, x_{r}\right) F\right), \tag{3.0.1}
\end{equation*}
$$

where P is a polynomial. Since $\frac{e^{a_{1} x_{1}+\cdots+a_{k} x_{k}}}{\prod_{i=1}^{k-1} x_{i}^{m_{i}, r+1} \prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right)^{m_{i, j}}}$ is holomorphic at $x_{k}=0$,

$$
\begin{equation*}
\operatorname{Res}_{x_{k}=0}\left(\frac{e^{a_{1} x_{1}+\cdots+a_{k} x_{k}}}{\prod_{i=1}^{k-1} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right)=0 \tag{3.0.2}
\end{equation*}
$$

for $k=1, \ldots, r$. Therefore, from Corollary 2.4.3, (3.0.1) and (3.0.2), we obtain

$$
\begin{aligned}
\partial_{r}^{m_{r, r+1}} v & =\partial_{r}^{m_{r, r+1}} \operatorname{Ires}_{x=0} F=\operatorname{Ires}_{x=0} \partial_{r}^{m_{r, r+1}} F \\
& =\operatorname{Ires}_{x=0}\left(\frac{e^{a_{1} x_{1}+\cdots+a_{r} x_{r}}}{\prod_{i=1}^{r-1} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right)=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} v \\
& =\operatorname{Ires}_{x=0}\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} F \\
& =\operatorname{Ires}_{x=0}\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}}\left(\frac{e^{a_{1} x_{1}+\cdots+a_{r} x_{r}}}{x_{r}^{m_{r, r+1}} \prod_{i=1}^{r-2} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right) \\
& =\operatorname{Ires}_{x=0}\left(\frac{e^{a_{1} x_{1}+\cdots+a_{r} x_{r}}}{x_{r}^{m_{r, r+1}} \prod_{i=1}^{r-2} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r,(i, j) \neq(r-1, r)}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right) \\
& =\operatorname{Res}_{x_{1}=0} \cdots\left(\operatorname { R e s } _ { x _ { r - 1 } = 0 } \left(\frac{e^{a_{1} x_{1}+\cdots+a_{r-1} x_{r-1}}}{\prod_{i=1}^{r-2} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r-1}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right.\right. \\
& \left.\left.\times \operatorname{Res}_{x_{r}=0}\left(\frac{e^{a_{r} x_{r}}}{x_{r}^{m_{r, r+1}} \prod_{i=1}^{r-2}\left(x_{i}-x_{r}\right)^{m_{i, r}}}\right)\right)\right)=0 .
\end{aligned}
$$

Similarly, we can verify the remaining expressions.
Remark 3.0.2 In general, it is known that the volume function $v_{A_{r}^{+}, m}(a)$ of $P_{A_{r}^{+}, m}(a)$, as a distribution on V, satisfies the differential equation

$$
L v_{A_{r}^{+}, m}(a)=\delta(a),
$$

where $L=\prod_{i<j}\left(\partial_{i}-\partial_{j}\right)^{m_{i, j}}$ and $\delta(a)$ is the Dirac delta function on $V([8,11])$. Note that ∂_{r+1} in the definition of L is supposed to be zero. Theorem 3.0.1 above, together with Proposition 3.0.3 and Theorem 3.0.4 as below, characterizes the function $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ on $\overline{\mathfrak{c}_{\text {nice }}}$ more explicitly.

Let $M_{\ell}=\sum_{i=\ell+1}^{r+1} m_{\ell, i}$ for $\ell=1, \ldots, r$. Then we have the following proposition.
Proposition 3.0.3 The coefficient of $a_{1}^{M_{1}-1} a_{2}^{M_{2}-1} \cdots a_{r-1}^{M_{r-1}-1} a_{r}^{M_{r}-1}$ in the volume function $v_{A_{r}^{+}, m}(a)$ is given by

$$
\frac{1}{\left(M_{1}-1\right)!\left(M_{2}-1\right)!\cdots\left(M_{r-1}-1\right)!\left(M_{r}-1\right)!} .
$$

Proof. From the Lidskii formula in Corollary 2.4.3, we have

$$
v_{A_{r}^{+}, m, \mathbf{c}_{\text {nice }}}(a)=\sum_{|i|=\ell-r} \frac{a_{1}^{i_{1}}}{i_{1}!} \cdots \frac{a_{r}^{i_{r}}}{i_{r}!} \operatorname{Ires}_{x=0}\left(\frac{x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}}{\prod_{i=1}^{r} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right),
$$

where $|i|=i_{1}+\cdots+i_{r}$. When $i_{\ell}=M_{\ell}-1$ for $\ell=1, \ldots, r$,

$$
\begin{aligned}
& \operatorname{Ires}_{x=0}\left(\frac{x_{1}^{M_{1}-1} \cdots x_{r}^{M_{r}-1}}{\prod_{i=1}^{r} x_{i}^{m_{i, r+1}} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right) \\
& =\operatorname{Res}_{x_{1}=0} \cdots \operatorname{Res}_{x_{r-1}=0} \operatorname{Res}_{x_{r}=0}\left(\frac{x_{1}^{\left(\sum_{i=2}^{r} m_{1, i}\right)-1} \cdots x_{r-1}^{m_{r-1, r}-1}}{x_{r} \prod_{1 \leq i<j \leq r}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right) \\
& =\operatorname{Res}_{x_{1}=0} \cdots \operatorname{Res}_{x_{r-1}=0}\left(\frac{x_{1}^{\left(\sum_{i=2}^{r-1} m_{1, i, i}\right)-1} \cdots x_{r-2}^{m_{r-2, r-1}-1}}{x_{r-1} \prod_{1 \leq i<j \leq r-1}\left(x_{i}-x_{j}\right)^{m_{i, j}}}\right) \\
& =\operatorname{Res}_{x_{1}=0} \frac{1}{x_{1}}=1 .
\end{aligned}
$$

Thus we obtain the proposition.
Theorem 3.0.4 Let $\phi_{r}=\phi\left(a_{1}, \ldots, a_{r}\right)$ be a homogeneous polynomial of a_{1}, \ldots, a_{r} with degree d and let $M=\sum_{1 \leq i<j \leq r+1} m_{i, j}$. Suppose ϕ_{r} satisfies the system of differential equations as follows:

$$
\left\{\begin{array}{l}
\partial_{r}^{m_{r, r+1}} \phi_{r}=0 \tag{3.0.3}\\
\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} \phi_{r}=0 \\
\quad \vdots \\
\left(\partial_{1}-\partial_{2}\right)^{m_{1,2}}\left(\partial_{1}-\partial_{3}\right)^{m_{1,3}} \cdots\left(\partial_{1}-\partial_{r}\right)^{m_{1, r}} \partial_{1}^{m_{1, r+1}} \phi_{r}=0
\end{array}\right.
$$

(i) If $M-r<d$, then $\phi_{r}=0$.
(ii) If $0 \leq d \leq M-r$, then there is a non trivial homogeneous polynomial ϕ_{r} satisfying (3.0.3).
(iii) If $d=M-r$ in particular, ϕ_{r} is equal to a constant multiple of $v=v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$.

Proof. We argue by induction on r. In the case that $r=1$, we write

$$
\phi_{1}=\phi\left(a_{1}\right)=p a_{1}^{d},
$$

where p is a constant. If $m_{1,2}-1<d$ and ϕ_{1} satisfies the differential equation $\partial_{1}^{m_{1,2}} \phi_{1}=0$, then $p=0$ and hence $\phi_{1}=0$. If $0 \leq d \leq m_{1,2}-1$, then for any $p \neq 0, \partial_{1}^{m_{1,2}} \phi_{1}=0$. Also, if $d=m_{1,2}-1$, in particular, then $\phi_{1}=p a_{1}^{m_{1,2}-1}$, while $v=\frac{1}{\left(m_{1,2}-1\right)!} a_{1}^{m_{1,2}-1}$ as in Example 2.5.1. Hence ϕ_{1} is equal to a constant multiple of v.

We assume that the statement of this theorem holds for $r-1$. We write ϕ_{r} as

$$
\phi_{r}=\phi\left(a_{1}, \ldots, a_{r}\right)=g_{d}\left(a_{2}, \ldots, a_{r}\right)+a_{1} g_{d-1}\left(a_{2}, \ldots, a_{r}\right)+\cdots+a_{1}^{d} g_{0}\left(a_{2}, \ldots, a_{r}\right),
$$

where g_{k} is a homogeneous polynomial of a_{2}, \ldots, a_{r} with degree k for $k=0,1, \ldots, d$. Then for $k=0,1, \ldots, d, g_{k}$ satisfies the differential equations as follows:

$$
\left\{\begin{array}{l}
\partial_{r}^{m_{r, r+1}} g_{k}=0 \tag{3.0.4}\\
\left(\partial_{r-1}-\partial_{r}\right)^{m_{r-1, r}} \partial_{r-1}^{m_{r-1, r+1}} g_{k}=0 \\
\quad \vdots \\
\left(\partial_{2}-\partial_{3}\right)^{m_{2,3}}\left(\partial_{2}-\partial_{4}\right)^{m_{2,4}} \cdots\left(\partial_{2}-\partial_{r}\right)^{m_{2, r}} \partial_{2}^{m_{2, r+1}} g_{k}=0
\end{array}\right.
$$

We set $h=\left(\sum_{2 \leq i<j \leq r+1} m_{i, j}\right)-(r-1)$. From the inductive assumption, if $0 \leq k \leq h$, then g_{k} is a homogeneous polynomial. On the other hand, if $h+1 \leq k \leq d$, then $g_{k}=0$, namely,

$$
\begin{equation*}
g_{d}\left(a_{2}, \ldots, a_{r}\right)=g_{d-1}\left(a_{2}, \ldots, a_{r}\right)=\cdots=g_{h+1}\left(a_{2}, \ldots, a_{r}\right)=0 \tag{3.0.5}
\end{equation*}
$$

(i) We consider the case of $M-r<d$. Let $M_{1}=\sum_{i=2}^{r+1} m_{1, i}$. Now we compare the coefficients of $a_{1}^{d-h-M_{1}+n}$ in $\left(\partial_{1}-\partial_{2}\right)^{m_{1,2}}\left(\partial_{1}-\partial_{3}\right)^{m_{1,3}} \cdots\left(\partial_{1}-\partial_{r}\right)^{m_{1, r}} \partial_{1}^{m_{1, r+1}} \phi_{r}$ for $n=0, \ldots, h$. For $q=1, \ldots, M_{1}-m_{1, r+1}$, we define

$$
\begin{aligned}
D_{q}= & \sum_{2 \leq i_{1} \leq r}\binom{m_{1, i_{1}}}{q} \partial_{i_{1}}^{q}+\cdots+\sum_{\substack{p_{1}+\ldots+p_{k}=q \\
2 \leq i_{1}<\cdots<i_{k} \leq r}}\left(\prod_{1 \leq l \leq k}\binom{m_{1, i_{l}}}{p_{l}}\right) \partial_{i_{1}}^{p_{1}} \partial_{i_{2}}^{p_{2}} \cdots \partial_{i_{k}}^{p_{k}} \\
& +\cdots+\sum_{2 \leq i_{1}<\cdots<i_{q} \leq r}\left(\prod_{1 \leq l \leq q}\binom{m_{1, i_{l}}}{1}\right) \partial_{i_{1}} \partial_{i_{2}} \cdots \partial_{i_{q}} .
\end{aligned}
$$

Then we have the following equation:

$$
\begin{align*}
& \frac{(d-h+n)!}{\left(d-h-M_{1}+n\right)!} g_{h-n}\left(a_{2}, \ldots, a_{r}\right)-\frac{(d-h+n-1)!}{\left(d-h-M_{1}+n\right)!} D_{1} g_{h-n+1}\left(a_{2}, \ldots, a_{r}\right) \\
& +\cdots+(-1)^{j} \frac{(d-h+n-j)!}{\left(d-h-M_{1}+n\right)!} D_{j} g_{h-n+j}\left(a_{2}, \ldots, a_{r}\right) \\
& +\cdots+(-1)^{M_{1}-m_{1, r+1}} \frac{\left(d-h+n-\left(M_{1}-m_{1, r+1}\right)\right)!}{\left(d-h-M_{1}+n\right)!} D_{M_{1}-m_{1, r+1}} g_{h-n+\left(M_{1}-m_{1, r+1}\right)}\left(a_{2}, \ldots, a_{r}\right) \\
& =0 . \tag{3.0.6}
\end{align*}
$$

When $n=0$, from (3.0.5) and (3.0.6), we have

$$
g_{h}\left(a_{2}, \ldots, a_{r}\right)=0 .
$$

When $n=1$, we have

$$
\frac{(d-h+1)!}{\left(d-h-M_{1}+1\right)!} g_{h-1}\left(a_{2}, \ldots, a_{r}\right)-\frac{(d-h)!}{\left(d-h-M_{1}+1\right)!} D_{1} g_{h}\left(a_{2}, \ldots, a_{r}\right)=0 .
$$

Thus we have

$$
g_{h-1}\left(a_{2}, \ldots, a_{r}\right)=0
$$

Similarly, we have

$$
g_{h-2}\left(a_{2}, \ldots, a_{r}\right)=g_{h-3}\left(a_{2}, \ldots, a_{r}\right)=\cdots=g_{0}\left(a_{2}, \ldots, a_{r}\right)=0
$$

and hence $\phi_{r}=0$.
(ii) We consider the case of $0 \leq d \leq M-r$. By the inductive assumption, there is a non trivial homogeneous polynomial $g_{h-n_{1}+i}$ satisfying (3.0.4) for $i=1, \ldots, n_{1}$, where $n_{1}=M-r-d+1$. We can take

$$
g_{h-n_{1}+i}\left(a_{2}, \ldots, a_{r}\right) \neq 0
$$

When $n=n_{1}$, from (3.0.5) and (3.0.6),

$$
\begin{aligned}
g_{h-n_{1}}\left(a_{2}, \ldots, a_{r}\right)= & \frac{\left(d-h+n_{1}-1\right)!}{\left(d-h+n_{1}\right)!} D_{1} g_{h-n_{1}+1}\left(a_{2}, \ldots, a_{r}\right) \\
& -\frac{\left(d-h+n_{1}-2\right)!}{\left(d-h+n_{1}\right)!} D_{2} g_{h-n_{1}+2}\left(a_{2}, \ldots, a_{r}\right) \\
& +\cdots+(-1)^{n_{1}-1} \frac{(d-h)!}{\left(d-h+n_{1}\right)!} D_{n_{1}} g_{h}\left(a_{2}, \ldots, a_{r}\right) .
\end{aligned}
$$

When $n=n_{1}+1$,

$$
\begin{aligned}
g_{h-\left(n_{1}+1\right)}\left(a_{2}, \ldots, a_{r}\right)= & \frac{\left(d-h+n_{1}\right)!}{\left(d-h+n_{1}+1\right)!} D_{1} g_{h-n_{1}}\left(a_{2}, \ldots, a_{r}\right) \\
& -\frac{\left(d-h+n_{1}-1\right)!}{\left(d-h+n_{1}+1\right)!} D_{2} g_{h-n_{1}+1}\left(a_{2}, \ldots, a_{r}\right) \\
& +\cdots+(-1)^{n_{1}} \frac{(d-h)!}{\left(d-h+n_{1}+1\right)!} D_{n_{1}+1} g_{h}\left(a_{2}, \ldots, a_{r}\right) .
\end{aligned}
$$

Similarly, for $n=n_{1}+2, \ldots, h$, we can express $g_{h-j}\left(a_{2}, \ldots, a_{r}\right)\left(j=n_{1}, n_{1}+1, \ldots, h\right)$ in terms of $g_{h-j+i}\left(a_{2}, \ldots, a_{r}\right)(i=1, \ldots, j)$ and their partial derivatives. Namely, we can express ϕ_{r} in terms of $g_{h-n_{1}+i}\left(a_{2}, \ldots, a_{r}\right)$ and their partial derivatives. It follows that $\phi_{r} \neq 0$ when $0 \leq d \leq M-r$.
(iii) If $d=M-r$ in particular, then $n_{1}=1$, and $g_{h-j}(j=1, \ldots, h)$ becomes the linear combination of g_{h} and their partial derivatives. Therefore ϕ_{r} is uniquely determined by g_{h}. Moreover, from the inductive assumption, $g_{h}=C \cdot v_{A_{r-1}^{+}, m^{\prime}, \text {, }_{\text {nice }}^{\prime}}$, where C is a constant, $m^{\prime}=\left(m_{i, j}\right)_{2 \leq i<j \leq r+1}$, and $\boldsymbol{c}_{\text {nice }}^{\prime}$ is a nice chamber of A_{r-1}^{+}. Hence the solution of (3.0.3) is unique up to a constant multiple. On the other hand, by Theorem 3.0.1, $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}$ satisfies the system of differential equations (3.0.3). Hence ϕ_{r} is equal to a constant multiple of $v_{A_{r}^{+}, m, \boldsymbol{c}_{\text {nice }}}$.

Recall that in the proof of Theorem 3.0.4, we have defined the operator

$$
\begin{align*}
D_{q}= & \sum_{2 \leq i_{1} \leq r}\binom{m_{1, i_{1}}}{q} \partial_{i_{1}}^{q}+\cdots+\sum_{\substack{p_{1}+\cdots+p_{k}=q \\
2 \leq i_{1}<\cdots<i_{k} \leq r}}\left(\prod_{1 \leq l \leq k}\binom{m_{1, i_{l}}}{p_{l}}\right) \partial_{i_{1}}^{p_{1}} \partial_{i_{2}}^{p_{2}} \cdots \partial_{i_{k}}^{p_{k}} \\
& +\cdots+\sum_{2 \leq i_{1}<\cdots<i_{q} \leq r}\left(\prod_{1 \leq l \leq q}\binom{m_{1, i_{l}}}{1}\right) \partial_{i_{1}} \partial_{i_{2}} \cdots \partial_{i_{q}} \tag{3.0.7}
\end{align*}
$$

for $q=1, \ldots, M_{1}-m_{1, r+1}$.
Remark 3.0.5 Let $M_{1}=\sum_{i=2}^{r+1} m_{1, i}$. When $d=M-r$, from the proof of Theorem 3.0.4 (iii), $g_{h-j}(j=1, \ldots, h)$ is uniquely determined as follows:

$$
\left\{\begin{array}{l}
g_{h-1}=\frac{\left(M_{1}-1\right)!}{M_{1}!} D_{1} g_{h} \\
g_{h-2}=\frac{\frac{\left(M_{1}-1\right)!}{\left(M_{1}+1\right)!}\left(D_{1}^{2}-D_{2}\right) g_{h}}{g_{h-3}=\frac{\left(M_{1}-1\right)!}{\left(M_{1}+2\right)!}\left(D_{1}^{3}-2 D_{1} D_{2}+D_{3}\right) g_{h}} \\
\quad \vdots \\
g_{0}=\frac{\left(M_{1}-1\right)!}{(M-r)!}\left(D_{1}^{h}-(h-1) D_{1}^{h-2} D_{2}+\cdots+(-1)^{h-1} D_{h}\right) g_{h}
\end{array}\right.
$$

Let $m^{\prime}=\left(m_{i, j}\right)_{2 \leq i<j \leq r+1}, \boldsymbol{c}_{\text {nice }}^{\prime}$ a nice chamber of A_{r-1}^{+}and $a^{\prime}=\sum_{i=2}^{r} a_{i}\left(e_{i}-e_{r+1}\right) \in \overline{\mathbf{c}_{\text {nice }}^{\prime}}$. From Proposition 3.0.3 and Remark 3.0.5, we obtain the following theorem.

Theorem 3.0.6 Let $h=\left(\sum_{2 \leq i<j \leq r+1} m_{i, j}\right)-(r-1)$ and let $D_{q}(q=1, \ldots, h)$ be as in (3.0.7). Then $v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ is written by the linear combination of $v_{A_{r-1}^{+}, m^{\prime}, \mathfrak{c}_{\text {nice }}^{\prime}}\left(a^{\prime}\right)$ and its partial derivatives as follows:

$$
\begin{align*}
v_{A_{r}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)= & \left\{\frac{a_{1}^{M_{1}-1}}{\left(M_{1}-1\right)!}+\frac{a_{1}^{M_{1}}}{M_{1}!} D_{1}+\frac{a_{1}^{M_{1}+1}}{\left(M_{1}+1\right)!}\left(D_{1}^{2}-D_{2}\right)\right. \\
& +\frac{a_{1}^{M_{1}+2}}{\left(M_{1}+2\right)!}\left(D_{1}^{3}-2 D_{1} D_{2}+D_{3}\right)+\cdots \\
& \left.+\frac{a_{1}^{M-r}}{(M-r)!}\left(D_{1}^{h}-(h-1) D_{1}^{h-2} D_{2}+\cdots+(-1)^{h-1} D_{h}\right)\right\} v_{A_{r-1}^{+}, m^{\prime}, \mathfrak{c}_{\text {nice }}^{\prime}}\left(a^{\prime}\right) . \tag{3.0.8}
\end{align*}
$$

Example 3.0.7 Let $r=3$, let $a=\sum_{i=1}^{3} a_{i}\left(e_{i}-e_{4}\right) \in \overline{\mathfrak{c}_{\text {nice }}}$ and let $a^{\prime}=\sum_{i=2}^{3} a_{i}\left(e_{i}-\right.$ $\left.e_{4}\right) \in \overline{\mathbf{c}_{\text {nice }}^{\prime}}$. We set $m_{1,2}=1, m_{1,3}=1, m_{1,4}=2, m_{2,3}=1, m_{2,4}=2$ and $m_{3,4}=2$ as in Example 2.5.3. Then we have

$$
v_{A_{3}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)=\frac{1}{360} a_{1}^{3}\left(a_{1}^{3}+6 a_{1}^{2} a_{2}+3 a_{1}^{2} a_{3}+15 a_{1} a_{2}^{2}+15 a_{1} a_{2} a_{3}+10 a_{2}^{3}+30 a_{2}^{2} a_{3}\right) .
$$

We can check that $v=v_{A_{3}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)$ satisfies the system of differential equations as follows:

$$
\left\{\begin{array}{l}
\partial_{3}^{2} v=0 \\
\left(\partial_{2}-\partial_{3}\right) \partial_{2}^{2} v=0 \\
\left(\partial_{1}-\partial_{2}\right)\left(\partial_{1}-\partial_{3}\right) \partial_{1}^{2} v=0
\end{array}\right.
$$

Also, from Proposition 3.0.3, the coefficient of the term $a_{1}^{3} a_{2}^{2} a_{3}$ is $\frac{1}{3!2!1!}=\frac{1}{12}$. When $r=2$,

$$
v_{A_{2}^{+}, m^{\prime}, \mathrm{c}_{\text {nice }}^{\prime}}\left(a^{\prime}\right)=\frac{1}{6} a_{2}^{2}\left(a_{2}+3 a_{3}\right)
$$

Therefore, we have

$$
\begin{aligned}
& \left\{\frac{a_{1}^{3}}{6}+\frac{a_{1}^{4}}{24} D_{1}+\frac{a_{1}^{5}}{120}\left(D_{1}^{2}-D_{2}\right)+\frac{a_{1}^{6}}{720}\left(D_{1}^{3}-2 D_{1} D_{2}+D_{3}\right)\right\} v_{A_{2}^{+}, m^{\prime}, \text {, rice }_{\prime}^{\prime}}\left(a^{\prime}\right) \\
& =\frac{a_{1}^{3} a_{2}^{3}}{36}+\frac{a_{1}^{3} a_{2}^{2} a_{3}}{12}+\frac{a_{1}^{4} a_{2}^{2}}{24}+\frac{a_{1}^{4} a_{2} a_{3}}{24}+\frac{a_{1}^{5} a_{2}}{60}+\frac{a_{1}^{5} a_{3}}{120}+\frac{a_{1}^{6}}{360}=v_{A_{3}^{+}, m, \mathfrak{c}_{\text {nice }}}(a)
\end{aligned}
$$

as in (3.0.8).

Bibliography

[1] W. Baldoni, M. Beck, C. Cochet and M. Vergne, Volume computation for polytopes and partition functions for classical root systems, Discrete Comput. Geom. 35 (2006), 551-595.
[2] W. Baldoni-Silva and M. Vergne, Residues formulae for volumes and Ehrhart polynomials of convex polytopes, math/0103097v1, 2001.
[3] W. Baldoni and M. Vergne, Kostant partitions functions and flow polytopes, Transform. Groups 13(3-4) (2008), 447-469.
[4] M. Beck and S. Robins, Computing the Continuous Discretely, second edition, Undergraduate Texts in Mathematics, Springer, New York, 1997.
[5] C. Benedetti, R. S. González D'León, C. R. H. Hanusa, P. E. Harris, A. Khare, A. H. Morales and M. Yip, A combinatorial model for computing volumes of flow polytopes, Trans. Amer. Math. Soc. 372(5) (2019), 3369-3404.
[6] M. Brion and M. Vergne, Arrangements of hyperplanes I : Rational functions and Jeffrey-Kirwan residue, Ann. Sci. École. Norm. Sup. 32 (1999), 715-741.
[7] S. Corteel, J. S. Kim and K. Mészáros, Flow polytopes with Catalan volumes, C. R. Acad. Sci. Paris. 355(3) (2017), 248-259.
[8] V. Guillemin, E. Lerman and S. Sternberg, Symplectic Fibrations and Multiplicity Diagrams, Cambridge University Press, New York, 1996.
[9] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Springer, New York, 1972.
[10] L. C. Jeffrey and F. C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995), 291-327.
[11] B. V. Lidskii, Kostant function of the root system of A_{n}, Funct. Anal. Appl. 18 (1984), 65-67.
[12] K. Mészáros and A. H. Morales, Volumes and Ehrhart polynomials of flow polytopes, Math. Z. 293 (2019), 1369-1401.
[13] T. Negishi, Y. Sugiyama and T. Takakura, On volume functions of special flow polytopes associated to the root system of type A, The Electronic J. of Combinatorics 27(4) (2020), P4.56.
[14] J. R. Schmidt and A. M. Bincer, The Kostant partition function for simple Lie algebras, J. Math. Phys. 25 (1984), 2367-2373.

Part II

On equivariant index of a generalized Bott manifold

Chapter 4

Introduction

A Bott tower of height n is a sequence:

$$
M_{n} \xrightarrow{\pi_{n}} M_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_{2}} M_{1} \xrightarrow{\pi_{1}} M_{0}=\{\text { a point }\}
$$

of complex manifolds $M_{j}=\mathbb{P}\left(\underline{\mathbb{C}} \oplus E_{j}\right)$, where \mathbb{C} is the trivial line bundle over M_{j-1}, E_{j} is a holomorphic line bundle over $M_{j-1}, \mathbb{P}(\cdot)$ denotes the projectivization, and $\pi_{j}: M_{j} \rightarrow M_{j-1}$ is the projection of the $\mathbb{C} P^{1}$-bundle. We call M_{j} a j-stage Bott manifold. The notion of a Bott tower was introduced by Grossberg and Karshon ([6]).

A generalized Bott tower is a generalization of a Bott tower. A generalized Bott tower of height m is a sequence:

$$
B_{m} \xrightarrow{\pi_{m}} B_{m-1} \xrightarrow{\pi_{m}-1} \cdots \xrightarrow{\pi_{2}} B_{1} \xrightarrow{\pi_{1}} B_{0}=\{\text { a point }\},
$$

of complex manifolds $B_{j}=\mathbb{P}\left(\underline{\mathbb{C}} \oplus E_{j}^{(1)} \oplus \cdots \oplus E_{j}^{\left(n_{j}\right)}\right)$, where \mathbb{C} is the trivial line bundle over $B_{j-1}, E_{j}^{(k)}$ is a holomorphic line bundle over B_{j-1} for $k=1, \ldots, n_{j}$. We call B_{j} a j-stage generalized Bott manifold. A generalized Bott tower has been studied from various points of view (see, e.g., $[2,3,8]$). Generalized Bott manifolds are a certain class of toric manifolds, so it is interesting to investigate the specific properties of generalized Bott towers.

In [6], Grossberg and Karshon showed the multiplicity function of the equivariant index (see §5.4) for a holomorphic line bundle over a Bott manifold is given by the density function of a twisted cube, which is determined by the structure of the Bott manifold and the line bundle over it. From this, they derived a Demazure-type character formula.

The purpose of this part is to generalize the results in [6] to generalized Bott manifolds. We generalize the twisted cube, and we call it the generalized twisted cube. It is a special case of twisted polytope introduced by Karshon and Tolman [9] for the presymplectic toric manifold, and it is a special case of multi-polytope introduced by Hattori and Masuda [7] for the torus manifold. We show the multiplicity function of the equivariant index for a holomorphic line bundle over the generalized Bott manifold is given by the density function of the associated generalized twisted cube. From this, we derive a Demazure-type character formula. In order to state the main results, we give some notation. Let \mathbf{L} be a holomorphic
line bundle over a generalized Bott manifold B_{m}, which is constructed from integers $\left\{\ell_{i}\right\}$ and $\left\{c_{i, j}^{(k)}\right\}$ (see $\S 5.1$). Let $N=\sum_{j=1}^{m} n_{j}$, and let $T^{N}=S^{1} \times \cdots \times S^{1}$. We consider the action of T^{N} on B_{m} as follows:

$$
\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{m}\right) \cdot\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right]=\left[\mathbf{t}_{1} \mathbf{z}_{1}, \ldots, \mathbf{t}_{m} \mathbf{z}_{m}\right]
$$

where $\mathbf{t}_{i}=\left(t_{i, 1}, \ldots, t_{i, n_{i}}\right), \mathbf{z}_{i}=\left(z_{i, 0}, \ldots, z_{i, n_{i}}\right), \mathbf{t}_{i} \mathbf{z}_{i}=\left(z_{i, 0}, t_{i, 1} z_{i, 1}, \ldots, t_{i, n_{i}} z_{i, n_{i}}\right)$ for $i=$ $1, \ldots, m$. Also we consider the action of $T=T^{N} \times S^{1}$ on \mathbf{L} as follows:

$$
\begin{equation*}
\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{m}, t_{m+1}\right) \cdot\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}, v\right]=\left[\mathbf{t}_{1} \mathbf{z}_{1}, \ldots, \mathbf{t}_{m} \mathbf{z}_{m}, t_{m+1} v\right] . \tag{4.0.1}
\end{equation*}
$$

We define the generalized twisted cube as follows. It is defined to be the set of $x=$ $\left(x_{1,1}, \ldots, x_{m, n_{m}}\right) \in \mathbb{R}^{N}$ which satisfies

$$
\begin{aligned}
& A_{i}(x) \leq \sum_{k=1}^{n_{i}} x_{i, k} \leq 0, x_{i, k} \leq 0 \quad\left(1 \leq k \leq n_{i}\right) \\
& \text { or } 0<\sum_{k=1}^{n_{i}} x_{i, k}<A_{i}(x), x_{i, k}>0 \quad\left(1 \leq k \leq n_{i}\right)
\end{aligned}
$$

for $1 \leq i \leq m$, where

$$
A_{i}(x)= \begin{cases}-\ell_{m} & (i=m) \\ -\left(\ell_{i}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} c_{i, j}^{(k)} x_{j, k}\right) & (1 \leq i \leq m-1)\end{cases}
$$

We denote the generalized twisted cube by C. We also define $\operatorname{sgn}\left(x_{i, k}\right)=1$ for $x_{i, k}>0$ and $\operatorname{sgn}\left(x_{i, k}\right)=-1$ for $x_{i, k} \leq 0$. The density function of the generalized twisted cube is defined to be $\rho(x)=(-1)^{N} \prod_{1 \leq i \leq m, 1 \leq k \leq n_{i}} \operatorname{sgn}\left(x_{i, k}\right)$ when $x \in C$ and 0 elsewhere.

Let \mathfrak{t} be the Lie algebra of \bar{T} and let \mathfrak{t}^{*} be its dual space. Let $\ell^{*} \subset i \mathfrak{t}^{*}$ be the integral weight lattice and let mult : $\ell^{*} \rightarrow \mathbb{Z}$ be the multiplicity function of the equivariant index. The first main result of this part is the following:

Theorem 4.0.1 Fix integers $\left\{c_{i, j}^{(k)}\right\}$ and $\left\{\ell_{j}\right\}$. Let $\mathbf{L} \rightarrow B_{m}$ be the corresponding line bundle over a generalized Bott manifold. Let $\rho: \mathbb{R}^{N} \rightarrow\{-1,0,1\}$ be the density function of the generalized twisted cube C which is determined by these integers. Consider the torus action of $T=T^{N} \times S^{1}$ as in (4.0.1). Then the multiplicity function for $\ell^{*} \cong \mathbb{Z}^{N} \times \mathbb{Z}$ is given by

$$
\operatorname{mult}(x, k)= \begin{cases}\rho(x) & (k=1) \\ 0 & (k \neq 1)\end{cases}
$$

Karshon and Tolman found a toric manifold for which the multiplicities of the equivariant index are $0,-1$, or $-2([9$, Example 6.7]). A generalized Bott manifold is different from this case by Theorem 4.0.1.

Next, we give our character formula. Let $\left\{e_{1,1}, \ldots, e_{m, n_{m}}, e_{m+1}\right\}$ be the standard basis in $\mathbb{R}^{N+1}, x_{i}=\left(x_{i, 1}, \ldots, x_{i, n_{i}}\right)$, and $e_{i}=\left(e_{i, 1}, \ldots, e_{i, n_{i}}\right)$. Let $\Delta_{n, r}^{-}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}_{\leq 0}^{n} \mid\right.$ $\left.z_{1}+\cdots+z_{n}=-r\right\}$, and let $\Delta_{n, r}^{+}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}_{>0}^{n} \mid z_{1}+\cdots+z_{n}=r-1\right\}$. Let $\left\langle x_{i}, e_{i}\right\rangle=x_{i, 1} e_{i, 1}+\cdots+x_{i, n_{i}} e_{i, n_{i}}$. For every integral weight $\mu \in \ell^{*}$ we have a homomorphism $\lambda^{\mu}: T \rightarrow S^{1}$. We denote the integral combinations of these λ^{μ} 's by $\mathbb{Z}[T]$. Then the operators $D_{i}: \mathbb{Z}[T] \rightarrow \mathbb{Z}[T]$ are defined using $c_{i, j}^{(k)}$ and ℓ_{j} in the following way:

$$
D_{i}\left(\lambda^{\mu}\right)= \begin{cases}\sum_{0 \leq r \leq k_{i}} \sum_{x_{i} \in \Delta_{n_{i}}^{-}, r} \lambda^{\mu+\left\langle x_{i}, e_{i}\right\rangle} & \text { if } k_{i} \geq 0 \\ 0 & \text { if }-n_{i} \leq k_{i} \leq-1 \\ \sum_{n_{i}+1 \leq r \leq-k_{i}} \sum_{x_{i} \in \Delta_{n_{i}, r}^{+}}(-1)^{n_{i}} \lambda^{\mu+\left\langle x_{i}, e_{i}\right\rangle} & \text { if } k_{i} \leq-n_{i}-1,\end{cases}
$$

where the functions k_{i} are defined as follows: if $\mu=e_{m+1}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} x_{j, k} e_{j, k}$, then $k_{i}(\mu)=\ell_{i}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} c_{i, j}^{(k)} x_{j, k}$. From Theorem 4.0.1, we obtain the following theorem:
Theorem 4.0.2 Consider the action of the torus T on $\mathbf{L} \rightarrow B_{m}$ as in (4.0.1). Denote the $(N+1)$-th component of the standard basis in \mathbb{R}^{N+1} by e_{m+1}. Then the character is given by the following element of $\mathbb{Z}[T]$:

$$
\chi=D_{1} \cdots D_{m}\left(\lambda^{e_{m+1}}\right) .
$$

This is a Demazure-type character formula. On the other hand, the character is also given by the localization formula with respect to the action of T ([7, Corollary 7.4]). We compare our formula with the localization formula (see Remark 6.2.7).

This part is organized as follows. In Chapter 5, we recall the generalized Bott towers and the equivariant index, and we give the definition of generalized twisted cubes. In Chapter 6, we prove the main theorems.

Chapter 5

Preliminaries

In this chapter, we set up the tools to prove the main theorems.

5.1 Generalized Bott manifolds

Definition 5.1.1 ([2]) A generalized Bott tower of height m is a sequence:

$$
B_{m} \xrightarrow{\pi_{m}} B_{m-1} \xrightarrow{\pi_{m-1}} \cdots \xrightarrow{\pi_{2}} B_{1} \xrightarrow{\pi_{1}} B_{0}=\{\text { a point }\},
$$

of manifolds $B_{j}=\mathbb{P}\left(\underline{\mathbb{C}} \oplus E_{j}^{(1)} \oplus \cdots \oplus E_{j}^{\left(n_{j}\right)}\right)$, where $\underline{\mathbb{C}}$ is the trivial line bundle over $B_{j-1}, E_{j}^{(k)}$ is a holomorphic line bundle over B_{j-1} for $k=1, \ldots n_{j}$, and $\mathbb{P}(\cdot)$ denotes the projectivization. We call B_{j} a j-stage generalized Bott manifold.

The construction of the generalized Bott tower is as follows. A 1-step generalized Bott tower can be written as $B_{1}=\mathbb{C} P^{n_{1}}=\left(\mathbb{C}^{n_{1}+1}\right)^{\times} / \mathbb{C}^{\times}$, where \mathbb{C}^{\times}acts diagonally. We construct a line bundle over B_{1} by $E_{2}^{(k)}=\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times_{\mathbb{C}^{\times}} \mathbb{C}$ for $k=1, \ldots, n_{2}$, where \mathbb{C}^{\times} acts on \mathbb{C} by $a: v \mapsto a^{-c_{k}} v$ for some integer c_{k}. In $E_{2}^{(k)}$ we have $\left[z_{1,0}, \ldots, z_{1, n_{1}}, v\right]=$ $\left[z_{1,0} a, \ldots, z_{1, n_{1}} a, a^{c_{k}} v\right]$ for all $a \in \mathbb{C}^{\times}$. A 2-step generalized Bott tower $B_{2}=\mathbb{P}\left(\mathbb{C} \oplus E_{2}^{(1)} \oplus\right.$ $\left.\cdots \oplus E_{2}^{\left(n_{2}\right)}\right)$ can be written as $B_{2}=\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times\left(\mathbb{C}^{n_{2}+1}\right)^{\times}\right) / G$, where the right action of $G=\left(\mathbb{C}^{\times}\right)^{2}$ is given by

$$
\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \cdot\left(a_{1}, a_{2}\right)=\left(z_{1,0} a_{1}, z_{1,1} a_{1}, \ldots, z_{1, n_{1}} a_{1}, z_{2,0} a_{2}, a_{1}^{c_{1}} z_{2,1} a_{2}, \ldots, a_{1}^{c_{n_{2}}} z_{2, n_{2}} a_{2}\right)
$$

where $\mathbf{z}_{j}=\left(z_{j, 0}, z_{j, 1}, \ldots, z_{j, n_{j}}\right)$ for $j=1,2$.
We can construct higher generalized Bott towers in a similar way. In this way we get an m-step generalized Bott manifold $B_{m}=\mathbb{P}\left(\mathbb{C} \oplus E_{m}^{(1)} \oplus \cdots \oplus E_{m}^{\left(n_{m}\right)}\right)$ from any collection of integers $\left\{c_{i, j}^{(k)}\right\}$:

$$
B_{m}=\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}\right) / G
$$

where the right action of $G=\left(\mathbb{C}^{\times}\right)^{m}$ is given by

$$
\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right) \cdot \mathbf{a}=\left(\mathbf{z}_{1}^{\prime}, \mathbf{z}_{2}^{\prime}, \ldots, \mathbf{z}_{m}^{\prime}\right),
$$

where $\mathbf{z}_{i}=\left(z_{i, 0}, \ldots, z_{i, n_{i}}\right)$ for $i=1, \ldots, m, \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$,
$\mathbf{z}_{1}^{\prime}=\left(z_{1,0} a_{1}, z_{1,1} a_{1}, \ldots, z_{1, n_{1}} a_{1}\right)$ and $\mathbf{z}_{j}^{\prime}=\left(z_{j, 0} a_{j}, a_{1}^{c_{1, j}^{(1)}} \cdots a_{j-1}^{c_{j-1, j}^{(1)}} z_{j, 1} a_{j}, \ldots, a_{1}^{c_{1, j}^{\left(n_{j}\right)}} \cdots a_{j-1}^{c_{j-1, j}^{\left(n_{j}\right)}} z_{j, n_{j}} a_{j}\right)$ for $j=2, \ldots, m$. We can construct a line bundle over B_{m} from the integers $\left(\ell_{1}, \ldots, \ell_{m}\right)$ by

$$
\mathbf{L}=\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}\right) \times_{G} \mathbb{C}
$$

where $G=\left(\mathbb{C}^{\times}\right)^{m}$ acts by

$$
\begin{equation*}
\left(\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right), v\right) \cdot \mathbf{a}=\left(\mathbf{z}_{1}^{\prime}, \mathbf{z}_{2}^{\prime}, \ldots, \mathbf{z}_{m}^{\prime}, a_{1}^{\ell_{1}} \cdots a_{m}^{\ell_{m}} v\right) \tag{5.1.1}
\end{equation*}
$$

5.2 Torus action on generalized Bott towers

Let $N=\sum_{j=1}^{m} n_{j}$ and let $T^{N}=S^{1} \times \cdots \times S^{1}$. We consider the action of T^{N} on B_{m} as follows:

$$
\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{m}\right) \cdot\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right]=\left[\mathbf{t}_{1} \cdot \mathbf{z}_{1}, \ldots, \mathbf{t}_{m} \cdot \mathbf{z}_{m}\right]
$$

where $\mathbf{t}_{i}=\left(t_{i, 1}, \ldots, t_{i, n_{i}}\right)$ and $\mathbf{t}_{i} \cdot \mathbf{z}_{i}=\left(z_{i, 0}, t_{i, 1} z_{i, 1}, \ldots, t_{i, n_{i}} z_{i, n_{i}}\right)$ for $i=1, \ldots, m$. Also we consider the action of $T=T^{N} \times S^{1}$ on \mathbf{L} as follows:

$$
\begin{equation*}
\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{m}, t_{m+1}\right) \cdot\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}, v\right]=\left[\mathbf{t}_{1} \cdot \mathbf{z}_{1}, \ldots, \mathbf{t}_{m} \cdot \mathbf{z}_{m}, t_{m+1} v\right] . \tag{5.2.1}
\end{equation*}
$$

5.3 Generalized twisted cubes

Definition 5.3.1 A generalized twisted cube C is defined to be the set of $x=\left(x_{1,1}, \ldots, x_{m, n_{m}}\right)$ $\in \mathbb{R}^{N}$ which satisfies

$$
\begin{align*}
& A_{i}(x) \leq \sum_{k=1}^{n_{i}} x_{i, k} \leq 0, x_{i, k} \leq 0 \quad\left(1 \leq k \leq n_{i}\right) \\
& \text { or } 0<\sum_{k=1}^{n_{i}} x_{i, k}<A_{i}(x), x_{i, k}>0 \quad\left(1 \leq k \leq n_{i}\right), \tag{5.3.1}
\end{align*}
$$

for all $1 \leq i \leq m$, where

$$
A_{i}(x)= \begin{cases}-\ell_{m} & (i=m) \\ -\left(\ell_{i}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} c_{i, j}^{(k)} x_{j, k}\right) & (1 \leq i \leq m-1)\end{cases}
$$

Remark 5.3.2 (i) The generalized twisted cube is a special case of multi-polytope defined in [7]. In particular, it is a special case of twisted polytope defined in [9].
(ii) When $n_{i}=1$ for all $1 \leq i \leq m$, the generalized twisted cube is the twisted cube given in [6, (2.21)].

Definition 5.3.3 We define $\operatorname{sgn}\left(x_{i, k}\right)=1$ for $x_{i, k}>0$ and $\operatorname{sgn}\left(x_{i, k}\right)=-1$ for $x_{i, k} \leq$ 0 . The density function of the generalized twisted cube is then defined to be $\rho(x)=$ $(-1)^{N} \prod_{1 \leq i \leq m, 1 \leq k \leq n_{i}} \operatorname{sgn}\left(x_{i, k}\right)$ when $x \in C$ and 0 elsewhere.

Example 5.3.4 Suppose that $m=2, n_{1}=1, n_{2}=2, \ell_{1}=1$, and $\ell_{2}=2$. We set $c_{1,2}^{(1)}=2$ and $c_{1,2}^{(2)}=-1$. Then the generalized twisted cube is the set of $x=\left(x_{1,1}, x_{2,1}, x_{2,2}\right)$ which satisfies

- $-2 \leq x_{2,1}+x_{2,2} \leq 0, x_{2,1}, x_{2,2} \leq 0$,
- $-1-2 x_{2,1}+x_{2,2} \leq x_{1,1} \leq 0$ or $0<x_{1,1}<-1-2 x_{2,1}+x_{2,2}$.

In Figure 1, the black dots represent the lattice points of the sign +1 and the white dots represent the sign -1 .

Figure 1
Example 5.3.5 Suppose that $m=2, n_{1}=2, n_{2}=1, \ell_{1}=2$, and $\ell_{2}=-6$. We set $c_{1,2}^{(1)}=-1$. Then the generalized twisted cube is the set of $x=\left(x_{1,1}, x_{1,2}, x_{2,1}\right)$ which satisfies

- $0<x_{2,1}<6$,
- $-2+x_{2,1} \leq x_{1,1}+x_{1,2} \leq 0, x_{1,1}, x_{1,2} \leq 0$ or $0<x_{1,1}+x_{1,2}<-2+x_{2,1}, x_{1,1}, x_{1,2}>0$.

In Figure 2, the white dots represent the sign -1 .

Figure 2
Example 5.3.6 Suppose that $m=2, n_{1}=n_{2}=2, \ell_{1}=1$, and $\ell_{2}=2$. We set $c_{1,2}^{(1)}=2$ and $c_{1,2}^{(2)}=-1$. Then the generalized twisted cube is the set of $x=\left(x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}\right)$ which satisfies

- $-2 \leq x_{2,1}+x_{2,2} \leq 0, x_{2,1}, x_{2,2} \leq 0$,
- $-1-2 x_{2,1}+x_{2,2} \leq x_{1,1}+x_{1,2} \leq 0, x_{1,1}, x_{1,2} \leq 0$
or $0<x_{1,1}+x_{1,2}<-1-2 x_{2,1}+x_{2,2}, x_{1,1}, x_{1,2}>0$.
The lattice points in the generalized twisted cube represent the sign -1 .

5.4 Equivariant index

Let \mathbf{L} be a holomorphic line bundle over a generalized Bott manifold B_{m} with the action of the torus T as in (5.2.1). Let $\mathcal{O}_{\mathbf{L}}$ be the sheaf of holomorphic sections. The equivariant index of a generalized Bott manifold is the formal sum of representation of T :

$$
\operatorname{index}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)=\sum(-1)^{i} H^{i}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)
$$

The character of the equivariant index is the function $\chi: T \rightarrow \mathbb{C}$ which is given by $\chi=\sum(-1)^{i} \chi^{i}$ where $\chi^{i}(a)=\operatorname{trace}\left\{a: H^{i}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right) \rightarrow H^{i}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)\right\}$ for $a \in T$. Let \mathfrak{t} be the Lie algebra of T and let \mathfrak{t}^{*} be its dual space. Every μ in the integral weight lattice $\ell^{*} \subset i t^{*}$ defines a homomorphism $\lambda^{\mu}: T \rightarrow S^{1}$. We can write $\chi=\sum_{\mu \in \ell^{*}} m_{\mu} \lambda^{\mu}$. The coefficients are given by a function mult : $\ell^{*} \rightarrow \mathbb{Z}$, sending $\mu \mapsto m_{\mu}$, called the multiplicity function for the equivariant index.

Chapter 6

Main theorems of Part II

6.1 Multiplicity function of the equivariant index

We will show that the multiplicity function of the equivariant index of a generalized Bott manifold is given by the density function of a generalized twisted cube C. In particular, all the weights occur with a multiplicity $-1,0$, or 1 .

Theorem 6.1.1 Fix integers $\left\{c_{i, j}^{(k)}\right\}$ and $\left\{\ell_{j}\right\}$. Let $\mathbf{L} \rightarrow B_{m}$ be the corresponding line bundle over a generalized Bott manifold. Let $\rho: \mathbb{R}^{N} \rightarrow\{-1,0,1\}$ be the density function of the generalized twisted cube C which is determined by these integers as in (5.3.1). Consider the torus action of $T=T^{N} \times S^{1}$ as in (5.2.1). Then the multiplicity function for $\ell^{*} \cong \mathbb{Z}^{N} \times \mathbb{Z}$ is given by

$$
\operatorname{mult}(x, k)= \begin{cases}\rho(x) & (k=1) \\ 0 & (k \neq 1)\end{cases}
$$

Proof ; We compute $H^{*}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)$. Take the covering $\tilde{\mathcal{U}}=\left\{U_{r_{1}} \times \cdots \times U_{r_{m}}\right\}$ of $\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times$ $\cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}$for $r_{1}, \ldots, r_{m} \in\left\{0,1, \ldots, n_{\ell}\right\}(\ell=1, \ldots, m)$, where $U_{r_{j}}=\underbrace{\mathbb{C} \times \cdots \times \mathbb{C}}_{r_{j}} \times \mathbb{C}^{\times} \times$ $\underbrace{\mathbb{C} \times \cdots \times \mathbb{C}}_{n_{\ell}-r_{j}}$. This descends to the covering \mathcal{U} of B_{m}; every intersection of sets in \mathcal{U} is isomorphic to a product of \mathbb{C} 's and \mathbb{C}^{\times}'s. The coverings $\tilde{\mathcal{U}}$ and \mathcal{U} are the Leray coverings ([5]).

Let \mathcal{O} be the sheaf of holomorphic functions, and let $G=\left(\mathbb{C}^{\times}\right)^{m}$. Since holomorphic sections of $\mathcal{O}_{\mathbf{L}}$ are given by holomorphic sections of \mathcal{O} which are G-invariant with respect to the action (5.1.1) $([9]), H^{*}\left(\mathcal{U}, \mathcal{O}_{\mathbf{L}}\right)$ is isomorphic to the G-invariant part of $H^{*}(\tilde{\mathcal{U}}, \mathcal{O})$. By the Leray theorem, $H^{*}\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)$ is isomorphic to the G-invariant part of $H^{*}\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times\right.$ $\left.\cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}, \mathcal{O}\right)$.

In order to compute $H^{*}\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}, \mathcal{O}\right)$, we compute $H^{*}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)$. Let $\mathcal{U}^{\prime}=\left\{U_{0}, U_{1}, \ldots, U_{n}\right\}$ be the covering of $\left(\mathbb{C}^{n+1}\right)^{\times}$, let $j_{0}, j_{1}, \ldots, j_{k} \in\{0,1, \ldots, n\}$ for
$k=0,1, \ldots, n$ and let $U_{j_{0} j_{1} \cdots j_{k}}=U_{j_{0}} \cap U_{j_{1}} \cap \cdots \cap U_{j_{k}}$. Let $I=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n+1}$. The holomorphic functions on $U_{j_{0} j_{1} \cdots j_{k}}$ are given by

$$
\Gamma_{\mathrm{hol}}\left(U_{j_{0} j_{1} \cdots j_{k}}\right)=\left\{\sum_{I \in \mathbb{Z}^{n+1}, i_{\ell} \geq 0\left(\ell \neq j_{0}, j_{1}, \ldots, j_{k}\right)} a_{I} z_{0}^{i_{0}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}\right\}
$$

Consider the Čech cochain complex

$$
0 \rightarrow \check{C}^{0}\left(\mathcal{U}^{\prime}, \mathcal{O}\right) \xrightarrow{\delta^{0}} \check{C}^{1}\left(\mathcal{U}^{\prime}, \mathcal{O}\right) \xrightarrow{\delta^{1}} \cdots \xrightarrow{\delta^{n-1}} \check{C}^{n}\left(\mathcal{U}^{\prime}, \mathcal{O}\right) \xrightarrow{\delta^{n}} 0
$$

where $\check{C}^{i}\left(\mathcal{U}^{\prime}, \mathcal{O}\right)=\oplus \Gamma_{\text {hol }}\left(U_{j_{0} j_{1} \ldots j_{i}}\right)(i=0, \ldots, n)$. The map $\delta^{p}: \check{C}^{p}\left(\mathcal{U}^{\prime}, \mathcal{O}\right) \rightarrow \check{C}^{p+1}\left(\mathcal{U}^{\prime}, \mathcal{O}\right)$ is given by $\left\{f_{j_{0} j_{1} \cdots j_{p}}\right\} \mapsto\left\{g_{j_{0} j_{1} \cdots j_{p+1}}\right\}, g_{j_{0} j_{1} \cdots j_{p+1}}=\sum(-1)^{k} f_{j_{0} j_{1} \cdots \hat{j}_{k} \cdots j_{p+1}}$. Recall that $H^{0}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)=\operatorname{Ker} \delta^{0}$, and $H^{n}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)=\operatorname{Coker} \delta^{n-1}$. The torus $T^{n+1}=\left(S^{1}\right)^{n+1}$ acts on the holomorphic functions by $\left(\left(t_{0}, \ldots, t_{n}\right) \cdot f\right)\left(z_{0}, \ldots, z_{n}\right)=f\left(t_{0}^{-1} z_{0}, \ldots, t_{n}^{-1} z_{n}\right)$. This action descends to the cohomology. The corresponding weight spaces for the weight $I \in \mathbb{Z}^{n+1}$ are

$$
\begin{aligned}
H^{0}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I} & = \begin{cases}\operatorname{span}\left(z_{0}^{-i_{0}} \cdots z_{n}^{-i_{n}}\right) & \left(I \in \mathbb{Z}_{\leq 0}^{n+1}\right) \\
0 & \text { otherwise }\end{cases} \\
H^{n}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I} & = \begin{cases}\operatorname{span}\left(z_{0}^{-i_{0}} \cdots z_{n}^{-i_{n}}\right) & \left(I \in \mathbb{Z}_{>0}^{n+1}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

We now prove $H^{q}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)=0$ for $1 \leq q \leq n-1$. Let Δ be the fan of $\left(\mathbb{C}^{n+1}\right)^{\times}$, and let $|\Delta|=\cup_{\sigma \in \Delta} \sigma$ be the support of Δ. Let

$$
Z(I):=\{v \in|\Delta| ;\langle I, v\rangle \leq \varphi(v)\}
$$

where φ is the support function. From [4],

$$
H^{q}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I}=H^{q}(|\Delta|,|\Delta| \backslash Z(I) ; \mathbb{C})
$$

Since \mathcal{O} is the sheaf of holomorphic function, $\varphi(v)=0$ for all $v \in|\Delta|$. In the case that $i_{j} \leq 0$ for all j, since $|\Delta|$ is contractible,

$$
H^{q}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I}=0(q \geq 1)
$$

In the case that $i_{j}>0$ for all $j, Z(I)=\{0\}$. Since $|\Delta| \backslash\{0\}$ is homotopic to S^{n-1},

$$
H^{q}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I}=0(q \neq n)
$$

In other case, since $|\Delta| \backslash Z(I)$ is path-connected and contractible,

$$
H^{q}\left(\left(\mathbb{C}^{n+1}\right)^{\times}, \mathcal{O}\right)_{I}=0
$$

for all q.
We now compute $H^{*}\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}, \mathcal{O}\right)$. Consider the natural action of $T^{N+m}=\left(S^{1}\right)^{N+m}$ on the holomorphic function. The weights are multi-indices $I^{\prime} \in \mathbb{Z}^{N+m}$; we write $I^{\prime}=\left(\mathbf{i}_{1}^{\prime}, \ldots, \mathbf{i}_{m}^{\prime}\right)$, where $\mathbf{i}_{j}^{\prime}=\left(i_{j, 0}, i_{j, 1}, \ldots, i_{j, n_{j}}\right)$ for $j=1, \ldots, m$. From the cohomology of $\left(\mathbb{C}^{n+1}\right)^{\times}$that we have computed and from the Künneth formula ([1]), it follows that

$$
H^{q}\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}, \mathcal{O}\right)_{I^{\prime}}=\left\{\begin{array}{l}
\operatorname{span}\left(z_{1,0}^{-i_{1,0}} z_{1,1}^{-i_{1,1}} \cdots z_{m, n_{m}}^{-i_{m, n}}\right) \\
0
\end{array}\right.
$$

The former occurs if for all ℓ we have $\operatorname{sgn}\left(i_{\ell, 0}\right)=\operatorname{sgn}\left(i_{\ell, 1}\right)=\cdots=\operatorname{sgn}\left(i_{\ell, n_{\ell}}\right)=: \varepsilon_{\ell}$, here $q=\sum_{\left\{\ell \mid \varepsilon_{\ell}=1,1 \leq \ell \leq m\right\}} n_{\ell}$, and $q=0$ when $\varepsilon_{\ell}=-1$ for all ℓ. In particular, $(-1)^{q}=$ $(-1)^{N} \prod_{1 \leq \ell \leq m, 1 \leq p \leq n_{\ell}} \operatorname{sgn}\left(i_{\ell, p}\right)$.

The action (5.1.1) induces an action on functions given by

$$
\begin{aligned}
& \left(a_{k} f\right)\left(z_{1,0}, \ldots, z_{m, n_{m}}\right)=a_{k}^{\ell_{k}} f\left(z_{1,0}, \ldots, z_{k-1, n_{k-1}}, z_{k, 0} a_{k}^{-1}, z_{k, 1} a_{k}^{-1}, \ldots, z_{k, n_{k}} a_{k}^{-1}\right. \\
& \left.\ldots, z_{\ell, 0}, a_{k}^{-c_{k, \ell}^{(1)}} z_{\ell, 1}, \ldots, a_{k}^{-c_{k, \ell}^{\left(n_{\ell}\right)}} z_{\ell, n_{\ell}}, \ldots\right) .
\end{aligned}
$$

The monomial $z_{1,0}^{-i_{1,0}} z_{1,1}^{-i_{1,1}} \cdots z_{m, n_{m}}^{-i_{m, n}}$ is then a weight vector with a weight whose k-th coordinate is $\ell_{k}+i_{k, 0}+\cdots+i_{k, n_{k}}+\sum_{\ell=k+1}^{m} \sum_{p=1}^{n_{\ell}} c_{k, \ell}^{(p)} i_{\ell, p}$. Thus the G-invariant part of $H^{*}\left(\left(\mathbb{C}^{n_{1}+1}\right)^{\times} \times \cdots \times\left(\mathbb{C}^{n_{m}+1}\right)^{\times}, \mathcal{O}\right)$ consists of those monomials $z_{1,0}^{-i_{1,0}} z_{1,1}^{-i_{1,1}} \cdots z_{m, n_{m}}^{-i_{m, n}}$ for which

$$
\begin{align*}
\ell_{1}+i_{1,0}+\cdots+i_{1, n_{1}}+\sum_{\ell=2}^{m} \sum_{p=1}^{n_{\ell}} c_{1, \ell}^{(p)} i_{\ell, p} & =0 \\
\ell_{2}+i_{2,0}+\cdots+i_{2, n_{2}}+\sum_{\ell=3}^{m} \sum_{p=1}^{n_{\ell}} c_{2, \ell}^{(p)} i_{\ell, p} & =0 \tag{6.1.1}\\
\vdots & \\
\ell_{m}+i_{m, 0}+\cdots+i_{m, n_{m}} & =0
\end{align*}
$$

The action (5.2.1) induces a T action on the functions given by

$$
\begin{aligned}
& \left(\left(t_{1,1}, \ldots, t_{m, n_{m}}, t_{m+1}\right) \cdot f\right)\left(z_{1,0}, \ldots, z_{m, n_{m}}\right) \\
& =t_{m+1} f\left(z_{1,0}, t_{1,1}^{-1} z_{1,1}, \ldots, z_{m, 0}, t_{m, 1}^{-1} z_{m, 1}, \ldots, t_{m, n_{m}}^{-1} z_{m, n_{m}}\right)
\end{aligned}
$$

The weight of the monomial $z_{1,0}^{-i_{1,0}} z_{1,1}^{-i_{1,1}} \cdots z_{m, n_{m}}^{-i_{m, n_{m}}}$ with respect to this T action is $\left(\mathbf{i}_{1}, \mathbf{i}_{2}, \ldots, \mathbf{i}_{m}, 1\right)$, where $\mathbf{i}_{j}=\left(i_{j, 1}, \ldots, i_{j, n_{j}}\right)$ for $j=1, \ldots, m$. Thus the index of $\left(B_{m}, \mathcal{O}_{\mathbf{L}}\right)$ is given by the set of $x=\left(x_{1,1}, \ldots, x_{m, n_{m}}, 1\right)=\left(i_{1,1}, \ldots, i_{m, n_{m}}, 1\right)$ for which there exist $\left(i_{1,0}, \ldots, i_{m, 0}\right)$ such that (6.1.1) is satisfied and such that $\operatorname{sgn}\left(i_{\ell, 0}\right)=\operatorname{sgn}\left(i_{\ell, 1}\right)=\cdots=$ $\operatorname{sgn}\left(i_{\ell, n_{\ell}}\right)$ for all ℓ. This is exactly the set (5.3.1). Therefore the multiplicity of the equivariant index is $(-1)^{N} \prod_{1 \leq \ell \leq m, 1 \leq p \leq n_{\ell}} \operatorname{sgn}\left(i_{\ell, p}\right)=(-1)^{N} \prod_{1 \leq \ell \leq m, 1 \leq p \leq n_{\ell}} \operatorname{sgn}\left(x_{\ell, p}\right)=\rho(x)$.

6.2 Character formula for the equivariant index

In the following theorem we give a formula for the character $\chi: T \rightarrow \mathbb{C}$ of the equivariant index of a generalized Bott manifold. For every integral weight $\mu \in \ell^{*}$ we have a homomorphism $\lambda^{\mu}: T \rightarrow S^{1}$. We denote the integral combinations of these λ^{μ} 's by $\mathbb{Z}[T]$. Then $\chi \in \mathbb{Z}[T]$ is given by $\chi=\sum_{\mu \in \ell^{*}} m_{\mu} \lambda^{\mu}$ where $m_{\mu}=\operatorname{mult}(\mu)$.

Definition 6.2.1 Let $\left\{e_{1,1}, \ldots, e_{m, n_{m}}, e_{m+1}\right\}$ be the standard basis in $\mathbb{R}^{N+1}, x_{i}=\left(x_{i, 1}, \ldots\right.$, $\left.x_{i, n_{i}}\right)$ and $e_{i}=\left(e_{i, 1}, \ldots, e_{i, n_{i}}\right)$. Let $\Delta_{n, r}^{-}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}_{\leq 0}^{n} \mid z_{1}+\cdots+z_{n}=-r\right\}$, and let $\Delta_{n, r}^{+}=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Z}_{>0}^{n} \mid z_{1}+\cdots+z_{n}=r-1\right\}$. Let $\left\langle x_{i}, e_{i}\right\rangle=x_{i, 1} e_{i, 1}+\cdots+$ $x_{i, n_{i}} e_{i, n_{i}}$. Then the operators $D_{i}: \mathbb{Z}[T] \rightarrow \mathbb{Z}[T]$ are defined using $c_{i, j}^{(k)}$ and ℓ_{j} in the following way:

$$
D_{i}\left(\lambda^{\mu}\right)= \begin{cases}\sum_{0 \leq r \leq k_{i}} \sum_{x_{i} \in \Delta_{n_{i}}^{-}, r} \lambda^{\mu+\left\langle x_{i}, e_{i}\right\rangle} & \text { if } k_{i} \geq 0 \\ 0 & \text { if }-n_{i} \leq k_{i} \leq-1 \\ \sum_{n_{i}+1 \leq r \leq-k_{i}} \sum_{x_{i} \in \Delta_{n_{i}, r}^{+}}(-1)^{n_{i}} \lambda^{\mu+\left\langle x_{i}, e_{i}\right\rangle} & \text { if } k_{i} \leq-n_{i}-1,\end{cases}
$$

where the functions k_{i} are defined as follows: if $\mu=e_{m+1}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} x_{j, k} e_{j, k}$, then $k_{i}(\mu)=\ell_{i}+\sum_{j=i+1}^{m} \sum_{k=1}^{n_{j}} c_{i, j}^{(k)} x_{j, k}$.

From Theorem 6.1.1, we immediately obtain the following theorem.
Theorem 6.2.2 Consider the action of the torus T on $\mathbf{L} \rightarrow B_{m}$ as in (5.2.1). Denote the $(N+1)$-th component of the standard basis in \mathbb{R}^{N+1} by e_{m+1}. Then the character is given by the following element of $\mathbb{Z}[T]$:

$$
\chi=D_{1} \cdots D_{m}\left(\lambda^{e_{m+1}}\right) .
$$

Remark 6.2.3 When $n_{i}=1$ for all i, the operator D_{i} is given by

$$
D_{i}\left(\lambda^{\mu}\right)= \begin{cases}\lambda^{\mu}+\lambda^{\mu-e_{i, 1}}+\cdots+\lambda^{\mu-k_{i} e_{i, 1}} & \text { if } k_{i} \geq 0 \\ 0 & \text { if } k_{i}=-1 \\ -\lambda^{\mu+e_{i, 1}}-\lambda^{\mu+2 e_{i, 1}}-\cdots-\lambda^{\mu-\left(k_{i}+1\right) e_{i, 1}} & \text { if } k_{i} \leq-2\end{cases}
$$

We can check that this operator agrees with the one in [6, Proposition 2.32].
Example 6.2.4 Suppose that $m=2, n_{1}=1$, and $n_{2}=2$. We set $\ell_{1}=1, \ell_{2}=2, c_{1,2}^{(1)}=2$, and $c_{1,2}^{(2)}=-1$ as in Example 5.3.4. Then the corresponding character χ is given by

$$
\begin{aligned}
\chi= & D_{1} D_{2}\left(\lambda^{e_{3}}\right) \\
= & D_{1}\left(\lambda^{e_{3}}+\lambda^{e_{3}-e_{2,1}}+\lambda^{e_{3}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,1}}+\lambda^{e_{3}-e_{2,1}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,2}}\right) \\
= & \lambda^{e_{3}}+\lambda^{e_{3}-e_{1,1}}+\lambda^{e_{3}-e_{2,2}}+\lambda^{e_{3}-e_{2,2}-e_{1,1}}+\lambda^{e_{3}-e_{2,2}-2 e_{1,1}}-\lambda^{e_{3}-2 e_{2,1}+e_{1,1}}-\lambda^{e_{3}-2 e_{2,1}+2 e_{1,1}} \\
& +\lambda^{e_{3}-e_{2,1}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,2}}+\lambda^{e_{3}-2 e_{2,2}-e_{1,1}}+\lambda^{e_{3}-2 e_{2,2}-2 e_{1,1}}+\lambda^{e_{3}-2 e_{2,2}-3 e_{1,1}}
\end{aligned}
$$

Example 6.2.5 Suppose that $m=2, n_{1}=2$, and $n_{2}=1$. We set $\ell_{1}=2, \ell_{2}=-6$, and $c_{1,2}^{(1)}=-1$ as in Example 5.3.5. Then the corresponding character χ is given by

$$
\begin{aligned}
\chi & =D_{1} D_{2}\left(\lambda^{e_{3}}\right) \\
& =D_{1}\left(-\lambda^{e_{3}+e_{2,1}}-\lambda^{e_{3}+2 e_{2,1}}-\lambda^{e_{3}+3 e_{2,1}}-\lambda^{e_{3}+4 e_{2,1}}-\lambda^{e_{3}+5 e_{2,1}}\right) \\
& =-\lambda^{e_{3}+e_{2,1}}-\lambda^{e_{3}+e_{2,1}-e_{1,1}}-\lambda^{e_{3}+e_{2,1}-e_{1,2}}-\lambda^{e_{3}+2 e_{2,1}}-\lambda^{e_{3}+5 e_{2,1}+e_{1,1}+e_{1,2}} .
\end{aligned}
$$

Example 6.2.6 Suppose that $m=2, n_{1}=2$, and $n_{2}=2$. We set $\ell_{1}=1, \ell_{2}=2, c_{1,2}^{(1)}=2$, and $c_{1,2}^{(2)}=-1$ as in Example 5.3.6. Then the corresponding character χ is given by

$$
\begin{aligned}
\chi= & D_{1} D_{2}\left(\lambda^{e_{3}}\right) \\
= & D_{1}\left(\lambda^{e_{3}}+\lambda^{e_{3}-e_{2,1}}+\lambda^{e_{3}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,1}}+\lambda^{e_{3}-e_{2,1}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,2}}\right) \\
= & \lambda^{e_{3}}+\lambda^{e_{3}-e_{1,1}}+\lambda^{e_{3}-e_{1,2}}+\lambda^{e_{3}-e_{2,2}}+\lambda^{e_{3}-e_{2,2}-e_{1,1}}+\lambda^{e_{3}-e_{2,2}-e_{1,2}}+\lambda^{e_{3}-e_{2,2}-2 e_{1,1}} \\
& +\lambda^{e_{3}-e_{2,2}-e_{1,1}-e_{1,2}}+\lambda^{e_{3}-e_{2,2}-2 e_{1,2}}+\lambda^{e_{3}-2 e_{2,1}+e_{1,1}+e_{1,2}}+\lambda^{e_{3}-e_{2,1}-e_{2,2}}+\lambda^{e_{3}-2 e_{2,2}} \\
& +\lambda^{e_{3}-2 e_{2,2}-e_{1,1}}+\lambda^{e_{3}-2 e_{2,2}-e_{1,2}}+\lambda^{e_{3}-2 e_{2,2}-2 e_{1,1}}+\lambda^{e_{3}-2 e_{2,2}-e_{1,1}-e_{1,2}}+\lambda^{e_{3}-2 e_{2,2}-2 e_{1,2}} \\
& +\lambda^{e_{3}-2 e_{2,2}-3 e_{1,1}}+\lambda^{e_{3}-2 e_{2,2}-2 e_{1,1}-e_{1,2}}+\lambda^{e_{3}-2 e_{2,2}-e_{1,1}-2 e_{1,2}}+\lambda^{e_{3}-2 e_{2,2}-3 e_{1,2}} .
\end{aligned}
$$

Remark 6.2.7 We gave the formula for the character using the Demazure-type operators. On the other hand, the character is also given by the localization formula ([7, Corollary 7.4]). For example, when we set the parameters as in Example 6.2.4, the character is computed using the localization formula as follows:

$$
\begin{aligned}
\chi=\lambda^{e_{3}} & \left(\frac{1}{\left(1-\lambda^{-e_{1,1}}\right)\left(1-\lambda^{-e_{2,1}}\right)\left(1-\lambda^{-e_{2,2}}\right)}+\frac{\lambda^{-2 e_{2,2}}}{\left(1-\lambda^{-e_{1,1}}\right)\left(1-\lambda^{-e_{2,1}+e_{2,2}}\right)\left(1-\lambda^{e_{2,2}}\right)}\right. \\
& +\frac{\lambda^{-2 e_{2,1}}}{\left(1-\lambda^{-e_{1,1}}\right)\left(1-\lambda^{e_{2,1}-e_{2,2}}\right)\left(1-\lambda^{e_{2,1}}\right)}+\frac{\lambda^{-e_{1,1}}}{\left(1-\lambda^{e_{1,1}}\right)\left(1-\lambda^{2 e_{1,1}-e_{2,1}}\right)\left(1-\lambda^{-e_{1,1}-e_{2,2}}\right)} \\
& +\frac{\lambda^{-3 e_{1,1}-2 e_{2,2}}}{\left(1-\lambda^{e_{1,1}}\right)\left(1-\lambda^{3 e_{1,1}-e_{2,1}+e_{2,2}}\right)\left(1-\lambda^{e_{1,1}+e_{2,2}}\right)} \\
& \left.+\frac{\lambda^{3 e_{1,1}-2 e_{2,1}}}{\left(1-\lambda^{e_{1,1}}\right)\left(1-\lambda^{-3 e_{1,1}+e_{2,1}-e_{2,2}}\right)\left(1-\lambda^{-2 e_{1,1}+e_{2,1}}\right)}\right) .
\end{aligned}
$$

We can check that this result agrees with the result in Example 6.2.4.

Bibliography

[1] A. Andreotti, and F. Norguet, Cycles of algebraic manifolds and $\partial \bar{\partial}$-cohomology, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série 25(1) (1971), 59-114.
[2] S. Choi, M. Masuda, and D. Y. Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47(1) (2010), 109-129.
[3] S. Choi, M. Masuda, and D. Y. Suh, Topological classification of generalized Bott towers, Trans. Amer. Math. Soc. 362(2) (2010), 1097-1112.
[4] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies, Princeton University Press, 1993.
[5] P. Griffiths, and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
[6] M. Grossberg, and Y. Karshon, Bott towers, complete integrability, and the extended character of representations, Duke math. J. 76(1) (1994), 23-58.
[7] A. Hattori, and M. Masuda, Theory of multi-fans, Osaka J. Math. 40 (2003), 1-68.
[8] T. Hwang, E. Lee, and D. Y. Suh, The Gromov width of generalized Bott manifolds, International Math. Research Notices 2021(9) (2019), 7096-7131.
[9] Y. Karshon, and S. Tolman, The moment map and line bundles over presymplectic toric manifolds, J. Differential geometry 38 (1993), 465-484.
[10] Y. Sugiyama, On equivariant index of a generalized Bott manifold, arXiv:2107.12054, 2021. to appear in Osaka J. Math.

