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Preface

In this thesis, we treat two themes.

In Part I, we consider a flow polytope associated to the root system of type A. The
cone spanned by the positive roots is divided into several polyhedral cones called chambers.
There is a specific chamber called the nice chamber. In this part, we call a flow polytope for
the nice chamber a special flow polytope. Baldoni and Vergne showed the volume function
of a special flow polytope is written as an iterated residue. In this case, we show that
the volume function satisfies a certain system of differential equations, and conversely, the
solution of the system of differential equations is unique up to a constant multiple. In
addition, we give an inductive formula for the volume with respect to the rank of the root
system of type A.

In Part II, we consider the equivariant index of a generalized Bott manifold. Grossberg
and Karshon showed the multiplicity function of the equivariant index for a holomorphic
line bundle over a Bott manifold is given by the density function of a twisted cube, which
is determined by the structure of the Bott manifold and the line bundle over it. From this,
they derived a Demazure-type character formula. In this part, we generalize the above
results to generalized Bott manifolds. We show the multiplicity function of the equivariant
index is given by the density function of a generalized twisted cube. In addition, we give a
Demagzure-type character formula of this representation.



Part 1

On volume functions of special flow
polytopes associated to the root
system of type A



Chapter 1

Introduction

The number of lattice points and the volume of a convex polytope are important and
interesting objects and have been studied from various points of view (see, e.g., [4]). For
example, the number of lattice points of a convex polytope associated to a root system
is called the Kostant partition function, and it plays an important role in representation
theory of Lie groups (see, e.g., [9]).

We consider a flow polytope associated to the root system of type A. As explained
in [2, 3], the cone spanned by the positive roots is divided into several polyhedral cones
called chambers, and the combinatorial property of a flow polytope depends on a chamber.
Moreover, there is a specific chamber called the nice chamber, which plays a significant role
in [11]. In this part, we call a flow polytope for the nice chamber a special flow polytope.
Also in [2, 3], a number of theoretical results related to the Kostant partition function and
the volume function of a flow polytope can be found. In particular, it is shown that these
functions for the nice chamber are written as iterated residues ([3, Lemma 21]). We also
refer to [1] for similar formulas for other chambers in more general settings. Moreover, we
mention that a generalization of the Lidskii formula is shown in [3, Theorem 38|, there
is a geometric proof of the Lidskii formula in [12], and combinatorial applications of this
formula are given in [5, 7).

The purpose of this part is to characterize the volume function of a flow polytope for
the nice chamber in terms of a system of differential equations, based on a result in [3]. In
order to state the main results, we give some notation. Let e,..., e, be the standard
basis of R™! and let
be the positive root system of type A with rank r. We assign a positive integer m; ; to
each 7 and j with 1 <7 < j <r+1. Let usset m = (m;;) and M =3, .., m;;. For
a=ae + - +ae. —(ag+-+a)e 1 € R wherea; +---+a; >0(i=1,...,7),
the following polytope PA:rvm(a) is called the flow polytope associated to the root system
of type A:

PA#m(@ _ {(yz‘,j,k) c RM 1<i<gi<r+1,1<k<mij, yijr=>0, }

Zl§i<j§r+1 Zlgkgmi,j Yijr(ei —ej) =a
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Note that the flow polytopes in [3] include the case that some of m; ;s are zero, whereas
we exclude such cases in this part. We denote the volume of P,+ , (a) by v+ . (a).
The open set

Chice '= {a =are; +---+ae, — (a1 +--+a)e,s ER™a;>0,i=1,...,r}

in R™! is called the nice chamber. We are interested in the volume v,+ . (a) when a is in
the closure of the nice chamber, and then it is written by v+ . . It is a homogeneous
polynomial of degree M — r. The first result of this part is the following.

Theorem 1.0.1 Let a = Y 7 ai(e; — €,41) € Cuice, and let vys . (a) be the volume of
Pyt (@) Thenv=wvy+ . (a) satisfies the system of differential equations as follows:

R =0

(87“—1 - 8r)mr71’7'am—Tl_17r+1v =0

T

(81 _ 62)7”41,2 (81 _ 63)m1,3 R (81 — 8T)m1,r8;"1w+1v =0,

where 0; = a%i fori = 1,...,r. Conversely, the polynomial v = v(a) of degree M — r
satisfying the above equations is equal to a constant multiple of v A?,m,cmce(a)'

We remark that it is known that the volume function v,+ . (a) of P,+ . (a), as a distri-
bution on R", satisfies the differential equation

Lv g+, (a) = 6(a)

in general, where L = [],_;(9; — 9;)™ and 6(a) is the Dirac delta function on R" ([8, 11]).
Note that 0,1 in the definition of L is supposed to be zero. The above theorem characterizes
the function v Ai,m,cmce(@ on Chice More explicitly. It might be interesting to see what kind
of properties of the volume can be derived from Theorem 1.0.1.

In addition, in Theorem 3.0.6, we show the volume v+, . (a) is written by a linear
combination of v+ (a") and its partial derivatives, where m' = (m; ;)o<icj<r+1, €,

’ ol .
M5 Chice nice

is the nice chamber of AY |, and o' = Y. ,a;(e; — €,41) € ¢/ It might be interesting

to ask whether there is a relaton between this theorem and the inductive formulas of
Schmidt—Bincer [14, (4.1), (4.24)].

This part is organized as follows. In Chapter 2, we recall the iterated residue, the
Jeffrey-Kirwan residue, and the nice chamber based on [2], [3], [6] and [10]. Also, we give
some examples of P+ (a) and the calculations of the volume v,+ . . (a). In Chapter 3,
we prove the main theorems.



Chapter 2

Preliminaries

In this chapter, we set up the tools to prove the main theorems based on [2], [3], [6] and
[10].

2.1 Flow polytopes and its volumes

Let e, ..., e41 be the standard basis of R"!, and let

r+1 r+1
V = {a—Zaie,- ERH_l ZCLZ—O}

i=1 =1

We consider the positive root system of type A with rank r as follows:
Ar={e;—e|1<i<j<r+1}
Let C(A;f) be the convex cone generated by Af:
CANY={aeV]a+ --+a >0foralil<i<r}

We assign a positive integer m, ; to each ¢ and j with 1 <7 < j <r+1, and it is called
a multiplicity. Let us set m = (m;;) and M =37,y mij.

Definition 2.1.1 Let a = aje; + -+ + aye, — (a1 + -+ + a,)e 41 € C(AS). We consider
the following polytope:

1<i<j<r+1,1<k<m;, yi,j,k207}

Py (a) =9 (yijn) € RM
arm(@) {(ym’k) D i<icij<ril Zlgkgmm Yigk(ei —€;) =a

which is called the flow polytope associated to the root system of type A.

Remark 2.1.2 The flow polytopes in [3] include the case that m, ; = 0 for some ¢ and j.



The elements of A" generate a lattice V7 in V. The lattice V7 determines a measure da
on V.

Let du be the Lebesgue measure on R, Let [ay, ..., ay] be a sequence of elements of
Al with multiplicity m; ;, and let ¢ be the surjective linear map from RY to V defined
by ¢(exr) = ay. The vector space ker(yp) = ¢~ 1(0) is of dimension d = M — r and it is
equipped with the quotient Lebesgue measure du/da. For a € V, the affine space o ~!(a) is
parallel to ker(y), and thus also equipped with the Lebesgue measure du/da. Volumes of
subsets of ¢~!(a) are computed for this measure. In particular, we can consider the volume
U4+, (a) of the polytope P+ (a).

2.2 Total residue and iterated residue

Let A, = Af U (—A)), and let U be the dual vector space of V. We denote by Ry, the
ring of rational functions f(z1,...,z,) on the complexification Uc of U with poles on the
hyperplanes z; —2; =0 (1 <i<j<r+1)orz; =0(1<i<r). Asubsetoof A, is
called a basis of A, if the elements a € o form a basis of V. In this case, we set

1

fU(‘T) . Hagg Oé(ilf)
and call such an element a simple fraction. We denote by Sy, the linear subspace of Ry,
spanned by simple fractions. The space U acts on Ry, by differentiation: (9(u)f)(z) =
(4) f(z + eu)|-—o. We denote by O(U)Ra, the space spanned by derivatives of functions
in Ra,.. It is shown in [6, Proposition 7] that Ra, = O(U)R4, @ Sa,. The projection map
Tresy, : Ra, — Sa, with respect to this decomposition is called the total residue map.

We extend the definition of the total residue to the space }?AT consisting of functions
P/Q where @ is a finite product of powers of the linear forms a € A, and P =) ;- P,
is a formal power series with P, of degree k. As the total residue vanishes outside the
homogeneous component of degree —r of A,., we can define Tresa, (P/Q) = Tresa, (Py—./Q),
where ¢ is degree of Q). For a € V' and multiplicities m = (m; ;) € (Z>¢)™ of elements of

Al the function
e 1t tarey

F = ,
| H1§i<j§r<xi — X))

is in Ry,. We define J 4+ m(a) € Sa, by
Jy+ m(a) = Tresa, F.
Next, we describe the iterated residue.
Definition 2.2.1 For f € R4, we define the iterated residue by
Ires,—of = Res;,—oResz,—0 - - - Resy, —o f(x1,. .., ;).
Since the iterated residue Ires,_of vanishes on the space O(U)R4, as in [3], we have

Ires,—oJ 4+ ,,(a) = Tres,— . (2.2.1)
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2.3 Chambers and Jeffrey—Kirwan residue

Definition 2.3.1 Let C(v) be the closed cone generated by v for any subset v of AFf
and let C'(A; )sing be the union of the cones C'(v) where v is any subset of A} of cardinal
strictly less than r = dim V. By definition, the set C'(A;)e of Af-regular elements is the

complement of C' (A )gng. A connected component of C(A;)eq is called a chamber.

The Jeffrey—Kirwan residue [10] associated to a chamber ¢ of C(A;) is a linear form
f — ({c, f)) on the vector space Sy, of simple fractions. Any function f in S4, can be
written as a linear combination of functions f,, with a basis o of A, contained in AF. To
determine the linear map f — ((c, f)), it is enough to determine it on this set of functions
fo- So we assume that o is a basis of A, contained in Af.

Definition 2.3.2 For a chamber ¢ and f, € S4,, we define the Jeffrey-Kirwan residue
((c, f»)) associated to a chamber ¢ as follows:

o If ¢ C C(0), then ((c, f,)) = 1.
e If cnNC(o) =0, then ((c, f,)) =0,
where C(0) is the convex cone generated by o.

Remark 2.3.3 More generally, as in [3, Definition 11], the Jeffrey—Kirwan residue ({c, f,))
is defined to be Voll(a) if ¢ € C(o), where vol(o) is the volume of the parallelepiped
Daco |0, 1], relative to our Lebesgue measure da. In our case, the volume vol(o) is equal

to 1 since A, is unimodular.

The volume v 4+, (a) of the flow polytope P, (a) is written by the function J,+ . (a)
and the Jeffrey—Kirwan residue in the following.

Theorem 2.3.4 (Baldoni—Vergne [3]) Let ¢ be a chamber of C(A}). Then, for a € T,
the volume v 4+, (a) of Py+ . (a) is given by

Vat (@) = (6 Jap (@)

We denote by v 4+, (a) the polynomial function of a coinciding with v+ (a) when
a € ¢. It is a homogeneous polynomial of degree M — r.

2.4 Nice chamber
Definition 2.4.1 The open subset ¢,;cc of C(A;") is defined by
cnice:{a€C<A:_)|az‘ >0 ('L: 1,...,7“)}.

The set Cpice 18 in fact a chamber for the root system A} ([3]). The chamber ¢y is called
the nice chamber.



Lemma 2.4.2 (Baldoni—Vergne [3]) For the nice chamber cpice of AT and f € Sa,, we
have

({Cnice; [)) = Iresoe—o f.

From Theorem 2.3.4, Lemma 2.4.2 and (2.2.1), we have the following corollary.

Corollary 2.4.3 (Lidskii formula [3]) Leta € Cyice. Then the volume function v,y . . (a)
s given by

Ut (a) = Tres,—oF.

r 315 Cnice

2.5 Examples

In this section, we give some examples of the flow polytopes for A;, As, and Az, and
calculate their volumes.

Example 2.5.1 When r = 1, the nice chamber of A] is cyice = {a = a1(e; — €2) | a1 > 0}.
For a = ai(e; — €3) € Chices

Pyt n(a) = {Wigw) €ER™2 |y =0, yro1 + Y122+ + Yi2m. = a1} -

From Corollary 2.4.3, we have

(a) =R - ! et
Vp+ a) = NeS;, — = a; .
Al ;1 Cnice z1=0 ZBTLQ (m1,2 — 1)' 1

Example 2.5.2 When r = 2, there are two chambers ¢y, ¢y of A5 as below, and the nice
chamber cyice of A is ¢;.

€9 — €3 €1 — €3

C2

>

O €1 — €2

Figure 1 : The chamber of A].

10



For example, we set my o =n (n € Zsg), my3 =1, and mo3 = 1. For a = aje; + azes —
(a1 + az)es € Coice,

Yijk = 0
PA;,m(a) =9 (Wijk) € R+ Y121t Y122+ -+ Y120 T Y131 = Q1
—Y121 — Y122 — - — Y120 T Y231 = A2

From Corollary 2.4.3, we have

a1x1+a22 a1x1+a2x2 1

(a) =T ‘ Res,, _oR ¢ n

Var . (a) = Iresy—_o = Res,. _oRes,,—o = —ay.
Az M Cnice x1wo (11 — X2 ! 2 119 (T — X0)" n!

Example 2.5.3 When r = 3, there are seven chambers of A3 as below ([1]), and the nice
chamber ¢y;ce of A is ¢;.

€2 — €3
Co s
€1 — €3 €2 — €4
C4 %]
€1 — €4
%
€1 — €2 €3 — €4

Figure 2 : The chamber of AJ.

For example, we set myo =1, mi3 =1, myy = 2, mag = 1, moy = 2, and mgy = 2.
3 Al
FOI" a = lel a/z(ez - 64) e CIliCG)
Yijk =0
. 9| Y121t Y131+ Y141+ Y142=01
Pyt (@) = ¢ ige) €R

—Y1,21 T Y231+ Y241+ Y242 = Q2
—Y1,31 — Y2,3,1 T Y341 T Y342 = a3

From Corollary 2.4.3, we have

€a1w1+a2$2+a3x3
= Ires,—
A5 e (%) = 1050 (f%%ﬁ%(fl — x2) (21 — 23) (22 — 903))

1
= %a?(af + 6ajay + 3ajas + 15a,a3 + 15a aza3 + 10aj + 30a3as).
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Chapter 3

Main theorems of Part 1

In this chapter, we prove the main theorems of this part. Let ¢y be the nice chamber of
At andlet a =", ai(e; — €,41) € Tnice.

Theorem 3.0.1 For a € e, let PAi,m(@ be the flow polytope as in Definition 2.1.1 and
let v+ o (@) be the volume of P+, (a). Then v = v,+ (a) satisfies the system of
differential equations as follows:

s, Cnice

R =0

(Dt = By = 0

(81 _ 62)7”41,2 (81 _ 63)m1,3 R (81 — 8T)m1”8;n1’r+11) =0,

where@izﬁforizl,...,r.

Proof. We will prove the first two relations. Let F = ———ptomi 20

i=17T; H1§i<j§r($i_1'j)m2’]

. It is

easy to see that

P(@l, ce ,ar)(lresx:()F) = IrestO(P(al, .. ,&)F) = IrestO(P(xl, .. ,ZET)F), (301)

ealzl+m+akzk

where P is a polynomial. Since T - is holomorphic at z; = 0,
x

i=1 Tj H1§i<jgk(zi—$j)m”

ea1$1+~-~+ak$k ( )
Resz, —o P — =0 3.0.2
| H1§z‘<j§k($i — )i

for k=1,...,r. Therefore, from Corollary 2.4.3, (3.0.1) and (3.0.2), we obtain

a;nT"T'+1IU — 8?7'"'“11"6895:0}7 — Ireswzoa;nr,v'JrlF

et1r1ttarer
= Ires,—g =0
= r—1 mjr41 ) Ny )
ITi=: = H1§i<j§r(xl — )
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and
_ Mpr—1,r41
(01 = 0p)™ 0, 2w
m 1,741
= II‘eS$:0(a,«_1 — 87_)"“ Lr - Tl TF

g1zt tarzy
= Tres,—g(0r_1 — O,) ™47 —
;)

m'r r+1 Hr 2 mz 41 H1§i<jgr<xi _

6a1m1+ +arzr
= Ires,—g
= mrr+1 r—2 mzr+l L e My
[Ti-: [hicicjer @i (@ = 25)m

ea1961+“'+ar—11‘r—1
= R'esx1=O e ReSxT_lzo Hr_2 M1

i=1 T H1§i<j§r—1(55i — xj)™ii

xResz, —o i S : =0.
Hz 1 (ml T)ml’T

Similarly, we can verify the remaining expressions. U

Remark 3.0.2 In general, it is known that the volume function v,+ . (a) of P,+ . (a), as
a distribution on V| satisfies the differential equation

Loyt (@) = 0(a),

where L = [[,_;(0; — 9;)™" and d(a) is the Dirac delta function on V' ([8, 11]). Note that
Or11 in the definition of L is supposed to be zero. Theorem 3.0.1 above, together with
Proposition 3.0.3 and Theorem 3.0.4 as below, characterizes the function v,+ . (a) on
Chice more explicitly.

Let M, = Z:J}lﬂ myg; for £ =1,...,r. Then we have the following proposition.

Proposition 3.0.3 The coefficient of a}" 'a)>~" - a,{wﬁ M=l i the volume function
Uyt (@) is given by

1
(M; — DI(My — 1)l (M — DI(M, — '

Proof. From the Lidskii formula in Corollary 2.4.3, we have

i1 7 i1 7
v (a) = E B0 fres d S
At m,cnice \ Y T T il =0 [,z — gj)mia |

lilmtr 'V i=1Yi [Licicjer (@i

13



where |i| =iy + -+ +i.. Wheni,=M,—1for=1,... 1,

Mi—1 M,—1
Ires,—o | Tt
= T M, r41 e \my
[Tie) @ H1§i<j§r<xl )"
(i mi)—1 My—1,r—1
! e

Ty H1§i<j§r(‘ri — x;)Mii

-1
x:(LZZZQ ml,i)_l . '15‘77'L'I'72,'r71_1 )

= Res;,—0 - - - Res,, ,—oRes;,—o (

r—2
Tr—1 H1§i<j§r71(xi - xj)mi,j

= Res;,—o - - Res,,_,—o (

1
= Res;,—o— = 1.
Ty
Thus we obtain the proposition. O

Theorem 3.0.4 Let ¢, = ¢(ay,...,a,) be a homogeneous polynomial of ay,...,a, with

degree d and let M = Zl§i<j§r+1 m;j. Suppose ¢, satisfies the system of differential
equations as follows:

a;ﬂr,r+l¢r — 0
(Or—1 = 0p) 1m0, 9, = 0

(3.0.3)
(81 — a2>m172 (81 — 83>m1’3 cee (81 — &)mlv’“a?““ QZST =0.
(i) If M —r < d, then ¢, = 0.

(ii)) If 0 < d < M — r, then there is a non trivial homogeneous polynomial ¢, satisfying
(3.0.3).

(iii) If d =M —r in particular, ¢, is equal to a constant multiple of v ="v,+ . (a).
Proof. We argue by induction on r. In the case that r = 1, we write
¢1 = dlar) = Paila
where p is a constant. If m; o — 1 < d and ¢, satisfies the differential equation 9;""*¢; = 0,

then p = 0 and hence ¢; = 0. If 0 < d < my — 1, then for any p # 0, 9;"*¢; = 0.

. . . mi2—1 . mip,2—1 .
Also, if d = my2 — 1, in particular, then ¢, = pa; ** ", while v = ( L_—al™?" asin

my,2—1)!
Example 2.5.1. Hence ¢, is equal to a constant multiple of v.
We assume that the statement of this theorem holds for r — 1. We write ¢, as

or = Play, ... a) = galag,...,a,) +args—1(az, ..., a;) +---+ @Cllgo(am ),

14



where g is a homogeneous polynomial of as, ..., a, with degree k for K = 0,1,...,d. Then
for k=0,1,...,d, g, satisfies the differential equations as follows:
a?r,r«klgk — 0

By_1 — O,y g g —
( ! ) Lo (3.0.4)

(82 — 03)’”2’3 (82 — a4)m2,4 s ((92 — 8,,)’”2””8;712”“% =0.

We set h = (3 _ocicjcpiq Mij) — (r—1). From the inductive assumption, if 0 < k < h, then
gx is a homogeneous polynomial. On the other hand, if h+1 < k < d, then g = 0, namely,
galas, ... a;) = ga—1(az,...,a.) == gpy1(as,...,a,) =0. (3.0.5)

(i) We consider the case of M —r < d. Let M; = Z::QI my ;. Now we compare the
coefficients of af "M in (9, —0y) ™12 (9, —05) ™13 - - - (O — 0, )™ O g forn =0, .. h.
For g =1,..., M; —mi 41, we define

i T (Mt ser 3 (H<m;;~>)azlazf~-af:

2<i1<r p1t-+pr=q 1<I<k
2<41 <<, <r

N Z (H (mi”)> 8i1812~..8iq.
2<iy1 < <ig<r \1<Ii<q

Then we have the following equation:

(d—h+n) (d—h+n—1)
(d—h— M; + n)!gh*”(%’ ey ar) = d—h— M, +n)!D19h7n+1(a27 e ay)
c(d—h+n—j)!
e (1) ( j) Dighnsi(az, ... ar)

-m (d—h—i—n—(Ml—er 1))'
+ o (ST (d—h— M, 1) e Dty —m g Ghent (M —ma g1 (@2, - - @)

~0. (3.0.6)
When n = 0, from (3.0.5) and (3.0.6), we have
gnlag,...,a.) =0.

When n = 1, we have

(d—h+1)! : o la=ny
(d—h— M, + ) ) T N 1)

Digp(as,...,a,) =0.

Thus we have
gn-1(az,...,a.) =0.

15



Similarly, we have

gh—2(ag, ... ,a,) = gn—s(ag,...,a,) =--- = golaz,...,a,) =0

and hence ¢, = 0.

(ii) We consider the case of 0 < d < M — r. By the inductive assumption, there is
a non trivial homogeneous polynomial g, ,, ., satisfying (3.0.4) for ¢ = 1,...,n;, where
n=M-—r—d+ 1. We can take

Gh-nyvilag, ... a.) # 0.

When n = nq, from (3.0.5) and (3.0.6),

gh—nl(a2’ s 7a1“) - (d —h+ n1)| Dlgh—nl-i-l(a'?a s aar)
(d—h+n; —2)!
- (d—h+n1)‘ 29h7n1+2(a27---7ar>
. (d=h)
e (=)l —— 2 D ce Q).
+ +( ) (d— h+n1)' nlgh<a27 y @ )
When n =nq + 1,
gh—(”1+1)(a27 e 7a7’> _<d —htn,+ 1)‘ 19h—ny (a27 s 7a7’)
- (d—h+n1+1)' 29h—n1+1(a2a"°7a7‘)
(d— h)!
cee (=)™ D,, e, Q).
+ +( ) (d— h+n1 I 1)| 1+1gh(a2 a )
Similarly, for n = ny + 2,...,h, we can express gn_;(as,...,a,;) (j = ny,n1 +1,...,h)
in terms of gp_j1i(as,...,a,) (i =1,...,7) and their partial derivatives. Namely, we can
express ¢, in terms of g5, +i(as, . .., a,) and their partial derivatives. It follows that ¢, # 0

when 0 <d< M —r.

(iii) If d = M — r in particular, then n; =1, and g,—; (j = 1,..., h) becomes the linear
combination of g, and their partial derivatives. Therefore ¢, is uniquely determined by
gn. Moreover, from the inductive assumption, g, = C' - v A e where C' is a constant,
m' = (m;j)a<icj<ri1, and ch;., is a nice chamber of A ;. Hence the solution of (3.0.3) is
unique up to a constant multiple. On the other hand, by Theorem 3.0.1, v 4+ . . satisfies
the system of differential equations (3.0.3). Hence ¢, is equal to a constant multiple of

v . U
A;"» s Cnice
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Recall that in the proof of Theorem 3.0.4, we have defined the operator

D=3 (e Y (IH”H%%%~%

2<i1 <r p1+-+DPEk=q 1<i<k
2<i1 <<t <7

I Z (H (mu,)> 0,0,y - - O, (3.0.7)

2<iy <-<ig<r \1<I<q
forg=1,...,My —my,41.

Remark 3.0.5 Let M; = Z:Bl my;. When d = M —r, from the proof of Theorem 5.0.4
(111), gn—j ( =1,...,h) is uniquely determined as follows:

MMll !
Gh— EM1+1§'(D2 DQ)gh
(

gh—3 = (%1_,_;;: (D3 2D1D2 + Dg)gh

|90 = 92D} — (b~ 1)DI 2Dy + -+ + (~1)" ' Di)gs
Let m/' = (M j)acicj<ri1, Chice @ nice chamber of AT and @’ = Y7, ai(e;i—e,11) € e
From Proposition 3.0.3 and Remark 3.0.5, we obtain the following theorem.

Theorem 3.0.6 Let h = (3 5o icpyymij) — (r — 1) and let Dy (¢ = 1,...,h) be as
n (3.0.7). Then vys .. (a) is written by the linear combination of vy+ ..o (a') and
its partial derivatives as follows:

a{Wl 1 afl\/fl a{WH—l )
ai\41+2 ;
+m(D —2D1Dy + D3) + - -
+£(Dh —(h—=1)DI 2Dy +---+(=1)"'D )} v (a')
(M — rr)' 1 1 2 h Aj717m/’c;ice ’

Example 3.0.7 Let r = 3, let a = Z?:1 a;(e; — e4) € Chico and let @’ = Z?:z a;(e; —
e1) € Chio- Weset mio = 1,myg3 =1, myq = 2,mo3 = 1,mey = 2 and ms4 = 2 as in
Example 2.5.3. Then we have

1
VAt myenee (@) = 360a1(a1 + 6ajay + 3ajas + 15a1a3 + 15a aza3 + 10aj + 30a3az).
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(a) satisfies the system of differential equations as follows:

»1M; Cnice

We can check that v = v Af

02v =0
(82 — 83)8221) =0
(31 — 82)(61 — 83)8% =0.

Also, from Proposition 3.0.3, the coefficient of the term aja3as is zpm; = 75. When r = 2,
N
UA;,mf,c;liceW) = g%(az + 3as).
Therefore, we have
3 4 5 6
a; | 4 a1 2 Ay 3 /
—+ =D —(D;—D — (D} —2D1D D -
{6 o 1+120( ! 2)+'720( ! R 3)}“A$,m7cmce<“)
alad3  alalas ata?  atasas  abay  ada a$
O T o e e JTNIN ()
36 12 24 24 60 120~ 360 3 MM Enice
as in (3.0.8).
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Chapter 4

Introduction

A Bott tower of height n is a sequence:
M, ™ M, ; ™5" .. B3 My B M, = {a point}

of complex manifolds M; = P(C@® Ej), where C is the trivial line bundle over M;_;, E; is a
holomorphic line bundle over M;_;, P(-) denotes the projectivization, and 7; : M; — M,;_4
is the projection of the CP*-bundle. We call M; a j-stage Bott manifold. The notion of a
Bott tower was introduced by Grossberg and Karshon ([6]).

A generalized Bott tower is a generalization of a Bott tower. A generalized Bott tower
of height m is a sequence:

Bn ™ B, ' ... 3 B B By = {a point},

of complex manifolds B; = P(C&® EJ(-l) DD EJ(-nj )), where C is the trivial line bundle over

B;j_1, E](-k) is a holomorphic line bundle over B;_; for k = 1,...,n;. We call B; a j-stage
generalized Bott manifold. A generalized Bott tower has been studied from various points of
view (see, e.g., [2, 3, 8]). Generalized Bott manifolds are a certain class of toric manifolds,
so it is interesting to investigate the specific properties of generalized Bott towers.

In [6], Grossberg and Karshon showed the multiplicity function of the equivariant index
(see §5.4) for a holomorphic line bundle over a Bott manifold is given by the density function
of a twisted cube, which is determined by the structure of the Bott manifold and the line
bundle over it. From this, they derived a Demazure-type character formula.

The purpose of this part is to generalize the results in [6] to generalized Bott manifolds.
We generalize the twisted cube, and we call it the generalized twisted cube. 1t is a special
case of twisted polytope introduced by Karshon and Tolman [9] for the presymplectic toric
manifold, and it is a special case of multi-polytope introduced by Hattori and Masuda [7]
for the torus manifold. We show the multiplicity function of the equivariant index for a
holomorphic line bundle over the generalized Bott manifold is given by the density function
of the associated generalized twisted cube. From this, we derive a Demazure-type character
formula. In order to state the main results, we give some notation. Let L be a holomorphic
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line bundle over a generalized Bott manifold B,,, which is constructed from integers {/;}
and {CEIE)} (see §5.1). Let N = 3" n;, and let TV = S' x --- x S*. We consider the
action of TV on B,, as follows:

(tl, PN ,tm) : [Zl, ce 7Zm] = [tlzl, PN ,thm],
where t; = (ti1,...,tin) 2 = (20, %in), % = (zi0.tinzit, .- tin Zip,) for i =
1,...,m. Also we consider the action of T'=T%" x S! on L as follows:
(t1, oyt tnt1) (215 o 2,y 0] = 6121, -« 60 Zi, B 1 V). (4.0.1)

We define the generalized twisted cube as follows. It is defined to be the set of x =
(115 s Timm, ) € RY which satisfies

Aiw) <Y @ik <0, 2x <0 (1< k <ny)
k=1

or 0 < lek < Ai(x), 2,0, >0 (1 <k <ny),
k=1

for 1 <i < m, where

(i =m)

0,
Ai(z) = 0 m nj (k) . _
(€ + Zj:iJrl Dy Cij zir) (1<i<m-—1).

We denote the generalized twisted cube by C. We also define sgn(z; ) = 1 for z;, > 0 and
sgn(x; ) = —1 for z;;, < 0. The density function of the generalized twisted cube is defined
to be p(z) = (—=1)N [Licicmi<r<n, 580(xik) when x € C' and 0 elsewhere.

Let t be the Lie algebra of T' and let t* be its dual space. Let £* C it* be the integral
weight lattice and let mult : £* — Z be the multiplicity function of the equivariant index.
The first main result of this part is the following:

Theorem 4.0.1 Fiz integers {cg?} and {¢;}. Let L — B,, be the corresponding line
bundle over a generalized Bott manifold. Let p : RY — {—1,0,1} be the density function
of the generalized twisted cube C' which is determined by these integers. Consider the torus
action of T = TN x St as in (4.0.1). Then the multiplicity function for (* = ZN x 7, is

given by
o) k=1)
mult(x, k) = {O (k£1).

Karshon and Tolman found a toric manifold for which the multiplicities of the equivariant
index are 0, —1, or —2 ([9, Example 6.7]). A generalized Bott manifold is different from
this case by Theorem 4.0.1.
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Next, we give our character formula. Let {eq1, ..., €mn,., €mt+1} be the standard basis in
RN 2y = (Tig, .-+ Tim,), and €; = (€51, . .-, €, ). Let AL, = {z =(z1,...,2n) € 2%, ‘
214+ =—r}, and let Af = {z=(21,...,2,) €2 |21+ + 2z, =7 —1}. Let
(xi,€i) = mi1€i1+- - +Tin,€in,. Forevery integral weight p € £* we have a homomorphism
Moo T — S We denote the integral combinations of these A*’s by Z[T]. Then the

operators D; : Z[T| — Z[T|] are defined using cg? and ¢; in the following way:

( Z Z A\ (@ise:) if k; >0

0<r<ki z;eAy, .

0
S (mymatEe i gy < oy — 1,

(it 1Sr<—ki z;enl

where the functions k; are defined as follows: if p = eny1 + D70, S Tjk€ik, then
ki(p) = L+ 300 Dol cz(,}cj)xjﬁk. From Theorem 4.0.1, we obtain the following theorem:

Theorem 4.0.2 Consider the action of the torus T on L — B,, as in (4.0.1). Denote the
(N + 1)-th component of the standard basis in RNT! by e,, 1. Then the character is given
by the following element of Z[T):

X = Dy - Dy (A1),

This is a Demazure-type character formula. On the other hand, the character is also given
by the localization formula with respect to the action of T' ([7, Corollary 7.4]). We compare
our formula with the localization formula (see Remark 6.2.7).

This part is organized as follows. In Chapter 5, we recall the generalized Bott towers
and the equivariant index, and we give the definition of generalized twisted cubes. In
Chapter 6, we prove the main theorems.

24



Chapter 5

Preliminaries

In this chapter, we set up the tools to prove the main theorems.

5.1 Generalized Bott manifolds

Definition 5.1.1 ([2]) A generalized Bott tower of height m is a sequence:
Bn™ By - B3 B B By = {a point},

of manifolds B; = P(C ® E\"” @ --- @ E"), where C is the trivial line bundle over

B;_, E](.k) is a holomorphic line bundle over B;_; for K = 1,...n;, and P(-) denotes the

projectivization. We call B; a j-stage generalized Bott manifold.

The construction of the generalized Bott tower is as follows. A 1-step generalized Bott
tower can be written as B; = CP™ = (C™T1)*/C*, where C* acts diagonally. We

construct a line bundle over B; by Eék) = (CtHX xcx C for k = 1,...,ny, where C*
acts on C by a : v — a~%wv for some integer c;. In Eék) we have [z10,...,21n,,0] =
(2104, ..., 21n,a,a%] for all a € C*. A 2-step generalized Bott tower By = P(C & E\Y &
- @ E"™)) can be written as By = ((C™*+1)* x (C"*+1)¥) /@, where the right action of
G = (C*)? is given by

_ c1 Cng
(Z1, Z2) : (ah 02) = (2’1,06117 21,101, - -+, 21,001, 22,002, A1 22102, ... ,01 22,n2a2)7

where z; = (20, 2j1, .-+, 2jn,) for j =1,2.
We can construct higher generahzed Bott towers 1n a similar Wa;/ In this way we get
an m-step generalized Bott manifold B,, = P(C @& EV .. o EM) from any collection

of integers {CEIE)}
By = ((CM1)* x -- x (C™H1)X) /G,
where the right action of G = (C*)™ is given by

(Z1,...,2m)-a=(2],2y,...,2,),
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where z; = (2;0,...,2in,) fori=1,....m,a= (a,...,a,) € (C)™,
e (1) ) )

/ Cj 1,5 1,5 j—13
2] = (21001, 21101, - - ., 21, 01) and z; = (zj0aj, a;" - ai M zag, a7 e a Zjm, ;)

for 7 =2,...,m. We can construct a line bundle over B,, from the integers (¢1,...,¢,) by
L= ((C"™)* x ... x (C" ") x4 C,
where G = (C*)™ acts by

Z1,... . Zp),0) - a=(z,,2,,...,2 - alm). 5.1.1
1“2 ms 1 m

5.2 Torus action on generalized Bott towers

Let N = 377" n; and let TV = S' x ... x S*. We consider the action of 7% on B,, as
follows:

(tl,...,tm) : [Zl,...,Zm] = [tl 'Zl,...jtm 'Zm],
where t; = (ti1,...,tin) and t; - z; = (2i0,ti1%i1s -« s tin;Zin;) for i =1,...,m. Also we
consider the action of T =TV x S' on L as follows:

(th ce 7tmatm+1) : [Zl, . 7ZTn,U] = [tl “Zy, ... ,tm : Zmathrlv]- (521)

5.3 Generalized twisted cubes

Definition 5.3.1 A generalized twisted cube C'is defined to be the set of x = (211, ..., Tm.n,,)
€ RY which satisfies

Aiw) <Y @ik <0, 2ix <0 (1< k <my)
k=1

mO<Z}M<A()@k>OO§k§m) (5.3.1)

k=1
for all 1 <17 < m, where

Aw) = {‘f =

(€+Zj z+12k lcz]x]k) (1§Z§m_1)

Remark 5.3.2 (i) The generalized twisted cube is a special case of multi-polytope defined
in [7]. In particular, it is a special case of twisted polytope defined in [9].

(ii) When n; = 1 for all 1 < i < m, the generalized twisted cube is the twisted cube
given in [6, (2.21)].
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Definition 5.3.3 We define sgn(x;x) = 1 for z;; > 0 and sgn(x;;) = —1 for z;
0. The density function of the generalized twisted cube is then defined to be p(x)
(=D T1<icm.1<ken, 580(7ix) When z € C and 0 elsewhere.

I IA

Example 5.3.4 Suppose that m = 2,n; = 1,n, = 2,¢; = 1, and {5, = 2. We set c§1§ =2

and cg = —1. Then the generalized twisted cube is the set of © = (211, %21, %22) which
satisfies

o —2< 91 +T22<0, x91,T22 <0,
o —1— 21’271 + X229 < T1,1 <0Oor0< T11 < —1- 2%2’1 + x29.

In Figure 1, the black dots represent the lattice points of the sign +1 and the white dots
represent the sign —1.

($1,1>$2,1,$2,2) = (07 —270)

Figure 1
Example 5.3.5 Suppose that m = 2,n1 = 2,ny = 1,{; = 2, and ¢, = —6. We set
cg = —1. Then the generalized twisted cube is the set of x = (xy1,212,221) which

satisfies
o (< Toq < 6,
o 24w <w1+112<0, 211,712 < 00r 0 <21 +212 < —2+T21, T11,212 > 0.

In Figure 2, the white dots represent the sign —1.
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(96’1,17%,27332,1) :( y Uy ) (0,4, 6)

(4,0,6)

(0,—-2,0)

Figure 2

Example 5.3.6 Suppose that m = 2,n1 =ny =2,¢; =1, and ¢, = 2. We set c§1§ = 2 and

cf% = —1. Then the generalized twisted cube is the set of x = (211, %12, %21, T22) which

satisfies
o —2<x91+x22=<0, @21,722 <0,

o —1—2x91+x2< 211 +712=<0, 11,212 <0
or 0 < T1,1 + T12 < -1 - 2I271 + T22, T11,%1,2 > 0.

The lattice points in the generalized twisted cube represent the sign —1.

5.4 Equivariant index

Let L be a holomorphic line bundle over a generalized Bott manifold B,, with the action
of the torus 7" as in (5.2.1). Let Oy, be the sheaf of holomorphic sections. The equivariant
index of a generalized Bott manifold is the formal sum of representation of 7"

index(B,,,Op) = » (—1)'H'(B,,,OL)

The character of the equivariant index is the function y : 7' — C which is given by
X = >.(=1)’x" where x'(a) = trace{a : H(B,,Or) — H'(B,,,0r)} for a € T. Let t be
the Lie algebra of T" and let t* be its dual space. Every p in the integral weight lattice
¢* C it* defines a homomorphism M : T — S'. We can write y = > pee- A", The
coefficients are given by a function mult : ¢* — Z, sending p — m,,, called the multiplicity
function for the equivariant index.
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Chapter 6

Main theorems of Part 11

6.1 Multiplicity function of the equivariant index

We will show that the multiplicity function of the equivariant index of a generalized Bott
manifold is given by the density function of a generalized twisted cube C. In particular,
all the weights occur with a multiplicity —1,0, or 1.

Theorem 6.1.1 Fixz integers {CEIE)} and {(;}. Let L — B,, be the corresponding line bundle
over a generalized Bott manifold. Let p : RN — {—1,0,1} be the density function of the
generalized twisted cube C' which is determined by these integers as in (5.3.1). Consider the
torus action of T = TN x S' as in (5.2.1). Then the multiplicity function for (* = 7N x 7

s given by
k=1
mult(z, k) = {g(m) ( )

Proof ; We compute H*(B,,, Or). Take the covering U = {U,, x --- x U, } of (CT1)* x

cex (Cr DY for g, € {0,100 net (E=1,...,m), where U,, = C x --- x C xC*x
J —_———

C x -+ x C. This descends to the covering U of B,,; every intersection of sets in i is iso-

—_—————

ng—"rj
morphic to a product of C’s and C*’s. The coverings U and U are the Leray coverings
(15).

Let O be the sheaf of holomorphic functions, and let G = (C*)™. Since holomorphic
sections of O, are given by holomorphic sections of O which are G-invariant with respect
to the action (5.1.1) ([9]), H*(U, Oy) is isomorphic to the G-invariant part of H*(U, O).
By the Leray theorem, H*(B,,, Or) is isomorphic to the G-invariant part of H*((C™*1)* x
cee X (Cn’VVL+1>><7 O)

In order to compute H*((C™™1)* x ... x (C"*1)* O), we compute H*((C"™)*, O).
Let U' = {Uy,Uy,...,U,} be the covering of (C"™1)*  let jo,71,...,7x € {0,1,...,n} for
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k= O,].,. .., n and let UjOjl“‘jk = Ujo N Ujl N---N Ujk‘ Let [ = (io,il, e ,Zn) S VAR The

holomorphic functions on Uj,...;, are given by

_ 0 01 3
FhOl(UjOjl“'jk) - g Arzy 21+ 2y

IT€ZnHL iy >0(6#50,51,--,Jk)

Consider the Cech cochain complex

0= U, 0) S ', 0) S S enr,0) S o,

where C'(U', O) = ©Tho1(Ujojrji) (i = 0,...,n). The map & : C*(U',0) — CPT (U, 0)
is given by { fjoji-p} = {Gings-sper b Gioisr = 2(=1)" Figjy sy - Recall that
HO((C"*1)* 0) = Kerd°, and H"((C"1)*, O) = Coker 6" !. The torus 7" = (S1)»*!
acts on the holomorphic functions by ((to,...,tn) - f)(20,.--,20) = f(tg 20, .., 20).
This action descends to the cohomology. The corresponding weight spaces for the weight
I € Z" are

span(z, ™ ---z7) (I € Z;”gl)

HO((CH+1)X,O)[ — { n

0 otherwise

span(z " - z,) (1 € 2551

0 otherwise.

H"((C"1)*,0)1 = {
We now prove H((C"™1)* O) =0 for 1 < ¢ <n—1. Let A be the fan of (C"*1)* and
let |A| = Ugyeao be the support of A. Let
Z(I) == {v € |A[; (I,v) < ¢(v)},
where ¢ is the support function. From [4],
H((C™)*,0); = H(|AL|A\ Z(1); C).

Since O is the sheaf of holomorphic function, ¢(v) = 0 for all v € |A|. In the case that
i; <0 for all j, since |A| is contractible,

HI(C)*,0), = 0 (g > 1),
In the case that i; > 0 for all j, Z(I) = {0}. Since |A]\ {0} is homotopic to S™™,
H((C")*,0)r =0 (¢ # n).
In other case, since |A|\ Z(I) is path-connected and contractible,
HI(C"H*,0); =0
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for all q.

We now compute H*((CT1)* x ... x (C**T1)* ). Consider the natural action of
TN+tm = (SY)YN+™ on the holomorphic function. The weights are multi-indices I" € ZN ™
we write I’ = (i},...,i,), where i} = (ij0,71,...,%5,;) for j = 1,...,m. From the

’ m

cohomology of (C"™1)* that we have computed and from the Kiinneth formula ([1]), it
follows that

741 1 _i'm,nm
Hq(((cnl-i-l)x e X (Cnm+1>><70)1_, _ {zpan(zlo Zl 1 Zmyn, )
The former occurs if for all £ we have sgn(igog) = sgn(ig1) = -+ = sgn(ie,,) = &,
here ¢ = > ,—11<¢<m) T, and ¢ = 0 when &, = —1 for all £. In particular, (—1)7 =
(=D~ HleSm,lSpSnz sgn(igp).
The action (5.1.1) induces an action on functions given by
i - _ _
(@ f) (210, -5 Zmmm) = GF (2105 - Zhtmg 12600 5 21y s - - Zhng O
o g
.,Z&o,(lk Zgl,... ay, ’ Z&ne,...).
The monomial 210 ‘2, [l g s then a Weight vector with a weight whose k-th
coordinate is £j + g0 + -+ + pn, + Dopepin Zp_ ck ézep Thus the G-invariant part of
H*((CmthyX x .o x (C”m“) ,O) consists of those monomials z; 61021 L g for
which

m Ny
O+ + -+l + Z ch{)}if,p =0

(=2 p=1
m Ny

€2+i270+"' +i27n2 +chgzig7p =0 (6.1.1)
¢=3 p=1

£m+im,0+"'+im,nm:0~

The action (5.2.1) induces a T action on the functions given by

((tl,lv .. ;tm,nma tm—‘rl) : f)(zl,(b cee 7Zm,nm)

— tm+1f(2170, tl_%zl,la RPN Zm70, t,_nllzm,l, e Jtr_n anm’nm).
The weight of the monomial 2, 0 211 [aa zmziﬁf"‘ with respect to this 7" action is
(iy,12,...,1p, 1), where i; = (2]71,.. zmj) for j = 1,...,m. Thus the index of (B,,,Or)
is given by the set of © = (211, -, Zmmnn, 1) = (11, mm,,, 1) for which there exist

(41,0,---,%mo) such that (6.1.1) is satisfied and such that sgn(irg) = sgn(ig;) = --- =
sgi(igy,) for all £. This is exactly the set (5.3.1). Therefore the multiplicity of the equiv-

ariant index is (—1)" [Li<rcmi<pen, $80(iep) = (=Y [Ti<e<mi<pen, s80(@ep) = p(2).
O
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6.2 Character formula for the equivariant index

In the following theorem we give a formula for the character x : T"— C of the equivariant
index of a generalized Bott manifold. For every integral weight u € ¢* we have a homo-
morphism M : T — S1. We denote the integral combinations of these A*’s by Z[T]. Then
X € Z[T] is given by x = >_ ;- mu N where m, = mult(u).

Definition 6.2.1 Let {e11,...,€mn,,Emr1} be the standard basis in RN x; = (24, ...,
Tip,) and e; = (ei1,...,€ipn,). Let Ay = {z = (21,...,2a) €ZY, | 24tz = —r},
and let AY ={z=(21,...,2,) € 2% |21+ -+ 2z, =7 — 1}. Let (x5,¢;) = zin€in+---+
Tin,€in,- Then the operators D; : Z[T| — Z[T] are defined using cg? and /; in the following

way: p Z Z /\u+($i7€i> Zf k:z >0

0<r<hi o€z,

0
ST (e ik < 1,

(it 1<r<—k; xiEA%W

where the functions k; are defined as follows: if u = e, + Z;n:z ) EZJ: L Tjk€jk, then
m n; k
ki(p) = i + Zj:i-i-l D ki Cz(',j)xj,k-
From Theorem 6.1.1, we immediately obtain the following theorem.

Theorem 6.2.2 Consider the action of the torus T on L — B,, as in (5.2.1). Denote the
(N + 1)-th component of the standard basis in RN+ by e,, 1. Then the character is given
by the following element of Z[T):

X = Dl e Dm()\e'm-ﬁ-l)'

Remark 6.2.3 When n; = 1 for all 7, the operator D; is given by

M MZet o \RTRiCi if ki >0
— e apt2enn oo ypm(kidDenr g o <9

We can check that this operator agrees with the one in [6, Proposition 2.32].

Example 6.2.4 Suppose that m =2, n; =1, and no = 2. We set {1 = 1,0, = 2,082) =2,
and cg = —1 as in Example 5.3.4. Then the corresponding character yx is given by
X = D1Dy(\%)

— D1<)\€3 + \é3—€2,1 + \637€2,2 + )\63*262,1 + N\é37€2,1—€2,2 + )\63*262,2)
— \% . \®TEL1 4 \e37€22 4 \€3Te22—€l1 | )\63—62,2—261,1 _ )\63—262,1+61,1 _ )\63—262,14—261,1

4 \e3—ez1—ez2 4 )\63—282,2 4 )\63—262,2—61,1 4 )\63—262,2—281,1 4 )\83—262,2—361,1'
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Example 6.2.5 Suppose that m = 2,n; = 2, and ny = 1. We set {1 = 2,¢5 = —6, and
c% = —1 as in Example 5.3.5. Then the corresponding character y is given by
X = D1Dy(A%?)

— Dl(_)\63+62,1 _ )\63+262,1 _ /\634—362,1 _ )\63+462,1 _ /\e3+5e2,1)

— _)\63+62,1 _ )\63+62,1*€1,1 _ )\63+62,1*61,2 _ )\63+262,1 _ )\€3+562,1+61,1+61,2

Example 6.2.6 Suppose that m =2, n; =2, and no, = 2. We set {1 = 1,0, = 2,082) =2,

and cg = —1 as in Example 5.3.6. Then the corresponding character y is given by

X = D1D2(X%)
— D1(>\63 4 A63 ez 4 A6é3ez,2 4 )\63*262,1 T Aé3Tez1—ez2 +/\63*262,2)
— N\ - \ETOLL | \€3TCL2 | \€37€22 | \€3€227CL1 | \€3T€227€l2 | \e3—€2,2—2€11
+ \é3—ez2—€er1—e12 4 /\63—62,2—261,2 + )\63—262,1+€1,1+61,2 + \e3—ez1—€2,2 + )\63—262,2
+ )\63*262,2*61,1 + )\63*262,2*61,2 + )\63*262,2*261,1 + )\63*262,2*61,1*61,2 + )\63*262,2*261,2

+ )\63—262,2—361,1 + )\63—262,2—261,1—61,2 + )\63—262,2—61,1—261,2 + )\63—262,2—361,2.

Remark 6.2.7 We gave the formula for the character using the Demazure-type operators.
On the other hand, the character is also given by the localization formula ([7, Corollary
7.4]). For example, when we set the parameters as in Example 6.2.4, the character is
computed using the localization formula as follows:

X =A% ! + AT
(1 — /\761,1)(1 — )\762,1)(1 — /\*62,2) (1 — )\761,1)(1 — /\*62,1+62,2)(1 _ )\62,2)
)\7262’1 )\761,1
T (1 — /\—61,1)<1 — )\62,1—62,2)(1 — )\62,1) + (1 — )\61,1)<1 — )\261,1—62,1)(1 — )\—61,1—62,2)
)\—361,1—26272
+

(1 _ )\61,1>(1 _ )\361,1—62,1+€2,2)<1 _ )\61,1+62,2)

A3€1717262’1
+ (1 _ /\61,1>(1 _ )\*361,1+62,1*62,2)(1 _ /\261,1+€2,1)) ’

We can check that this result agrees with the result in Example 6.2.4.
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