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Preface

Morrey-Lorentz spaces, which are an extension of Morrey and Lorentz spaces, were
introduced by Ragusa [44] in 2012. Morrey spaces were introduced by Morrey [3§]
to investigate the solutions of second-order elliptic partial differential equations.
Lorentz [37] defined Lorentz spaces and compared them with Lebesgue and Morrey
spaces (see [37, Theorem 3]). In particular, according to [37, Theorem 2], Lorentz
spaces are separable, but Morrey spaces are not. Lorentz spaces can be constructed
from the real interpolation spaces of Lebesgue spaces (see, e.g., [4]). Morrey spaces
have weak Lebesgue spaces as proper subspaces (see Proposition (3)). In
addition, Morrey spaces are used to obtain the Fefferman-Phong inequality (see
m).

Olsen’s inequality represents the weighted boundedness of fractional integral
operators on Morrey spaces (see [42]). Taking the gradient of functions, we see that
this inequality is an extension of the Fefferman-Phong inequality; for a potential

V>0,
/n () 2V (2) dz < Cy /R V()| da. (1)

According to [12, p. 143], this inequality is a necessary condition for the positivity
of the Schrodinger operator —A — V. This is such an important problem that one
considers the optimality of the constant C'y appearing in the above estimate. As a
result, when V' belongs to some Morrey spaces, Olsen proved the above estimates.
Since then, many authors have investigated generalizations for Olsen’s inequality,
including generalized Morrey spaces [51], Orlicz-Morrey spaces [18,50] of various
types, and mixed Morrey spaces [41]. In particular, according to [52, Proposition
4.1], we can no longer relax the condition on the local integrability in Theorem [ 7]
(see [51]).

Olsen’s inequality cannot simply be proved by a mere combination of the Holder
inequality and the boundedness of the fractional integral operator on Morrey spaces
(see Section in detail). Seemingly, Olsen’s inequality can be obtained by com-
bining boundedness of the Riesz potential and Holder’s inequality; however this is
not the case. For this reason, the proof of this inequality is very difficult, and many
authors have given alternative proofs. Tanaka [57] used the Calderén-Zygmund
decomposition for the family of dyadic cubes to additionally give the vector-valued
extension. Iida et al. [33] provided the atomic decomposition for Morrey spaces,
and as an application, they proved Olsen’s inequality. In [22], the author applied
Tanaka’s method to the generalization for its inequality. In this thesis, we refer to
the ideas from the paper by lida et al.to obtain an extension to its inequality for
Morrey-Lorentz spaces.

The Taylor and Fourier expansions are classically well known as decomposi-
tions of functions. Decomposing functions yields approximations of functions. In
this thesis, we employ our “atomic decomposition” as a method for the decompo-
sition. The Taylor and Fourier expansions use power and trigonometric functions,
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respectively, while our atomic decomposition uses some functions with compact
support that are orthogonal to polynomials up to a fixed order. The origin of
atomic decomposition goes back to the investigation of Hardy spaces.

This thesis presents the author’s achievements, systematically combining and
refining [22],26].

Additionally, the author investigated many kinds of operators, including the
boundedness of bilinear fractional integral operators of Grafakos type [21,28], uni-
versality of neural networks with ReL.U activations [23], boundedness of compo-
sition operators on Morrey and weak Morrey spaces [24], predual spaces of weak
Orlicz spaces [25], and pointwise multiplier spaces from Besov spaces to Banach
lattices [27].



Chapter 1

Introduction

The goal of this chapter is to present a brief overview of basic concepts and our
results.

This chapter is organized as follows: In Section [ILTl we introduce the notation
used in this thesis. In Section[L.2] we explain the theory of function spaces and give
some examples as an extension of Lebesgue spaces. In Section [I.3, we introduce
the investigation of Hardy spaces and their atomic decomposition. In Section [L.4]
we present the main theorem. In Section[[L3 as an application to the Schrodinger
operator, we give the Fefferman-Phong inequality.

1.1 Notation

Throughout this thesis, we use the following notation:

1.

2.

Ny := NU {0}. In this thesis, n € N stands for a dimension.
d, = [n(1/v —1)] for v € (0,1].

For 0 < p < oo, the conjugate number p’ of p is defined by 1/p+ 1/p’ = 1.
Here, when 0 < p < 1, we understand p’ = oo.

Denote by Q(R™) the set of all cubes in R™ that are parallel to the coordinate
axes.

For @Q € Q(R"), ¢(Q) and ¢(Q) represent the side-length and center of @,
respectively. In addition, we denote by Q(z,r) the cube of radius r > 0
centered at x = (z1,...,x,) € R" as follows:

Qz,r):=[ry —r,x1+7) X X [x, — 1,2, + 7).

For simplicity, we write Q(r) instead of Q(0,r).



6.

10.

11.

12.
13.

Given @ € Q(R") and « > 0, aQ) represents the cube concentric to ¢ with
sidelength al(Q):

aQ(x,r) = Q(z,ar)

for € R™ and r > 0.
The closure of Q € Q(R") is denoted by Q:

Qz,r) =[xy — 1z +7] X - X [@ — 7, Ty + 7]
for € R" and r > 0.

For j € Z and m = (mq,...,m,) € Z", we define

m; mp+1 m, m,+1
Q]m: —_—, - X X | —, - R
27 27 27 27

and @, is called a dyadic cube. Denote by D;(R") the set of all such cubes
with side length 277, and set

DR") := | D;®).

=/

. We denote by B(z,r) the ball of radius r > 0 centered at € R™:

B(z,r):={yeR" : |z —y| <r}.

We write B(r) instead of B(0,r). The symbol B(R™) represents the set of
all balls B(z,r) for x € R™ and r > 0.

We use C' to denote a positive constant that may vary from one occurrence to
another. If A < CB, then we write A S Bor B2 A, andif A S B S A, we
write A ~ B. In particular, when we want to emphasize that the constant
C depends on the parameters «, S, v, etc., we write A S,3,.. B and
A ~, 3. Binstead of A S B and A ~ B, respectively.

Let E be a measurable set in R™. Then, xg denotes the indicator function
for F.

We define L°(R") as the space of all measurable functions on R".

Denote by P (R™) the set of all polynomial functions with degree less than
or equal to K. The set Px(R™)* denotes the set of f € L°(R") for which

(VEfe LYR™)  and /n z®f(x)dx =0

for any o € NI with |a| < K, where (-) = (14 |- |*)"/2. Such a function f is
said to satisfy the moment condition of order K.
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14.

15.

16.

17.

18.

19.

1.2

For a space E(R™) with quasi-norm || - || g, set

BEioe(R™) == {f € L°(R™) : || fxk|lz < oo, for all compact sets K in R"}.

For a measurable set F with |E| # 0 and f € L°(R"),

1
mg(f) = — / f(z)dx,
and the Hardy-Littlewood maximal operator M is defined by

Mf(z) = QGSS(%H)XQ@)mQ(‘fDa z e R"

for f € L°(R"). More generally, for n € (0, 00), we define its powered version
by MW f = (M[|f|")"/" for f € L°(R").

Let 0 < a < n. We define the fractional integral operator I, by

I,.f(x) ::/ &dy, reR"
R |7 — Y[

for f € L°(R"). Note that the integral defining I, f converges in many cases

as we will show.

The symbol S(R™) represents the Schwartz space, and its continuous linear
functional space is denoted by S'(R™).

When X and Y are sets, X C Y represents the inclusion of sets. In addition,
if both X and Y are quasi-normed spaces endowed with || - ||x and || - ||y,
respectively, and if the natural embedding mapping X — Y is bounded, we
write X — Y. Moreover, when X — Y and Y — X, we write X 2 Y.

For 0 < u < oo, £*(N) denotes the set of all sequences {a;}32, with finite
quasi-norm

. 1
(Z\aﬂ“) , 0<u< oo,
j=1

sup |a;], U= 00.
jeN

H{aj (J?ilHZ“ =

Function space theory and Lebesgue spaces

The theory of function spaces is of intersect in harmonic analysis. By a “function
space,” we mean a linear subspace of the space of all functions on a set X. In
this thesis, we work in the setting of the Fuclidean space X = R". In harmonic
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analysis, various operators are used, and their continuity on some function spaces
endowed with (quasi-)norms, which is called boundedness, is investigated. For this
reason, the investigation of function spaces is fundamental.

Here, we recall the Lebesgue space LP(R™), 0 < p < oo, which is a fundamental
example of a function space. Let 0 < p < 0o. Define the Lebesgue space LP(R")
to be the linear space of all f € LY(R™) with finite quasi-norm

£l = (/Rn'fw”dw)p, 0<p<oo,

esssup|f(z)], p= o0
zeR”?

Lebesgue spaces are quasi-Banach spaces. In particular, if p > 1, the Lebesgue
space LP(R™) is a Banach space. When 0 < p < oo, the dual space of LP(R™) is
equivalent to LP' (R"). In particular, if 1 < p < oo, the Lebesgue space LP(R™) is
reflexive.

It is well known that Hardy and Littlewood [19] and Sobolev [54] proved the
boundedness of a fractional integral operator on Lebesgue spaces, which is called
the Hardy-Littlewood-Sobolev inequality: if 0 < a < nand 1 < p < s <
satisfies 1/s = 1/p — a/n, then

o fllze S 111w (1.1)

for all f € LP(R") (see, e.g., [16, Theorem 1.2.3]). Hereafter, (I) is extended to
boundedness on Morrey spaces, which is called Adams’ theorem (see [2[7]).

To discuss the boundedness property more precisely, many function spaces
that are extensions of Lebesgue spaces have been introduced and investigated. In
this study, the author considers Lorentz and Morrey spaces. Here, we recall the
following spaces.

Definition 1.1. For ¢ > 0 and f € L%R"), its distribution function m(¢) and
rearrangement function f*(t) are defined by

my(t) = [{z € R" : [f(z)| > t}]

and
fr(t) =inf{a > 0:ms(a) <t},

respectively. Here, it is assumed that inf () = oo.

Let 0 < p,q < 0o. We define the Lorentz space LP4(R™) to be the linear space
of all f € L°(R™) with finite quasi-norm

L, q dt %
Lpa = )

supt f*(t), 0<p<g=o0.
t>0



In particular, LP*(R") is isomorphic with coincidence of norms to the weak
Lebesgue space WLP(R™) (see [15, Proposition 1.4.5 (16)]), whose weak Lebesgue
quasi-norm || - ||wre is defined by

1
| fllwee = sup Amp(X)? = sup M| Xzerr:|f() >} 2r-
A>0 A>0

We do not consider the space L>*4(R™) for 0 < ¢ < oo.

Remark 1.2. Let 0 < g < co. According to [15, Example 1.4.8], the only function
with finite quasi-norm || - ||~ is zero, i.e., L=(R") = {0}.

Definition 1.3. Let 0 < ¢ < p < co. We define the Morrey space M?(R") as the
space of all f € L°(R™) with the finite quasi-norm

[ fllaz = sup Q| (/ \f(x)\qu)
QeQ(R™) Q

In addition, the weak Morrey space WMP?(IR") is defined as the space of all f €
L°(R™) with finite quasi-norm

1
q

| fllwasz := sup Al[X {eern:|f(2)>21 v
A>0

The fundamental properties of these function spaces are discussed in Chapter
2l In this thesis, we employ Morrey-Lorentz spaces introduced by Ragusa [44].

Definition 1.4. Let 0 < ¢ < p < o0 and 0 < r < co. We define the Morrey-
Lorentz space M? (R") as the space of all f € L°(R") with finite quasi-norm

1_1
”fHMg,r ‘= sup ’Q‘p quXQ”Lq,V‘.
QeQ(R™)

These function spaces are extensions of Lorentz and Morrey spaces as follows.
Proposition 1.5. Let 0 < ¢ <p < oo and 0 <r < oco. Then,
M, (R?) = LP(R™), M) (R") = WLP(R"),  Mp . (R") = LP"(R"),
ML (R™) = ME(R™),  MP (R") = WME(R™)
with coincidence quasi-norms.

The proof of each equality is straightforward, and we omit the proofs.



1.3 Hardy spaces and their atomic decomposi-
tion
To prove the extension of the Olsen inequality to Morrey-Lorentz spaces, we use

atomic decomposition. The origin of the investigation of atomic decomposition
goes back to the theory of Hardy spaces (see [35]).

Recall that for 0 < p < oo, the Hardy space HP(R") is defined as the set of all
f € 8'(R™) for which the quasi-norm ||f||g» := ||supt>0 |e’5Af|HLp is finite, where
e!® f represents the heat expansion of f for ¢ > 0:

t _ 1 _‘x_P n
eAf(x)_<—(47rt)neXp( pm ),f>, x € R™

For later use, we recall the following two fundamental notions (see [§]):

(1) Topologize S(R™) by the norms {py} nen given by

pa(p) = Y sup(L+|z])V]0%p(2)]

] PER"
for each N € N. Define Fy := {p € S(R") : pn(p) < 1}.
(2) Let f € S'(R™). The grand maximal function M f is given by
Mf(z) = sup{[t"p(t™") = f(2)| 1t > 0, ¢ € Fy}, weR",
where we choose and fix a large integer N.

We remark that
£l e ~ [[MF]| o

for all f € HP(R") (see, e.g., [55, Chapter 3]).

To date, many authors have investigated atomic decomposition for extended
Hardy spaces, including Hardy-Lorentz spaces [1,36,43], Orlicz-Hardy spaces [40],
Hardy spaces with variable exponents [9,39,[46], Hardy-Morrey spaces [33/34], gen-
eralized Hardy-Morrey spaces [3], Hardy-Orlicz-Morrey spaces [18,50] of various
types, and mixed Hardy-Morrey spaces [41]. Here, we consider Hardy-Morrey-
Lorentz spaces.

In particular, Stronberg and Tochinsky established the theory of atomic de-
composition for weighted Hardy spaces. Let w be a locally integrable function,
and recall that w is an A;-weight when Mw < w. We define the weighted L!-space
L'(R", w) by the space of all f € L(R™) with finite norm

Il = [ |l d,
10



and we set

HY(R",w) := {f eS'RY) [ fllarw) =

< o0 .
L1 (w)

We use the following atomic decomposition for H*(R™, w) with A;-weight w.

Theorem 1.6 ([40,56]). Let w be an Aj-weight, and let f € H'(R",w). Then,
there exists a triplet {\;}32, C [0,00), {Q;}32, C Q(R") and {a;}52, C L>(R")
such that f =372, Nja; in S'(R™) and that

sup |etAf|
>0

S I )

|aj| < XQ;> / CLj(ZE) dz = 0,
K L1(w)

Z AiXQ;
j=1

In particular, H'(R",w) is embedded in L'(R™, w).

1.4 Main theorem

For Morrey spaces, sharp Olsen’s inequality was given by Sawano, Sugano, and
Tanaka as follows.

Theorem 1.7 (|52, Proposition 1.8]). Let 0 < a < n, 1 < p; < py < o0,
l<qg1 <qyo<oo,andl <r; <rg<oo. Assume that

1 1 1+1 «Q ro
P’ To Q@ pPo n Py P

(&1

Then,
lg - Lafllagro S gl azo 11 vz

for any f € Mgfl’(R”) and g € M (R™).
Remark 1.8. We compare Theorem [[7] with the original version of Olsen’s in-
equality from [42) Theorem 2], where Olsen assumed that

L1 1 «

T @ p1 n
instead of the condition r¢/py = r1/p1 in Theorem [L7]

The goal of this paper is to prove the following Olsen inequality for Morrey-
Lorentz spaces.

Theorem 1.9. Let 0 <a<n, 1 <pi <py<oo, 1l <qgu <q<oo, 1 <r <
rog < 00, and 0 < py, 19 < 00. Assume that

If we suppose either of the following;
11



T r r
(1) 0<7’2,pz<ooamd—oz_1:_2

po p1 P2
(2) ro =py =00 andmzﬁ,
Po D1
then we have
o Taflas.. S Nolhwnde I F e
for any f € M (R") and any g € WM (R").

Comparing the sharp Olsen inequality [52], Proposition 1.8], we learn that The-
orem is improved in that the condition g € M¥(R") in Theorem [L7 is re-

placed by ¢ € WM®(R"). With this result, we remark that the embedding
MB(R") — WMDP(R") is proper (see [I7] and Theorem B.7 to follow).

In particular, we can rewrite Case (2) in Theorem [[.Oin terms of weak Morrey
spaces as follows.

Theorem 1.10. Let 0 < a <n, 1 <p; < pg < o0, 1 < ¢ < qy < o0, and
1<ry <rg<oo. Assume that

1

qo0

1 1 1 1 o 0
< —, _— = — —|— — - —, — = .
Po To 9 Po n Po D1

r

1 <QI; S

3|0

Then we have
19 - Lo fllwace S 1l9llwagzo Lf [lwaeo
for any f € WME(R") and g € WMP(R").

1.5 Fefferman-Phong inequality and Schrodinger
operator

Olsen’s inequality generalizes the Fefferman-Phong inequality. To verify this, we
provide the extension of the Fefferman-Phong inequality as an application of The-
orem in this section.

Let n > 3. The Fefferman-Phong inequality reads

lu(2)|?V () dz < Oy - |Vu(x)|* dz (1.2)

R

for a potential V' > 0. This inequality yields the positivity of the Schrodinger
operator L := —A — V. In fact, when 0 < Cy < 1, using integration by parts, we
have

(Lu,u)pe = /Rn |Vu(x)|? do — /n lu(2)|?V (z)dz > (1 - Cy) /Rn |Vu(x)|?dz > 0.

12



In particular, Fefferman [I2, p. 143] proved (L2) with Cy = K||V||;n/2 for some
K > 0. Namely, V € L"?(R") with ||V .2 < K~! implies that the operator
—A — V is positive.

Replacing f by |Vu| in Olsen’s inequality of Theorem [.7] one obtains the
Fefferman-Phong inequality (L2) with Cy = K||V]| M2 for some K > 0. Thus,

Olsen’s inequality extends the condition V' € L"2(R") to V € My/*(R"). Simi-
larly, we can transform Theorem [[L9 into the following assertion.

Theorem 1.11. Letn > 3 and 1 < g < n/2 < co. Then, there exists a constant
K > 0 such that

@@ e < KV, [ V)P
for all w € L°(R™) such that Vu € (L*(R™))" and non-negative functions V &
WM (R™).

To prove Theorem [[LTI] we use the following pointwise estimate to connect Iy
and V.

Theorem 1.12. Let n > 2. Then, |f| S L[|V f|] for all f € CP(R™).

Proof. Fix x € R". We suppose n > 3; the case of n = 2 can be handled similarly
except that we must handle the kernel log |z —y|. We omit the proof for the case of
n = 2. Thanks to [16, Section 1.2.1], we have f(z) ~, L[Af](x). Because n > 3,
we can perform integration by parts to obtain

Z/ Ix—yl’"‘ Fuydy

Then, by the triangle inequality for integrals, we have the desired result. O]

Proof of Theorem [LTIl. We assume that Theorem holds to give the proof of
Theorem [LTT] It is well known that the homogeneous Sobolev space

H'(R") := {f € L°(R") « ||fllzn = [V flllz2 < o0}

has a dense subset C°(R™) (see, e.g., [60, Proposition 1.22]). Then, we may
assume that u € C(R").
Combining with Theorems and [L12] we have

n

[u(x)]*V (2) dz 5/ LIVull(2)*V(z) de S KV, - V()| dz,

R”

as desired. n
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Chapter 2

Classical function spaces

Morrey-Lorentz spaces are built upon Morrey spaces and Lorentz spaces. Thus,
we recall their fundamental properties.

Throughout this chapter, we introduce some classical function spaces and their
fundamental properties. We introduce Lorentz spaces in Section .11 and Morrey
spaces in Section 2.2

2.1 Lorentz spaces

On the basis of the definition of Lorentz spaces in Definition [I.I] we introduce
their well-known properties.

First, we give || xg/|| ra-

Lemma 2.1 ([I5, Example 1.4.8]). Let 0 < p < 0o and 0 < ¢ < oo, and let E be
a measurable set in R™. Then,

1
P\? |
||xE||m=<5) P,

where we assume that (p/q)"? =1 for ¢ = .
We recall the dilation property for Lorentz quasi-norms.

Lemma 2.2 ([15, Remark 1.4.7]). Let 0 < p,q < o0 and t € (0,00). Then

L (Ezna =77 fllzna
for all f € LPY(R™).

Importantly, LP?(R") is normable as the following proposition shows.
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Proposition 2.3 ([6, Section 6.2]). If p > 1 and g > 1, then the space LP4(R™) is
normable. In particular, if we set

L2 dt v
; / [tpf (t)] — ), 1<p<oo,1<q<oo,
1l Lo = 0, t

suptr f**(t), 1<p<qg=o0,

>0

for f € LYR™), where f**(t) = t~* [] f*(s)ds fort > 0, then we have

1N Ees ~ 1 lzea,

and LP1(R™) is a Banach space with the norm || - ||1,.,.
We have the following inclusion relation.

Proposition 2.4 ([15, Proposition 1.4.5 (15) and Proposition 1.4.10]). Let 0 < p,
q1,q2 < 00. The following assertions hold:

(1) LPr(R™) = LP(R™).
(2) If 0 < ¢1 < g2 < 0, then
LPI(R") — LP2(R") — LP>°(R"™).
Here, we present examples of Lorentz functions, demonstrating the diversity of
Lorentz spaces.

Example 2.5 ([15, Exercise 1.4.8]). If 0 < p < o0 and 0 < ¢; < ¢ < 00, then

f(z) = (1+ |2) 75 (log(2 + [z]) @ € Lo (R™) \ LM (R").
We discretize Example 2.5, working in R.

Example 2.6 ([5, p. 56]). Let 0 < p < 00, 0 < 1 < ¢2 < 00, and let J =
J(p,q1) > 1 be such that the sequence {2"/7/j}/®}% is increasing for j €
NN [J,00). Taking

nj

00 9%
f=> —Xpe-mnse-i-1)

j=J J "
one has
f e LP®(R™)\ LPE(R"). (2.1)
In fact, using the fact that

* 2p
f :Z 1X[# un)a

pyl T EOCERN

15



where v, is the volume of a unit ball, one has

o0, q=q1,

[fllzra = § 2 1\7 (1
Vﬁ{]_)(l—Tq>} Z_i . q € (qq,00).
q 2r = Jn

This proves (21]).

As before, we prove the Fatou property for Lorentz quasi-norms.

Lemma 2.7 ([I5, Exercise 1.4.11 (a)]). Let 0 < p,q < oo, and let {f;}32, C
LY(R™) be a nonnegative collection such that f = lim; o f; exists a.e. Then, we
have

Q=

Hf”Lp,q < hHl inf Hf] HLp,q.
j—00
We can extend Holder’s inequality.

Lemma 2.8 ([32] Theorem 4.5]). Assume that 0 < p,p1,p2 < 00 and 0 < q,q1, ¢

R 1 1 1 1 1 1

p pop2 4 @ @
Then,

1 1

pi py?
||f : gHLWZ S 1 ||f||LP1#11 ||g||Lp2,<I2 (22)

pp
for all f € LP»7(R™) and g € LP>®(R™). In particular,

1f - gllea < 27 [ fllevan]lgllzesa (2.3)
for all f € LP7(R™) and g € LP>%2(R").
Proof. We suppose ¢, q1, g2 < 0o. According to [I5, Proposition 1.4.5 (7)],

(f-9) () < fH(at)g((1 — a)t)

forall t > 0 and 0 < a < 1. Then using Hdélder’s inequality, we have

||f'g||Lp,q < </OOO [t%f*(ozt)g*((l _Oé)tﬂq %>}I

< ([ [ ren]” %) ([ Fo-an]” %)

1 1
||f||Lp1’q1 : ﬁ||g||Lp2»qz.

&ﬁ 1 —a)m

Optimizing the most right-hand side in «, we obtain (22). We omit the proofs
of the cases of ¢ = 00, ¢ = 00, and ¢u = oo due to their similarity. In addition,
because (py/p)?/P1(py/p)P/P2 < 2, we obtain ([Z3)). We finish the proof of Lemma
2.8 O
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We now state the maximal inequality.

Proposition 2.9. Let 0 < p,q < o0 and 0 <n < oo. If1 < p < oo, then for all
f e LP(R"),
IM fllra S [1fl|zoa- (2.4)

More generally, if 0 <n < p < 0o, then for all f € LPI(R"),
1M fllzra S [1flloa- (2.5)

Proof. We outline the proof here, we extend Proposition in Theorem [2.10]
where we give the detailed proof. The equation (2.4)) is equivalent to

M 1" zoa S ML 2o,

where p:=p/n > 1 and ¢ := q/n. Then, it suffices to prove (2.4)).

It is well known that
M fllwreo S [ ] zro

for any pg € [1, 0] (see, e.g., [I5, Theorem 2.1.6]). Applying Hunt’s interpolation
theorem [I5, Theorem 1.4.19], we conclude (2.4]). Also, refer to Lemma 2. TT] below
for more details. O

We extend Proposition to the vector-valued setting.

Theorem 2.10. Let 1 < p,u < 00 and 0 < g < oo. Then, for all sequences
{fi}52, € LO(R™),

?\»—A

j=1

Lpra Lpa

According to [10], the case of 1 < ¢ < oo in Theorem 2.101is obtained. However,
the case of 0 < ¢ < 1 is not well understood. Thus, what is new in Theorem |2:III|
is the case of 0 < ¢ < 1.

To prove Theorem [2 we invoke a result from the textbook of Bergh and
Lofstrom [4]. We denote by LPa(£*,R™) the set of all sequences {f;}32, C L°(R")
for which

u

H{fj}?oleLM(ﬂu) = (Z ’fj’u> < 00.
j=1

Lpr:a
The space LP(¢*,R™) represents LPP({* R™).

To prove Theorem 2.0, we will use the real interpolation technique.

17



Lemma 2.11 ([4, Theorem 5.3.1]). Let po, p1, ¢, u € (0,00] and 0 < n < 1 satisfy
Po # p1. Define p € (0, 00] by

1 1-—
Sy 7 (2.6)

p Po P1
Then,
(Lpo (gu, Rn), P (gu’ Rn))n,q o Lp,q(gu’ Rn)
with equivalence of norms.

Proof of Theorem 210l We resort to a technique from [14]. Fix f € L°(R") and
x € R” for a while. By the density of Q in R, we have

Mf(x) = sup - Xown(@)mawn(lf])
reéﬂ(o,;o)

Let 71,79, ... be an enumeration of Q N (0,00), and let y;,ys, ... be that of Q™.
Then,

Mf(z) = Jim  max  Xqrm (F)meu.rn (71)

Here and below, we fix such enumerations and write

MJf(x) = k,le?ll%,}.(..,J} XQ(ykﬂ’l)(x)mQ(ykﬂ’l)(‘fl)

for each J € N. Using Fatou’s lemma and the Fatou property for the Lorentz
quasi-norm || - ||zr« (see Lemma [27)), we need only show that

KM fi}Zallraeey < ClRF Y raee (2.7)

with constant C' independent of J.
By the definition of the operator M;, we can find k(z),l(z) € {1,2,...,J}
such that

MJf(x) = XQ(yk(z)le(z))(x)mQ(yk(z):rl(z))(’f|>' (2'8)

We may assume that such (k(x),[(x)) is the smallest couple in the lexicographic
order of {1,2, ..., J}* among (k, 1) satisfying (Z.8), so the mapping z + (k(x),l(z))
is measurable. Write

Eu(f) ={e eR" : k(z) =k l(z) =1} (k1) €{1,2,...,J}?).

Then by the definition of Ej;(f), we have

J
M;f(x) = Xewrewon @)mawon (1 f):
k=1

18



We fix parameters py € (1,p), p1 € (p,o0), and n € (0,1) satisfying (2.6]).
Write

J x
Cb({hj};‘ozl) = {q)j(hj) gﬁl = {Z XEk,l(fj)ﬂQ(yk,Tl)mQ(ykmz)(hj)}

k=1 i1

for {n;}32, C Li,.(R"). Because ® is a linear operator and |®;(h;)| < Mh;, ®

is bounded on LPo(¢*,R™) and LP*(¢*,R"). Consequently, thanks to Lemma 2.17]
® is bounded on LP4(¢* R™), that is, (2.7) holds. The proof of Theorem 2.10] is
therefore complete. O

Let 0 <np < oo and 0 < 6§ < co. For a measurable function f defined on R",
define a function M9 f by

MO f(z) = sup XQ(:U)—”fXQHLn’Q x € R".

QcQ(R™) Ixollme

When 6 = n, we have MM = M®_  The boundedness of the operator M ?)
acting on Lorentz spaces is used in the proof of Theorem [B.17] below.

Proposition 2.12. [22] Proposition 2| Let 0 < p,q,0 < o0 and 0 < n < co. If
n < p, then M9 is bounded on LP9(R™).

Proof. Due to the Holder inequality for Lorentz quasi-norms (see Lemma 2.8]), for

M@ F < @)y,

Therefore, by the LP9(R")-boundedness of M (see Proposition [Z9), we obtain
the result. ]

2.2 Morrey spaces

We verify the MP(R")-norm of the special indicator functions of subsets related
to the Cantor dust.

Example 2.13 ([49] Example 11]). Let 0 < ¢ < p < o0, and let R > 1 satisfy
(1+ R)»/P=n/a27/4 = 1. We define

[0, 1], J=0,

F, = J ,
’ {?J + ZR(I + R tay, {ar}i_, € {0,1}", y € [0, 1]”} , j€N

k=1

for each j € Ny, and we set

F=JF. (2.9)

Jj€No
Then, .
Fy=Fn0,1+R)", lxpllme ~1. (2.10)
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Similar to Lemma 2.2] it is known that the dilation property for Morrey quasi-
norms holds.

Lemma 2.14 ([49, Theorem 17]). Let 0 < ¢ < p < oo and t € (0,00). Then

1F ) g = ¢ 711 F | rey
for all f € ME(R™).
The following proposition is fundamental.

Proposition 2.15. Let 0 < ¢ < p < oco. If ¢ > 1, then ME(R") is a Banach
space. Meanwhile, if ¢ < 1, then ./\/lf]’(]R”) 1S a quasi-Banach space.

We recall the inclusion property.
Proposition 2.16. The following assertions hold:

(1) If 0 < p < oo, then
MB(R™) = LP(R™).

(2) If 0 < g2 < 1 < p < 00, then the embedding
M (R") — MP (R")
holds and is proper.
(3) B9, p. 136] If 0 < g < p < o0, then the embedding
WLP(R") — MP(R™)
holds and 1is proper.

(4) If 1 < p < o0, then there exists a sufficiently large number N € N such that
[(fs ) S Nl - pale) (2.11)
for all f € MY(R™) and S(R™). In particular, the embedding
MI(R™) — S'(R™)
holds.

Proof. The proofs of (1) and (2) follow easily from Definition [L3l In addition,
refer to [59] and Proposition 3.5 later for a detailed proof of (3).
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For convenience, we give the proof of (4) have. We estimate

@ s
o< [ @ewiie< [ )

= 1
< (/[_171]71 ‘f(w)‘ dx + Z W /[_2]' - |f(£l?)‘ d:l)) pn(go)
(HfHMp + \/l,ln ZTMUHMP) ()

=1 2 o il ()
- + ) n P Pn .
\/ﬁ 1 91 MY Pn\®
Then, (211 is proved. O

As the following lemma shows, Morrey spaces can be embedded into weighted
Lebesgue spaces. Lemma 217 is a starting point for us to consider weighted Hardy
spaces in Section [L.3]

Lemma 2.17. Let 1 <p <71 < 00. Then,

3=

ME(R™) — LYR™, (Mx[—1102)7)-

Proof. The proof is similar to [49, Proposition 285]. O

The Hardy-Littlewood maximal operator is bounded, as the following proposi-
tion shows.

Proposition 2.18 ([7]). Let 1 < g < p < co. Then, the following assertions hold:

(1) For all f € ME(R™),
M fllwae S 1l

(2) If1<q<p<oo, foral f € ME(R"),
M fllae S 1 aez-

We can extend Proposition 2.1 to the vector-valued setting.
Theorem 2.19 ([53, Theorem 2.4] and [58, Lemma 2.5]). Let 1 < ¢ < p < oo and

1 <u<oo. Then,
o0 oo L
(Z ij“) S (Z |fj\u>
=1 » j=1

Mq
for all sequences {f;}32, C L°(R™).

&=

Mg
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Chapter 3

Morrey-Lorentz spaces

Having introduced fundamental facts regarding Lorentz spaces and Morrey spaces,
we now consider Morrey-Lorentz spaces according to Definition .41

Chapter [ contains the characterizations of Morrey-Lorentz spaces under the
theory of function spaces, which has been investigated by many authors. We in-
troduce fundamental properties in Section [3.1] predual spaces in Section [3.2] the
boundedness of the Hardy-Littlewood maximal operator and its vector-valued ex-
tension in Section [3.3] the boundedness of the fractional integral operator and
maximal operators in Section 3.4 and the atomic decomposition in Section [3.5
For convenience, we provide the proofs of all statements in Section 3.1 the bound-
edness of the Hardy-Littlewood maximal operator given in Theorem in Section
[B.3land fractional operators given in Proposition and in Section 3.4l The
results on predual spaces of Morrey-Lorentz spaces given in Section are already
known. The Fefferman-Stein inequality given in Theorem [B.I3] in Section and
atomic decompositions for Morrey-Lorentz spaces given in Theorems 3.7 and
in Section are our new results.

3.1 Fundamental properties

Although we cannot calculate ||xg| sz, for all measurable subsets E, we can do
so for any cube FE.

Proposition 3.1. Let 0 < g <p < oo and 0 <1 < 0o, and let Q € Q(R™). Then

1
q\ - 1
Ixallg, = ()" 101

Proof. By Lemma 2.1],

1
q\ - 1_1 1
Ixallvg, = (%) sup |RP5IQO RIS,
T/ ReQ(R")
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Then, combining the estimates

sup |RI* 4|QNRl1 < sup |[QNR|F «|QNR[ =|Q[
ReQ(R™)

ReQ(R™)
and
1_1 1 11,1 1
sup [R|»"4|QNR[s >  sup  |R[P"7|R[" =|Q]7,
ReQ(R"™) ReQ(R™), RCQ
we obtain the desired result. O

Similar to Lemma 2.2 the dilation property is obtained for Morrey-Lorentz
quasi-norms.

Lemma 3.2. Let0<g¢g<p<o0,0<r<oo, andt € (0,00). Then,

1)y, = €7 0 flla,
for all f € M2 (R™).
Proof. Fix Q = Q(x¢,r9) € Q(R™). Observe that
Q ={z eR" : tx € Q(txy,tro)}.

Then using Lemma 2.2 we have

1_1 1_1 _n
QP | f(E)xQllLar = QP77 - t7 4 || fXQ(to tro) | Lar
_n 11
=t »- ’Q(txmtro)’p quXQ(tacg,tro)HL‘LT?

as required. Il

We discuss equivalence of norms obtained by the geometry of the underlying
spaces.

Proposition 3.3. Let 0 <g<p<oo and 0 <r < oco. Then
dyadi
17 llagg, ~ IS5 ~ 1558

for all f € ME_(R"), where

i 1_1 1_1
£ = sup QI fxqllper, NI, == sup [Bl7~a|| fxpllper-
q,r QE'D(R") ’ BEB(R”)

We omit the proof of Proposition B3l In particular, the case of ¢ = 7 in
Proposition 3.3l is discussed in [49, Remark 1 (1)].

Importantly, Morrey-Lorentz spaces are normable as the following proposition
shows; the space MP (R") inherits its normability from L%"(R") (see Proposition

23).
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Proposition 3.4. If 1 < ¢ <p<oo and1<r < oo, then M? (R") is normable.
More precisely, if we set

T 1_1 T
||f||MgT = sup [Q" 7| fxqllLar
’ QeQ(R™)

for f € L°(R™), then we have

11 ~ 1l

and M& (R") is a Banach space under the norm || - ijp :
K q,r

We now prove some fundamental embedding relations.
Proposition 3.5 ([44, Theorem 3.1]). The following assertions hold:
(1) If0<g<p<ooand0<r <ry<oo, then

Mp

q,r1

(R") < MP

q,r2

(R™).

(2) If0< @ <q <p<ooand 0 <ry,ry < oo, then

MP

q1,71

(R") = M?

q2,72

(R™).

Proof. (1) is trivial from Proposition 2.4l To prove (2), by (1) and Lemmas 2]
and 2.8 it suffices to show that

M JR") = ML (R")

41,00

for g2 € (g2, q1)-
Fix @ € Q(R"). By the Layer-Cake formula (see, e.g., [I5, Proposition 1.1.4]),

1£xel®, = / XUz € Q ¢ |f(x)] > A} dA

0
< / A= min(|Q1 A [ x| Be ) dA
0

_ q1
g1 — G2

1_3;2 g2
QI [ fxellFo -

We conclude that

1 1

QI 1 xalls < (2 )™ 1P I xaln < (=2 )™ 1fllag o
T\ @ S\~ 6 o

]

The proper embedding M? _(R™) — MP

P P r(R") in Proposition (2) is
already known.
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Remark 3.6. When 0 < g3 < ¢; < oo and 0 < ry,72 < 00, by

MZI T1< ) — M2Q1+q2( ) — Mq1+2<12< ) — MZQ ’r‘g( n)a

the embedding M?  (R") — M?P _ (R") is proper.

q2,72

Embeddings as in Proposition (1) are proper.

Theorem 3.7. Let 0 < ¢g<p<oo and 0 <r <7 < oo. Then, the embedding
M (R™) = M (R™)
1S proper.

A direct consequence of Theorem B.7] is that the Morrey-Lorentz scale enjoys
diversity.
To prove Theorem B.7], we use the following lemma:

Lemma 3.8. Let 0 < g < p < co. Set F' as in Example 29) above and

0, k=0,
Vi i= {{xeR” : (1+R)*zeF}, ke, 8.1)

and define

o0

F=>" arxvivi s,

k=1

where {a}32, is a non-increasing sequence. Then for any o € (0, 0],

| £lladg oo ~pa 5P 110, (14 RYT" 1273 fxo us mye | oo

J€No
where the implicit constant in “~,,” is independent of ro.

Proof. 1t is clear that

1 fllae,, > sup [0, (1 + R)’]" 5751 f X0, mype [l oo
J€Ng

If @ € Q(R") satisfies |Q] < 1, then by the monotonicity of {ax}?2,,

Q1w i xallzsro < 110,115 4| f oy loro- (3.2

Meanwhile, we fix j € N and suppose that Q@ € Q(R") satisfies (14 R)U~D" <
|Q| < (1 + R)’™. Note that for each k € N,

U U Rle, + V),

=1 {Cl}171
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where we take the above union, [ {aye,» Over all sequences {a}2, satistying that
a €40, (1+R) }" foralll € N, and {¢;}2, € (¢*(R™))™. Thus, by simple geometric
observation, we may consider ) € Q(R™) such that

QN (Roc, + Vi) #10

for some unique [y € N. Choosing Q" € Q(R") as the smallest cube containing
Uce{o,(1+R)j}n(Rl°c + V), we have

QcQ, 1QI~IQT=10,(1+Ry".

Here, we remark that @’ is independent of £ € N. Then

1 x@llzar < [[fxqllzaro.

Meanwhile, by the monotonicity of {k~/7(1 + R)™"k/P}*

1fxq lLaro < |1 fX(o,14m)5+1m || Laro -

It follows that

11 i1
Q1> <l fxqllzero < [0, (1 + RY 274 | f X0, mpspollzoro. (3.3)

Combining the estimates of ([8:2) and (B.3)), we conclude that

2

11 _2n 2m Sl
QI a [ fxqllzaro < (14 R)™ 7 T Sup 1[0, (L + R)]"[» "« [| fxp0,(14 Ry [| oo
J 0

for all @ € Q(R™). O

Proof of Theorem 31l Set F' and {V}}2, as in Example 2.13] (2.9) and in Lemma
B.8 (31 above, respectively. Then by (2.10), we verify that the function

[e.e]

1 -
T X Vi\Vi1o r <00,
fim %W”R“

3 1 xr((L+R)™")

ARy TR
k=1 p

kenv X ((1+ R) ) [
belongs to M7 -(R™) \ M? (R™).

ﬁz
g

First, we prove the case of 7 < 0o. By the definitions of Morrey-Lorentz quasi-
norms and the function f,

11
sup [[0, (L + R)’]"[* 7« || fx 0,04 myijellpomo = [l ae,,

jEN
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for all 7y € (0,00). Here, setting
V! :=Vin[0,(1+ R, jkeN,
we see that .
-0
for all k € NN (j,00), and
Vi1 = e (1 + B) )X mmpel = (L+ R xr, s = (1+ R)re26-n
for all £ € NN [1,j]. According to [15, Example 1.4.2],
j 1 * j
FXpasryr) = = Xyii
(Fxoamr) Z;MQ+RN’WM1 Z;M1+R
for j € N. It follows that

XV LIviD:

T0

ﬁ
t

o[ |
. T0 — q . )
1 X10,1+ Ry [ oo —/0 [t 2Tt XIVE_yLIvED

N{u+mwf4ﬂ?+iﬁﬂ+RW? "h—{ﬂ+R)k%(“U}

nr

(L+R)» h—2 K+ R)F
j Jjnrg
NZ PR

for all j € N\ {1} and ry € (r,00). Hence,

1
oo —
1\ 00, o =T,
s, ~ (=) =4 royss
o\ e (%), e o),

where ((s), s > 1, is the Riemann zeta function. This proves that
fe MR\ M7 (R).

Next, we prove the case of 7 = oco. Similar to the approach for the case of
7 < 00, we have

J
Jjnr
1 Xp0,a+Ry1 | 2ar NZQ T =j2a
k=1

for all j € N, and hence,
1z, =
Meanwhile, as mentioned in [49, Example 1 ], we see that

1fllmz.. = 1.
We finish the proof of Theorem B.7 O
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With Theorem[3.7] we can characterize the condition under which M#? (R") <
Mer(R™) holds.

q1,71

Theorem 3.9. For0 < q; <p; <o00,0<r;<o0and?=0,1,

MPO

40,70

(R") = My,

q1,71

(R") (3.4)
if and only if any one of the following conditions holds:

(1) po =p1 and qo > q1 or

(2) po=p1, @ = q1, and 1o < 7y.

Proof. The “only if” part follows from Proposition B8l Thus, we need only verify
the “if” part.

Assuming (3.4)), we have

L )z

q0,70

> 1),

for all f € MP (R") and t € (0,00), where the implicit constant appearing in

“>7 is independent of f and t. By the dilation property for || || wpo . and Il MEL,
(see Lemma [3.2)),

n n

[ laaze,, 2 t7o |l v

90570 qi.m1

When we take the limits ¢ — 0 and oo, #p0 P must remain bounded. Thus,
Po = P1-

Next, we suppose that p := py = p; and ([B.4]). Then, by the strict monotonicity
for the embedding of Morrey-Lorentz spaces, gy > ¢; (see Remark for details).

Finally, we assume that p := py = p1, ¢ := @ = q1, and (3.4). The strict
monotonicity for the embedding of Morrey-Lorentz spaces (see Theorem B.7]) gives
ro < 71 again. L]

Although the norm of M? (R") is not absolutely continuous, we still have its
Fatou property.

Lemma 3.10 (Fatou property for Morrey-Lorentz space). Let 0 < ¢ < p < oo
and 0 < r < oo, and let {f;}32, C L°(R™) be a nonnegative collection such that
f=1lim; f; exists a.e. Then, we have

1wz, < T inf {1 f5 ez,
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Proof. For each Q € Q(R"),
fixo = fxq ae.,
and therefore, by Lemma [2.7]

1/ xqllpor < liminf || fixql|zer-
j—o0

Consequently,
1_1
Il < sup [Ql#~ qhmmfllf]XQIILw<hmmf sup Q][> [ fixqllzar
QeQ(R™) QEQ(R™)

— liminf || f; ] g,
j—00
O

The Holder inequality for Morrey-Lorentz quasi-norms can be obtained from
that for Lorentz spaces.

Lemma 3.11. Assume that 0 < p, p1,p2,q,q1,q, T, 71,72 < 00 satisfies

1 1 1 1 1 1 1 1 1

y =

P P P2 ¢ @ @ r T T
Then

1 1

qr q
1follve, < 2 flluer gl
(Zq

forall f € MBt (R") and g € MP2  (R"). In particular,

| follaeg, < 2011F a9l pezz (3.5)

q1.71 92,72

fOT all f S Mql 1 (Rn) and 9 € Mq2 7‘2< )

Proof. Fix @ € Q(R™). Using the Holder inequality for Lorentz quasi-norms (see
Lemma [28)), we have

1 1
11 @ q TR
QB+ 1 Faxalluar < T2 (1Q1% | Fxallzan ) (101 % lgxelers)
qq
1 1
q q
<O 1 vz, Mgl agzz,, -
qq

In addition, because (¢1/q)?%(q2/q)¥% < 2, as before, we obtain (3.5). We finish
the proof of Lemma [B3.111 O
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3.2 Predual spaces

Ferreira [I3 Lemma 3.1] and Ho [31, Theorem 3.5] obtained a description of a
predual space of Morrey-LgrentZ spaces. Let 1 < ¢ <p<ooand 1l < r < oo.
Then the predual space Hj, ,(R") of the Morrey-Lorentz space M? (R") is given
by

HZ:’T/(]R") = {g = Z,ujbj D {1, € ((N), each b; is a (p/, ¢/, ")-block } .
j=1

Here, by a (p/, ¢, r')-block, we mean an L9 (R™)-function supported on a cube
ot 1 _ 1

Q € QR") with L7 (R")-norm less than or equal to |@Q|< ». The norm of

’HZZ’T, (R") is defined by

o0
gl =nf D Il
, <

where inf is over all admissible expressions above. As in Theorem [3.12] below, the
norm equivalence

L, ~sup{ [ @@ as ol = 1}

is obtained. In particular, many authors have obtained the predual space of the
Lorentz space LP"(R"), Morrey space ME(R") = MP (R"), and weak Morrey

space WMP(R") = M?P _(R") as PR = Hg:’r,(R”) (Hunt [32, (2.7)]), and
’HZ: (R™) = H§:7q, (R™) (Zorko [61, Proposition 5]) and ’H‘Z:J(R”) (Ho [30, Theorem
3.6] and Sawano and El-Shabrawy [48, Theorem 2.5]), respectively.

Theorem 3.12 ([13|31]). Let1 < g <p < oo andl <r < oco. Then, the following
assertions hold:

(1) Any f € ME _(R") defines a continuous functional Ly by

L;: ’HZ,/,T,(]R”) >S9V f(z)g(xz)dz € C

]Rn

on HZ:J“' (R™), and
20 ety & Wl

holds.

(2) Conwversely, every continuous functional L on ’H’;:’T,(R") can be realized as
L = Ly with some f € M? (R"), and

11z, S 12l -
holds.
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(3) The correspondence
TIME(RY)S Ly € (Hfl’fm,(R”))

s an isomorphism.

3.3 Boundedness of the Hardy-Littlewood maxi-
mal operator and its vector-valued extension

We extend Proposition 2.18 to Morrey-Lorentz spaces.
Theorem 3.13. Let 1 < ¢ <p<oo and 0 <r < oo. Then, for all f € ME(R"),

IM fllaeg, S Wl

The proof of this hinges on the local/global strategy.
Proof of TheoremBI3l Fix @ € Q(R™). We decompose

[ = fx20+ fxeoe =: fi + fa,
and using the subadditivity of M, we have
M f(x) < Mfi(z) + M fo(z).
First, by the boundedness of M on L%"(R™) (see Proposition 2.9]),
1

11 _1
Qe [[(M fi)xqllLer S1QIP ™l fillzar S Nl (3.6)
Second, a simple geometric observation shows that
_1
Mfa(z) S sup  mp(|f]) < [QI 7| fllrme (3.7)

ReQ(R™), RDQ

for all z € @, and hence, it follows from the embedding M? (R") — M7 (R") =
ME(R™) (see Proposition B.5]) and Proposition B.] that

11

QP [[(M f2)xQllor S Nl agg,- (3.8)

Combining the two estimates of (3.0 and (B3.8]), we obtain the result. O
We can also extend Theorem [2.19] to Morrey-Lorentz spaces.

Theorem 3.14. Let 1 < ¢g<p<oo, 0 <r<oo, and 1 < u < oo. Then, for all
sequences { f;}52, C LO(R™),

o] <)

—
MG, ’ Mi.r
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Proof. The case of u = 0o can be dealt with by the use of the following pointwise
inequality:

M) < sl (@), e R

jeN
for each k& € N and Theorem BI3l We may therefore assume that u < oo. Fix
Q € Q(R™). We decompose

fi = fixeq + fixear = fia + fiz
for each 7 € N. Then by the subadditivity of M, it suffices to show that
0| (L) wel 2[00 ) 39)
Lar 7=l MG .

for each v =1, 2.
First, we estimate the part v = 1. By Theorem 2.0, we have

Qs (ZMfﬂ) xol| Sl (ij,w)

Lar J=1 Lar

S <Z \fj|u>

Jj=1

u

P
Mg r

Then, (3.9) is obtained for v = 1.

Second, we estimate the part v = 2. Fix # € (). The same idea as in (3.7
gives us that

ReQ(R™), RDQ

Mfiz(2) S swp mg(|fi]) Y mariq(fi])-
k=1
By Minkowski’s inequality, we have
o0 L o0 o0
(Z ijﬂ(@“) S maoig <Z |ij“>
j=1 k=1 j=1

Hence, from the embedding M? (R") < MY, (R") = MJ(R") (see Proposition
B.3) and Proposition Bl we conclude @9) for v = 2. O

2=
=

<ol (Z \fﬂ“)

MY
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3.4 Boundedness of the fractional integral and
maximal operators

We prove the boundedness of 1.

Proposition 3.15. [22) Proposition 3] Let 0 < a <n, 1 <g<p<oo, 1 <t <
s <00, and 0 <r,u < oo. Assume that

If we suppose either

t
(1) 0<T,u<oocmdf:—
p q T

t
(2) r=u=o00 andfz—,
p g

then we have
Lo fllmg, Sz,
for all f € ME_(R").

Proof. To prove this proposition, we employ Hedberg’s idea from [29]. Fix z € R”
and p > 0. We decompose

f = fXB(x,p) + fXB(x,p)C = fl + f2-

We estimate

La@<Y | WL,
=1 2-Jp<|z—y|<2—itlp |$ - y|
5 | (3.10)
<D oToa |f(y)|dy < p*M f(x)
j=1 (279p)n=e /w—y|<2j+1p
and
- |f(y)]
LA@I< [ M,
jzl 21— 1 p<|z—y|<27p |[E - y|n ¢
= 1 L el (3.11)
e = T OILVED S T
=1 1Y |lz—y|<2ip =1
~pt flle-

Combining the estimates of ([BI0) and (B:I1), we have
fllae-

n

Laf(2)] S p"Mf(z)+p >
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Because this estimate holds for all p > 0, it follows that

1—kx

L f ()] S MF) T 1] g

Consequently, using the boundedness of M on M? (R") (see Theorem [3.13)) and
the embedding M? (R") — MY, (R") = MJ(R") (see Proposition [3.3]), we con-
clude that

1—bx

b
Mo f vz, S UM e 11w S 1 1rep,

Let 0 < a < n. We define the fractional maximal operator M, by

. Xo(r) n
Maf(l') T Qesg(llzl)%") K(Q)n,a \/Q' |f(y)| dyv reR

for f € LY(R™).
In a way similar to the proof of Proposition 3.5, we can prove the boundedness
of M,.

Proposition 3.16. [22) Proposition 3] Let 0 < a<n, 1 <g<p<oo, 1 <t <
s<ooand 0 <ru<oo. Assume that

If we suppose either

(1) 0<r,u<ooandf:—:—0r
p

t
(2) r=u=o00 cmdf:—,
p g

then we have
[ Mo fllag, S Ifllae,

for all f € M (R").

Proof. The case of a = 0 is equivalent to Theorem [3.13] In addition, combining
the pointwise estimate M, f < I,[|f|] and Proposition B.I5, we obtain the case of
0<a<n. [l
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3.5 Atomic decomposition

The goal of this section is to prove the following synthesis result.

Theorem 3.17. Suppose that the parameters p,q,r, s, t,v satisfy
0<g<p<oo, O0<r<oo, 0O0<t<s<oo, 0O0<ov<l,

g<t, p<s, wv<min(qr).
Assume that {Q;}52, C Q(R"), {a;}32, C WM(R"), and {);}32, C [0,00) fulfill
. o) . v
lajllwae < 1Q4]=,  supp(a;) C @, (Z(/\jXQj) ) < 00.
j:l MZT

Then, f = Z;; Aja; converges a.e. and satisfies

”f”/\/l{;,r Sparsit (ZO‘J‘XQ]-)U> : (3.12)

j:l Mp

In particular, f = 3777, Nja; converges in L (R™) if r < oo and in LP"(R") if
p=qandr < Q.

In this theorem, we can take the atoms {a;}32, from a larger space, that is,
the weak Morrey space WM;(R™). We can choose the parameter v freely.
It is possible to transplant Theorem [3.17] to Lorentz spaces and weak Morrey

spaces, as follows:

Corollary 3.18. Suppose that the parameters p,r,s,t,v satisfy
O<p<t<s<oo, 0<r<oo, 0<wv<l1, ov<min(pr).

Assume that {Q;}52, C Q(R"), {a;}32, C WM(R"), and {);}32, C [0,00) fulfill

. 00 . v
lajllwag < 1Qjl+,  supp(a;) C @, (Z(%‘XQ;) ) < o0.

Jj=1 Lo

If v < min(p,r), then f = Zj‘;l Aja; converges a.e. and satisfies

1
[fllLrr Spirsito (Z(AjXQj>v)

j=1 Lpr

In particular, f = Z;’il Aja; converges in LPT(R™) if r < oo.
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Corollary 3.19. Suppose that the parameters p,q, s,t,v satisfy
0<g<p<oo, O0<t<s<oo, O<v<<l, p<s, v<qg<t.
Assume that {Q;}32, C QR"), {a;}32, C WM(R") and {\;}32, C [0,00) fulfill
1
<, supp(a;) C Q;, (Z(Amj)v> < 0.

=1 WME

llajllwae <1Q;

Then f = Z;’il Aja; converges a.e. and satisfies

1 loontt Soanse (Z(ijw)

J=1

S|

WMY
Proof of Theorem 317 We employ the argument from the proof of Theorem 1.1
in [33].

By the decomposition of ();, we may assume that each @); is a dyadic cube.
We may assume that there exists N € N such that A\; = 0 whenever j > N.
In addition, let us assume that the a;’s are non-negative. By the embedding
¢*(N) — (Y(N) and the duality argument, we note that

DIl ~sup {/ > as@)lg()l dz - gl = 1} |
=1 R j=1 v

where we set p := p/v, ¢ := ¢/v and 7 := r/v. Then, we may assume that the a;’s
are non-negative and ¢ is a non-negative (p', ¢, 7 )-block with associated dyadic
cube (). Then, we show that

11z, <

MP

q,r

/ > (ai(@))9(x) Az Spgrste (Z(Mmﬂ”) : (3.13)
" =1 j=1 M
Assume first that each (); contains () as a proper subset. If we group the j’s

such that all ); are identical, we can assume that each @); is a j-th parent of ) for
each j € N. Then, by the Holder inequality for Lorentz spaces (see Lemma 2.8),

Aai(x))’g(x)dr = A ai(x)g(x) de
f S 0sm@rstaae=32x [ aarao

[ee)
S D Mlagxellpeellgll o Q17

Jj=1

o
< Z Xf”aj H%\/Mt Q
j=1

A

o~

1
=7

1 v_ v
v = — 22
_s+t‘Q|§/ F; ’Q|q t

v

= NQ;IFIQl .
j=1
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Note that by Proposition B.1] for each J € N,

S|

- 1
Z()\kXQk>v> = Aslixas g, ~ Asl@sl7.
k=1 )

M,

Consequently, it follows from the condition p < s that

/n > (Na(@) glz)de S 1Q1#|Q[» - <Z AkXQy) >
j=1 j=1 k=1

1|v
v

P
Mg r

(2

e =

S <Z(>\kXQk)U>

k=1
MY,

Conversely, assume that () contains each @);. Then, again by the Holder inequality
(see Lemma [2.])),

[ > dx—ZX’ |, ot )2 £ Sl v, s
njzl

J=1

< ZA sl ans Q515+ L9, o

S Z /\;]|Q]|? ||gXQJ ||Lt",1,
j=1
where £ :=t /v. Thus, in terms of the maximal operator M (5/71)7 we obtain

| S tvai@)ge)ds < 3 AQ)1 - inf M0y
" =1 j=1 !

< /n (Z(%X@(@)“) Xo(y)MTVg(y) dy.

j=1
Hence, we obtain (3.13) by the Holder inequality (see Lemma[2.8) and the L7+ (R")-
boundedness of the maximal operator M ®"!) (see Proposition E12)).

It remains to check the convergence of the sum. Here, when r < oo, by the
estimate of ([3.12]), the Lebesgue convergence theorem yields

0o J
(Z )\jaj — Z)\jdj) XR ( Z ‘)\ a]’) XR
j=1 j=1

j=J+1
as J — oo for each R € Q(R"). Namely, f = 37", Aja; converges in L (R").
The case of p = ¢ and r < oo can be also dealt with by a similar approach. O]
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The next assertion concerns the decomposition of functions in M? (R").

Theorem 3.20. Let 1 < g <p<oo, 0 <r < oo, K €Ny, and f € MP (R").
Then, there exists a triplet {\;}32, C [0,00), {Q;}32, C Q(R™), and {a;}32, C
L>®(R™) N Pg(R™) such that f = > o1 Aja; in S'(R™) and that, for all v >0,

la;] < X, <Z iXe;) ) S [1f1ae,, - (3.14)

= P
MG

Theorem B.20) is proved by combining Proposition [£.1] and Theorem below.
As special cases of Theorem [3.20] we obtain decomposition theorems for Lorentz
spaces and weak Morrey spaces.

Corollary 3.21. Let 1 < p < 00, 0 <7 < 00, K € Ny, and f € LP"(R").
Then, there exists a triplet {\;}32, C [0,00), {Q;}32, C Q(R"™), and {a;}32, C
L>®(R™) N Pg(R™) such that f = > 21 Aja; in S'(R™) and that for all v > 0,

1
|aj| < XQ;> Z jXQ] ) Sfu ||f||Lp”'

Lp:r

Corollary 3.22. Let 1 < g <p < oo, K € Ny, and f € WMP(R™). Then there
exists a triplet {\;}52, C [0,00), {Q;}32, C Q(R"), and {a;}32, C L=(R") N
Pr(R") such that f =722, Nja; in S'(R™) and that for all v > 0,

00 v
la;] < Xxo,, Z(MXQJ-)”) So ll fllwae-
=1 WME

Except for the topology of the convergence of the sums in Theorem B.I7],
Theorems B.I7 and B.20 are special cases of Theorems 4] and later, respec-
tively, which concerns the decomposition of Hardy-Morrey-Lorentz spaces. In
fact, thanks to Proposition 1] later, M? (R") and HM? (R") are isomorphic for
l1<g<p<ooand 0 < r < oo Thus, we can apply Theorems .4 and to
Morrey-Lorentz spaces.
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Chapter 4

Atomic decomposition for
Hardy-Morrey-Lorentz spaces

In Chapter [, we introduced our results on decompositions of the functions in
Morrey-Lorentz spaces. To prove the results in Chapter Bl we address a wider
framework of consider Hardy-Morrey-Lorentz spaces.

This chapter is organized as follows: In Section LIl we introduce Hardy-
Morrey-Lorentz spaces and compare them with Morrey-Lorentz spaces. In Section
4.2l we give the atomic decomposition for Hardy-Morrey-Lorentz spaces. In Sec-
tion 4.3l we provide characterizations using the grand maximal functions defined
in Section for Hardy-Morrey-Lorentz spaces. We give the proof of convergence
of the atomic decompositions and the norm estimates in Sections and [4.6
respectively. In Section [.7] we prove Theorem

4.1 Hardy-Morrey-Lorentz spaces

Recall that for 0 < ¢ < p < o0 and 0 < r < oo, the Hardy-Morrey-Lorentz
space HMP (R") is defined as the set of all f € S'(R") for which the quasi-norm
[ fll ez, = |supesg e f] HM%;,T is finite. In addition, HM? _(R") coincides with

the Hardy-weak Morrey space HW MZE(R") introduced by Ho in [30].

Concerning M? (R™) and HM? (R"), we have the following assertion:
Proposition 4.1. Let 1 < ¢g<p<oo and 0 <r < oo.

(1) If f € M, (R") and q > 1, then f € HM (R") and || fl[gae, S 1fllae, -

q,r ~Y

(2) Assume that q > 1 orq=12>r. If f € HM? (R"), then f can be repre-
sented by a locally integrable function belonging to ME (R™) and || f|lre, <

q,r ~Y

1/ ez,
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We compare Proposition [l with existing results.

Remark 4.2. (1) It is noteworthy that the case of ¢ = 1 > r in this proposition
covers a result of [20] as a special case of r = 1.

(2) It remains an open problem to determine whether H MY (R") — M} (R")
and M} (R*) = H"(R") < L“(R") for r > 1. This is because the
embedding

HMT,(R") = Ljo(R")

fails. In fact, examples can be seen in LY (R™)\ L (R™) (see Example 2.6]).
To prove Proposition A1l we use the following lemma.

Lemma 4.3. (1) For all f € S(R"),
e f(x) = f(z) as t1O. (4.1)

(2) Let1 < p < oo, and let f € LY(R", (Mx[_112)"®*D). Then for each x € R"

and t > 0,
1 s yP)
[ e (552 )

holds. Moreover, we have

dy < oo

|f] <suple®f|, a.e. (4.2)
>0
(3) Forall f € S'(R"),
etf—f in SR
Proof. (1) Because
|exp(—[2*)f(z — 2Vt2)| < exp(—|2[*) | fll~ € L}(R"),

by the Lebesgue convergence theorem, we have

2 () = exp(—lef?) fla = 2VE) s o= [ exp(—lsP)f () d: = f(o)

\/ R
as t J 0. This proves (LI)).

(2) To prove (4.2, it suffices to show that the set

Ey = {x € R™ : limsuple™ f(z) — f(z)| > 1}
t}0 k
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is a null set for all k € N and f € L*(R"™, (Mx[_11»)"®*Y). Here, set
w = (MX[fl,l}")ﬁ )
fix € > 0, and take g € S(R™) such that

1f = gllorw) <e.
Because the function
(0,00) 2 A — @(A) :=exp(—A) € (0,00)

is positive and decreasing on (0, 00), we deduce from [I1], Proposition 2.7] that

T ()
Thus, by @), we estimate
() < v ({imsuples(s - gl > ) 4w ({ir-al > 5 )
so({ur-a> g ) ro({r-a>51})

Applying the weak-type boundedness of M on L'(R™, w) (see, e.g., [I5, Theorem
7.1.9]) and Chebyshev’s inequality, we conclude that

1
[

S —=lle(l- Pl f.

sup |e"® f| = sup
t>0 t>0

w(Ey,) S[w}Al Akl f - 9||L1(w) < 4ke.

We finish the proof of Lemma .3 because ¢ > 0 and w(z) dz and dz are mutually
absolutely continuous.

(3) We omit the proof of this statement. See [47, Theorem 1.35] for the discrete
case. A minor modification suffices for the continuous case. The same argument
applies to the Gaussian, although the Gaussian is not compactly supported. [J

Proof of Proposition d1l. (1) By Propositions and 210, we have
feMb (R") — MI(R") — S'(R").

As described in [I1], Proposition 2.7], we have a pointwise estimate |e!® f| < M f.
Because M has been shown to be bounded on Morrey-Lorentz spaces M? (R")
(Theorem B.13)), we have f € HM? (R").

(2) First, we assume that ¢,r > 1. Let f € HM? (R"). Then {e®f};5¢ is
a bounded set of MP (R"), which admits a separable predual as we have seen in
Theorem [3.121 Therefore, there exists a sequence {t;}32, decreasing to 0 such that
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{et® f}°2, converges to a function g in the weak-* topology of M? (R"). Because
the weak-* topology of MP (IR") is stronger than the topology of S'(R"), it follows
from Lemma 43| (3) that f =g € M? (R").

Next, we assume that ¢ > 1 and r < 1. Let f € HM? (R"). By the em-
bedding M? (R") — M? (R") = ME(R") (see Proposition B.3) and the fact
proved immediately above, we can identify f = g € MP(R") — MJ(R") —
LYR", (Mx[-11»)"/®*D) by Proposition and Lemma [2.T7. Then, employing
Lemma 3] (2), we obtain

sup IetAle sz, < o0,
t>0 Mgﬂ"

1fllve, <

Finally, we verify the case of ¢ = 1 > r. Using Lemma 217 and Proposition
B3], we have

1

MY, (R") = MY, (R") = MI(R") = LY(R", (Mx[-1,1+)77).

Because (My[_11»)"®*Y is an A;-weight (see [LI, Theorem 7.7]), by Theorem
15,

1 1
HMY(R") = HY(R", (Mx[1,2)77) = LR, (Myaq2)77). (43)
Consequently, it follows from Lemma (2) that

HM?,(R") < M5, (R")

4.2 Atomic decomposition for Hardy-Morrey-
Lorentz spaces

We generalize Theorem B.17 to Hardy-Morrey-Lorentz spaces.
Theorem 4.4. Suppose that the parameters p,q,r,s,t,v satisfy
0<qg<p<oo, O0<r<oo, 1I<t<s<oo, O0<wv<l,

g<t, p<s, wv<min(gr).
Assume that {Q;}32, € QR"), {a;}52, € WMG(R™) NPy, (R™)* and {N;}52, C
[0, 00) fulfill

‘) supp(a;) C @, (Z()‘jXQj)v> < 0.
j=1

P
My r

lajllwae <1Q;

42



Then, [ = Zj‘;l Aja; converges in S'(R™) and satisfies

1
HfHHM:Z,r Spqu,rvs7t (Z()\]XQJ)U) : (4'4)

Jj=1 M;g ”
If ¢ < 1, then we can refine Theorem 4] as follows.

Theorem 4.5. Suppose that the parameters p,q,r,s,v satisfy
0<g<p<oo, O0<r<oo, 1<s<o0, 0O0<v<l,

g<1l, p<s, wv<min(q,r).
Assume that {Q;}52, € QR"), {a;}32; € M5R") NPy, (R")*, and {\;}32, C
[0, 00) fulfill
‘) supp(a;) C @, (Z()‘jXQj)v) < o0.
j=1

p
Mg.r

lajllamg < 1Q;

Then, f =372, A\ja; converges in S'(R") and satisfies

1 fllame, Spars <Z(>\jXQJ-)”> : (4.5)

=1
Ma.r

It is noteworthy that we may take ¢ = 1 in Theorem .4l The cost of this is
that we must replace WM (R"™) with M3 (R").

In light of Proposition ], once we prove Theorem below, Theorem [3.20] is
also proved.

Theorem 4.6. Suppose that the real parameters p, q, r, and K satisfy

n
0<g<p<oo, 0<r<oo, KENgﬂ(——n—l,oo),
qo0

where qo := min(1,q). Let f € HM? (R"). Then, there exists a triplet
N2 cl0,00), {Q}2 € QRY), and {a;}2, € L¥(R") N Pr(R")

such that f =372, Aja; in S'(R") and that for all v > 0,

S|

o0
la;| < xq; (Z(%’X@)”) So Iz, -
j=1 Mg’r
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4.3 Grand maximal functions

Hardy-Morrey-Lorentz spaces admit a characterization by using the grand max-
imal operator introduced in Section [.L3l The Hardy-Morrey-Lorentz quasi-norm
| - |z, is rewritten as follows.

Proposition 4.7. Let 0 < g <p < oo and 0 <r < oo. Then,

IMFllaag, ~ 11z,
for all f € S'(R™).

The proof is similar to the case of Hardy spaces with variable exponents [9,139].
It suffices to state the two fundamental estimates of (A7) and (L)) below.
Suppose that we are given an integer K > 1. We write

M. f(x) :==sup (sup 2/ (W)l ) , v &€R" (4.6)

jer \wern (1 + 4]z —y[?)¥

The next lemma stands for the pointwise estimate for M, in terms of the
usual Hardy-Littlewood maximal operator M.

Lemma 4.8 ([39, Lemma 3.2|, [45], §4]). For 0 < 6 < 1, there exists Ky such that
for all K > Ky, we have

M 0) S fsup 471|038, e (47)
kEZ
for any f € S'(R™). Here, K is the constant appearing in the definition of

Mo f () (see (@.G)).

In the course of the proof of [39, Theorem 3.3], it can be shown that

Mf(x)~ sup |77 f(2)] S My f(2) (4.8)

TEFN,JEL

once we fix integers K > 1 and N > 1.
Combining Proposition B.I3 with the fundamental pointwise estimates of (A7)
and (L)), Proposition 7] can be proved with ease. Thus, we omit the details.

4.4 Lemmas for the proofs of Theorems 4.4
and

Lemma 4.9. Let 1 < s < o0, K € Ny, and Q € Q(R"). Assume that a €
M3 (R™) N Py (R): satisfies

1
supp(a) C @, lallpms <[Q]. (4.9)
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Then, for all ¢ € S(R™) and N > 0,

/ ale)p(e) de

Here, the implicit constant in < depends on ¢.

1
< Q)"+ gy )
~ (Q) yeg 1+ |?J|N

Proof. By the mean-value theorem, there exists 6 € (0,1) depending on x, K, @,
and ¢ such that

[ awp@yde= [ a@) (o)~ 3 L 00EQ) - (@) | da

|| <K

/ Z _aﬁ (1—=0)z +0c(Q))(z — ¢(Q))’ dz.

|8|= K+1
Then, from (9]
1
a(z)p(z)dz| < Q)5 sup /ax dz
[ oot ] < 0@ sy s | jato)
1 1
< 0(Q)FH sup all v - 1Q
(@) yteﬂy‘KH s - 1€
1
San+K+lsup 7
(@) veq 1+ [y[N
as desired. ]

Lemma 4.10. Let 0 < ¢ < p < 00, 1 < s < o0, and K € Ny. Assume that
{Ao}oep®n) C [0,00) and {ag}gepmny C M;(R™) N Px(R™)* satisfy

Z )‘QXQ < Q.
QEeD(R™) ME

supp(ag) C 3@, |

If¢<1andn+ K +1>n/q, then for any ¢ € S(R"),

(e 9]

D> XNllag @l S| DD Aoxel| - (4.10)

m=1 Q€D (R") QeD(R") M2
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Proof. Fix m > 1. To prove (LI0), we use the fact that for each m € Z",

Vv

Z AQXQ | Xt [—nn

Q€D77L(Rn)a ‘C(Q)—’fh‘g’l’b La

-9 Z A

QEDm(R™), [c(Q)—m|<n

>927 " > Ao

QEDm(R™), |c(Q)—m|<n

> Xoxe

E'D R™

Q=

In particular, for all R € D,,(R™),
Y doxal| 227 A
QED(R™) M2
We remark that for each m > 1 and m € Z",
HQ € Du(R") = 3Q 50} =4".
It follows from Lemma that

> Xllag @) 27 YT

QEDm(R™),3Q30 QED.m (R™),3Q30
(4.11)
,S 2—m(n+K+1—5) Z )\QXQ
QeD(R™)

Mg
In addition, setting
Drin(R") := {Q € Dr(R") : [e(Q) — | < n}

for each m > 1 and m € Z", we have

Dp(R") = | Dmm(R).

mezn

Then, there exists a mapping ¢y, : D (R") — Z" such that Q € Dy, ) (R");
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therefore

Y. Xallag, )l

Q6D77L (Rn) ) @%O

1
< 2—m(n+K+1) )\ sup ——————
~ Z Z ) Q- yES% 1+ [y[**
MEZ™ QEDm (R™), tm (Q)=m
1 (4.12)
< 2 m(n+K+1) )\
Z 1 + |m’n+1 Z Q
mezn QEDp, m (R™)
< Qfm(n+K+1f%) Z AoXQ
QED(R™) MP
Because n
n+K+1>—,
q
then we obtain the desired result. ]

4.5 Proofs of Theorems 4.4l and 4.5: convergence
of f = Z]Oil )‘jaj

First, we prove the convergence of
f = Z )\jaj in 8/(Rn)
j=1

We start with an important reduction. For each J € N, we take any cube
Q(J) € D(R™) with minimal volume such that @; C 3Q(J), and we set

o ={eN:Q=0Q0)}

and
0, Ag =0,

. , . 1
)\Q T Z )\J’ aQ -= — E )\jaj, )\Q 7é 0.
= AQ
JeeqQ Q ]EgQ

Note that {Eg}oepmn) is pairwise disjoint. Then, {ag}gepmn) and {Ag}oepm@n)
satisfy

lagllag < +— Z Ajllagllavg < /\— >onlel

]EgQ ]ESQ

47



Taking ¢ € (1/v,00), by the fact that xo.) Sn Mxg, for J € N, we have

e =

€D(R™) ) QeD(R") \j€g )
MQW Mq,r

> (Goxe) S > D] MMxg,)
Q

3}~
>

IN

> ¥ (ue))”

QeDR") jeEq

Mo

6q,0r
Then, by Theorem [3.14]
1 10
v Ov
> (Goxe) S > ixe)
QeD(R™) QeD(R™) je€q 0
Mg”" MGZ,GT
10
o0 Ov
= M
q,or

Hence, we may assume

WME(RY) NPy, (R?)E, 1<t <s< oo,

C
{aQ}QED {MT(RH) N ’]DdU(R”)J-7 1=t S s < 00,

with supp(ag) C 3Q for @ € D(R") instead of

- WME(R™) NPy, (R, 1<t <5< o0, -
() { (B7) 0 P, (R7) V)2 [0,00)

MR NPy, (R, 1=t<s< o0,

Then, it suffices to show that

> Xallag, )l Z > )\QlaQaSOHZ > Xol{ag, 9)| < 0.

QeD(R) m=—00 QED,, (R™) m=1 QED, (R)
(4.13)
First, we estimate the first part of ([L.I3). Fix m < 0. For each @ € D,,(R"),
3Q # 0 implies that |y| > £(Q) for all y € 3Q, and then

1
|<aQ,w>\s/ lao(@)] de sup ———
30 yesQ 1+ |y s
1 1
< |la S-Q_1+1sup—nNQ sup ——.
|| QHMl | ’ yeg 1+| |2n+]__7 | | 63%1+|y|n+1
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It follows that

> Xellag.9) S > A lQl sup

y€3Q 1+ |y|n+1

QEDm(R™),3QZ0 QEDm (R™),3Q70
mn 1
S27 s —_— Q-
~ Z 1+ ||t Z e
mez" QEDm(R™),3Q%0
le(Q)—mm|<n
Meanwhile, if 3Q > 0, by Proposition ZZ16] (4),
1
[{aq, ©)| S¢ llagllmg S 1QI
Thus,
1 no—mn . mn 1
Y. Nllwew)l S Y. QI <427 sup AglQ)lr.
QEDm(R™),3Q20 QEDm (R™), 3QF0 @EDE™)
Note that for each R € D(R"),
v e 1
> Coxe)’ > IAwxrllag, = (£) AelBl?
QeD(RM)
MY
by Proposition B.Il We conclude that
1
0 0 v
Y llage) S D 2 > oxe)
m=—00 QED,, (R") m=-—00 QED(R™) P
. T (4.14)
S > (exe)’
QeD(RM)
ME
Note that
n + d, +1——>n+<——n—1)+1—£:ﬁ—£20.
do v G UV Qo

Thus, there exists € € (0, o) such that

n+d,+1—

> 0,
o — ¢

where ¢ := min(1, q). Hence, by Lemma [0, the second part of (I3 can be
estimated as follows:

E E  Aol(ag,9)| S E AoXQ < E (Aoxq)" :
m=1QeD(R) QeD(En) r QED(EN) w
0~*1 q,r

(4.15)
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where in the last inequality, we used the embedding M? (R") < M7 . (R") =

Mi_(R") (see Proposition 3.3). Combining these estimates ({14l and (EIH), we
finish the proof of (EI3).

4.6 Proofs of Theorems 4.4 and 4.5 (44) and
lixs

To prove the estimates of (44]) and (4.5) in Theorems [£.4] and L5 respectively,
we use the following lemma, whose proof is similar to that of Lemma 4.9

Lemma 4.11 ([39, (5.2)]). If {a;}32, satisfies the same assumptions as in Theo-
rems 4.4l and .0, then

n+dy+1

Maj(x) < x3q,(x)Maj(x) + Mxg,(z) » , x€R"

Let us show Theorem (4.4l Using Proposition [£.7 and Lemma [£.T1] we have

> A\May
j=1

[z, ~ IMFlla, <

P
Mg r

A

> n+dy+1
ij <X3QjM&j + (Mxq,) = )H

j=1 ME.,

> n+dv+1
< || 22 Avxae, May ZA (Mxq,) ™

Jj=1

== [1 + IQ.

p p
My.r My,r

First, we consider I;. We note that for each j € N, owing to the WM (R") =
M; (R")-boundedness of M (see Theorem B.13]), by applying Theorems [3.14 and
B.I7 and using the fact that xsg, < 3"Mxq, for each j € N, we have

e|(Sonar)] (S

ME ME
1
<] (Zoer)
j:l qu),r
Next, we consider 5. Set
d, +1 d, +1 dy,+1
p_nthtl o nthtl o Rttt
n n n
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Then, by Theorem B.14] and the embedding ¢*(N) < ¢*(N), we obtain

_ n ntdytl
00 ntdy+1 "
L=|[> Aj(MXQj)Hi”H] iXQ,
Lj=1 ME o ME
- 1
< Z JXQ; )
Jj=1 ME

Thus, we obtain the desired result.

Similarly, because M satisfies the weak-type boundedness on Mj(R") (see
Proposition 2.18), we can prove Theorem [L.5]

4.7 Proof of Theorem

To prove Theorem [I.0], we use a new approach provided in [41], Subsection 4.3] and
the following lemma, as given in [47, Exercise 3.34].

Lemma 4.12. Let 0 < g<p<oo,0<r<oo, KN, and 0 < v < 00, and let
f e HM? (R™) N L{, (R"). Then, we can find {a;}3>, C L=(R") N Pg(R") and

a sequence {Q;}32, of cubes such that

(1) supp(a;) C Q;,

2) f= iaj in §'(R™), and

(3) (Z(H%Hmﬂ%)”)v S Mf.

Proof of Theorem [£6]. 1t suffices to prove the case of v = 1; the case of v > 0 can
be proved similarly. Let f € HM? (R"). Fixt > 0. Because D(R") is a countable
set, applying Lemma .12 to etAf € HM? (R") N Ly, .(R™) for

loc
{3Q}qen@n),  {Moteep@n, {Agagtoen@n)
instead of

(@152, Allayllz=}ize,  {a332,

respectively, we can consider the decomposition e!®f = > QeD(E™) A\gag in the
topology of S'(R"), where af, € Pg(R"), \j; > 0, and

lag| < Xsq; > Aoxse| S IMIEA g, S Ml -
QeD(En) v
q,m

o1



By the weak-* compactness of the unit ball of L>(R"), there exists a sequence
{t;}2, that converges to 0 such that both Ao = lim; )\g and ag = limy_, ag
exist for all ) € D in the sense that

lim &té(a:)cp(x) dz = / ag(x)e(x)de
l—o0 R n

for all ¢ € L'(R"). We claim that f = >_Qen(rn) AQaq in the topology of S'(R").

Let ¢ € S(R™) be a test function. Then, by Lemma [£.3] (3), we have

(f,p) = lim (e bl f @) = lim Z )‘tql)/ ag(ac)gp(x) dz

l—o0 l—o00 n
QED(R™)

from the definition of convergence in S'(R™). Once we fix m, we have

< / (@)

Ao S 27 |Mfllag, and ab(@)p(z) de

Rn

Additionally, by the equation

> 2% Ml | lete)

QED, (R™)

we can use Fubini’s theorem to obtain
S\ X i) ea=3 3 [ d
meZ QeD MEZL QEDm (R™)
Hereinafter, we use also abbreviation
o= S0 N [l z,
QED,,(R™)

and we fix 0 < e < 1.
When m € Z N (—o0, 0], we see that

il S S 2% M, / ()] dz Sy 2 | M FlLpey,
QED (RM) 3Q

by the previous argument, and therefore

0
>t SIM Sl - (4.16)

m=—0o0

In addition, taking 0 <e < 1 by K +1>n(1/(go —e) — 1) > 0, namely,

n+K+1>

CIO_57
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by Lemma FT0, we obtain

o0

Slamd S D Moxse SIMF e, (4.17)

m=1 QeD(R")

Thus, by (£10) and (£I7), we obtain

P
MG

(o9}
Y amd S 1Ml -

m=—00
As a consequence, applying the Lebesgue convergence theorem, we obtain
[o¢] o0
lim g Aml = E lim a,,, ;.
=00 ’ l—o0 ’
m=—00 m=—00

Hence, using Fubini’s theorem again, we have

o

o= 3 > X 5 [ ol
m=—00 * QeD,,
= Z zliglo/ Z )\gag(:v) o(x)dx
m=—00 " \QeDn(R")

_ Z > i ( /R nkgag(x)go(x)dx)

m=—00 QED,, (R")

S OD ) RUSTHELE () o)

m=—00 QED;, (R™) QED(R)

Consequently, we obtain the desired result. Il
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Chapter 5

Olsen-type inequality on
Morrey-Lorentz spaces: the proof
of Theorem [1.9

Having clarified the structure of Morrey-Lorentz spaces, we are now ready for the
proof of the Olsen inequality in Morrey-Lorentz spaces. We prove Theorem in
Section [5.J] and make a brief remark on it in Section [5.2

5.1 Proof of Theorem

With Theorems [B.17] and [3.20, we prove Theorem We invoke two lemmas.
Lemma 5.1 ([33, Lemma 4.1)). For every @ € Q(R"),

Laxo(z) 2 Q)" Xq(x)
for all z € R".

Lemma 5.2 ([33, Lemma 4.2)). Let K =0,1,2,.... Suppose that A is an L>°(R")
NP (R™)L-function supported on some Q € Q(R™). Then,

- 1
1. A(2)] < Coxcl|All = 0(Q)* ) Shr Ry X2e(@),  w e R
k=1

We remark that Lemma is proved by a method akin to Lemma [£.9

Now, we begin the proof of Theorem Suppose that f > 0. Note that
by Fatou’s lemma and the Fatou property for Morrey-Lorentz spaces (see Lemma

B.10),

lg - Lof Nl gz

71,72

< Hg-liminf[ame <liminf ||g - Lo finl| pq70
m—oo M0 m—oo

71,72
1,72
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for all f € MP°(R™) and g € M% _(R"), where

P1,p2 q1,92
fm = fxBa)Xom)(f]) € LZ(R"), meN.

Then, we may assume that f € L2(R™). We decompose f according to Theorem
with sufficiently large K > 1; f =372, Aja; converges in L*(R") for all w €
(1,00), where {Q;}32, C D(R"), {a;}32, C L®(R") N Pr(R™)*, and e, C
[0, 00) fulfill (3.14).

Here, we claim that
Lf(x) =Y Nlaaj(z), ae z€R" (5.1)
j=1

In fact, fixing w € (1,n/a) and then choosing w* € (1,00) satisfying 1/w* =
1/w — a/n, we have

—0

S

N
Inf = Al
j=1

N N
I [f - Z%’%’] F=> XNaj

as N — oo from the Hardy-Littlewood-Sobolev inequality (see (ILI)). We finish
the proof of (B.1I).

Lw* Lw* Lw

Then, by Lemma [5.2] we obtain

9IS @) S D st U@ 9@ g, (@)

j,k=1

Therefore, we conclude that

L NU2RQ) W (2FQ))™
Z ok(n+L+1)

) ’9’X2kQ-
ollvengy 2

g Zafllags,, < lallwaey

M0

71,72

For each (j,k) € N x N, write

L ONERQ) (2
ik = T ok(ntL+1) bjk = T

= Tolhwag X0

Then,
i Al(2FQ;)" T £(24Q;) ™

9k(n+K+1) 91Xarq, = Z Kjkbjk,

||g||VV./\/lZ(1J G k=1

J,k=1

each bj;, is supported on a cube Zij and

1
HbijW/wg(f < |27Q]%.
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Observe that xag, < Qk”MXQj. Hence, if we choose v,0 € R such that

1 1
K>a—£—1—|—0n—n, 0>—->

> —-, O<ov <1,
9 v — min(ry,79)

then we have

> z Al 2k O‘_*
<Z (KJ"CXQ’“QJ')U> - (Z < 2(k(n?lj(+1 2’“Qa> )
Jik=1 g k=1

Mid.ry

Tl T2

AN

Tl 72

: {iww@» w“}v

J=1

T
My

By virtue of Theorem [3.14], the Fefferman-Stein inequality for Morrey-Lorentz
spaces, alongside f; = (A\£(Q;)* /% XQj)l/ % we can remove the maximal operator
and obtain

1

(i(”vijszj)U)v S <°_° (Ajé(Qj)a_q%XQj)v> ;

j k=1
! 71,72 M;?”?
We distinguish two cases here:

(1) If &« = n/qo, then py = 19, p1 = 71, and py = 5. Thus, we can use (B.14).

(2) If @ > n/qo, then by Proposition B.I5 and Lemma [5.1] we obtain

(f: (/\jan)a_;)XQj)”) ;

J=1

|

Thus, we can still use (B.14]).

M9

1,79
1 1

) [i OVXQ;’)U] ) E < (i(&mj)”) 5

—
MY !

po
MP11P2

Consequently, we obtain

(Z <njkxmj>v> < fllagy,, < oo (5.2)

k=1
J MO
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Observe also that g > r¢ and ¢; > 7. Thus, by Theorem BI7 and (5.2)), it follows
that

”g : IafHMTO

71,79

1
0 v
< ||gHWMg(1) (Z (Klijszj)v) S ||9||WM3‘1J Hf”MZ?,pQ :

k=1
! My

5.2 Remark on Theorem

As mentioned [51, Remark 1.9], we see that one cannot simply prove Theorem
by naively combining Proposition and the Holder inequality for Morrey-
Lorentz quasi-norms (see Lemma [B.IT]). For more details, the proof of Theorem
is fundamental provided that pi1qo/po < ¢1 < qo. In fact, by virtue of Theorem
L9 3 3 - .
Po D1 _ P2 «Q

loflags,, S 1 Iy, =B =B m O

The conditions ro/po = r1/p1 = r2/p2 and 1/ro = 1/q0 + 1/po — a/n give
1 1 1 « 1
_:@(_+___) _ 1
T P1\4 Po N P10  P1

Hg : [afHMTO

71,79

by the embeddings WM (R") — WMP  (R") and M§27ﬁ2 (R") — Mgfm (R™)
if p1go/po < q1 and Py < ry. Also observe that 1/rg = 1/qo + 1/po — a/n > 1/qo,

or equivalently, gy > rg. Thus, by ¢; > r;, Theorem is significant only when
p1ro/Po < @1 < P1go/Po-

This yields
S Ngllwoazo Lf Lo

P1,P2

o7
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