CHUO MATH NO.135(2023)

A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

by Yoshihiro Sawano and Kazuki Kobayashi

JAN. 25 , 2023

A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

Yoshihiro Sawano and Kazuki Kobayashi

ABSTRACT. The purpose of the present note is to slightly shorten the proof of the atomic decomposition based on the paper by Dekel et. al. The atomic decomposition in the present paper is applicable to Hardy spaces based on the convexification of ball Banach spaces. The decomposition is rather canonical although it does not depend linearly on functions. Also, this decomposition is applicable under a rather weak condition as we will see.

1. Introduction

The goal of the present paper is to consider the atomic decomposition of the Hardy space $H^p(\mathbb{R}^n)$ for $p \in (0, \infty)$. Recall that the Hardy space $H^p(\mathbb{R}^n)$, $0 , collects all <math>f \in \mathcal{S}'(\mathbb{R}^n)$ for which

$$\left\|\sup_{t>0}|e^{t\Delta}f|\right\|_{L^p} < \infty,$$

where $\{e^{t\Delta}\}_{t>0}$ stands for the heat semigroup.

We use the following notation in the present paper: Let $\mathbb{N}_0 \equiv \{0, 1, \ldots\}$. A function $f \in L^{\infty}(\mathbb{R}^n)$ with compact support is said to have moment of order L if

$$\int_{\mathbb{R}^n} x^{\alpha} f(x) \mathrm{d}x = 0$$

for all $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq L$. Let $A, B \geq 0$. Then $A \lesssim B$ means that there exists a constant C > 0 such that $A \leq CB$, where C depends only on the parameters of importance. The symbol $A \sim B$ means that $A \lesssim B$ and $B \lesssim A$ happen simultaneously. The index σ_p is given by $\sigma_p \equiv \frac{n}{\min(1,p)} - n$ for 0 .

The goal of the present note is to provide a short proof of a well-known theorem based on the paper [?]. To this end, we set up some notation. Let $x \in \mathbb{R}^n$ and r > 0. We denote by B(x, r) the ball centered at x of radius r. Namely, we write

$$B(x,r) \equiv \{ y \in \mathbb{R}^n : |x-y| < r \}.$$

If x = 0, then omit it to write B(r) instead of B(x, r). The set of all balls is denoted by \mathcal{B} .

²⁰¹⁰ Mathematics Subject Classification. Primary 41A17, 42B35; Secondary 26A33.

Key words and phrases. Hardy spaces, variable exponents, atomic decomposition.

THEOREM 1.1. Let $0 . Let <math>f \in H^p(\mathbb{R}^n)$ and $L \in \mathbb{Z} \cap [[\sigma_p], \infty)$. Then there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ such that

$$f = \sum_{j=1}^{\infty} f_j \tag{1.1}$$

in $\mathcal{S}'(\mathbb{R}^n)$, that

$$\operatorname{supp}(f_j) \subset 8B_j \tag{1.2}$$

for all $j \in \mathbb{N}$ and that

$$\left(\sum_{j=1}^{\infty} \|f_j\|_{L^{\infty}}{}^p |B_j|\right)^{\frac{1}{p}} \lesssim \|f\|_{H^p}.$$
(1.3)

Here aB_j stands for the *a*-times expansion of B_j for a > 0. As in [?], the proof of Theorem ?? uses some Hilbert spaces and estimates as in Lemma ?? to control the grand maximal function. Recently Dekel, Kerkyacharian, Kyriazis and Petrushev significantly reduced this argument [?]. The goal of the present paper is to reexamine their proof and expand it to other Hardy spaces based on ball Banach function spaces.

In order to extend Theorem ?? to other Hardy spaces such as the one based on variable Lebesgue spaces, we slightly generalize Theorem ??. To this end, we recall an equivalent definition of $H^p(\mathbb{R}^n)$. We will use the notation $\langle x \rangle \equiv \sqrt{1+|x|^2}$ for $x \in \mathbb{R}^n$. To simplify the notation, for $N \in \mathbb{N}_0$, we define

$$p_N(\phi) \equiv \sum_{\substack{\alpha \in \mathbb{N}_0^n \\ |\alpha| \le N}} \left(\sup_{x \in \mathbb{R}^n} \langle x \rangle^N |\partial^\alpha \phi(x)| \right), \quad \phi \in \mathcal{S}(\mathbb{R}^n).$$
(1.4)

We define the unit ball \mathcal{F}_N with respect to p_N by

$$\mathcal{F}_N \equiv \{\phi \in \mathcal{S}(\mathbb{R}^n) : p_N(\phi) \le 1\}.$$
(1.5)

For $j \in \mathbb{Z}$ and $\phi \in \mathcal{S}(\mathbb{R}^n)$, we write

$$\phi^j \equiv 2^{jn} \phi(2^j \cdot). \tag{1.6}$$

Let $f \in \mathcal{S}'(\mathbb{R}^n)$. We define the grand maximal operator $\mathcal{M}_N f$ by

$$\mathcal{M}_N f(x) \equiv \sup_{k \in \mathbb{Z}, \phi \in \mathcal{F}_N} \left| \phi^k * f(x) \right| \quad (x \in \mathbb{R}^n).$$

Let $0 . We can say that the Hardy space <math>H^p(\mathbb{R}^n)$ is the set of all $f \in \mathcal{S}'(\mathbb{R}^n)$ for which the quantity $||f||_{H^p} \equiv ||\mathcal{M}_N f||_{L^p}$ is finite; this definition coincides with the one above as long as $N \gg 1$ [?, p. 91].

Denote by χ_E the indicator function of a set *E*. We refine Theorem ?? based on the spirit of Miyachi [?].

THEOREM 1.2. Let $0 . Let <math>f \in H^p(\mathbb{R}^n)$ and $L \in \mathbb{Z} \cap [[\sigma_p], \infty)$. Then there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and

$$\left(\sum_{j=1}^{\infty} (\|f_j\|_{L^{\infty}} \chi_{\frac{1}{2}B_j})^u\right)^{\frac{1}{u}} \lesssim \mathcal{M}_N f \tag{1.7}$$

for all $0 < u < \infty$ with the implicit constant depends only on n, N and u.

Once Theorem ?? is proved, we can prove Theorem ?? with ease. In fact, letting $r = p \in (0, 1]$, we integrate (??) to have (??). So, we concentrate on (re)proving Theorem ?? in the present note after stating some preliminary facts in Section ??. The proof of Theorem ?? is quite akin to the one in [?]. Since the conclusion gets tighter as L is larger, we may assume that $L \gg 1$. However, we start the proof from scratch to clarify what is actually needed for the decomposition. We prove Theorem ?? with the spirit of [?]. We actually prove Theorem ?? in Section ??. Section ?? expands what we proved in Section ??. As the starting point, we consider weighted Hardy spaces with weights in A_1 . After that, we investigate other function spaces based on weighted Hardy spaces with weights in A_1 .

2. Preliminaries

A distribution $f \in \mathcal{S}'(\mathbb{R}^n)$ is said to vanish weakly at infinity if $\psi^j * f \to 0$ in $\mathcal{S}'(\mathbb{R}^n)$ as $j \to -\infty$ for all $\psi \in \mathcal{S}(\mathbb{R}^n)$. Since

$$\|\psi^{j} * f\|_{L^{\infty}} = \mathcal{O}(2^{\frac{jn}{p}} \|f\|_{H^{p}})$$

for all $f \in H^p(\mathbb{R}^n)$, as $j \to -\infty$, any element in $H^p(\mathbb{R}^n)$ vanishes weakly at infinity. By taking advantage of the class \mathcal{F}_N , we use the following observation:

LEMMA 2.1. There exists A > 1 such that

$$\sup_{\phi \in \mathcal{F}_N} \left| \phi^k * f(x) \right| \le A \sup_{\phi \in \mathcal{F}_N} \left| \phi^k * f(y) \right|$$
(2.1)

for all $f \in \mathcal{S}'(\mathbb{R}^n)$ and $k \in \mathbb{Z}$ if $x, y \in \mathbb{R}^n$ satisfy $|x - y| \leq 2^{2-k}$.

PROOF. Let $\phi \in \mathcal{F}_N$. We calculate

$$\phi^{k} * f(x) = \left\langle f, \phi^{k}(x-\cdot) \right\rangle = \left\langle f, \phi^{k}\left((x-y) + (y-\cdot)\right) \right\rangle.$$

Let A > 1 be the constant in Lemma ??. Set

$$\phi_{k,x,y}(z) \equiv \phi\left(2^k(x-y)+z\right) \quad (z \in \mathbb{R}^n).$$

Then we have $p_N(\phi_{k,x,y}) \leq Ap_N(\phi)$ with the constant A > 1 depending on N. Thus,

$$\sup_{\phi \in \mathcal{F}_N} \left| \phi^k * f(x) \right| = A \sup_{\phi \in \mathcal{F}_N} \left| A^{-1}(\phi_{k,x,y})^k * f(y) \right| \le A \sup_{\phi \in \mathcal{F}_N} \left| \phi^k * f(y) \right|$$

proving (??).

We also need the well-known Whitney covering lemma.

LEMMA 2.2. Let Ω be a proper open set in \mathbb{R}^n . Write $\rho(x) \equiv \operatorname{dist}(x, \partial\Omega)$ for $x \in \mathbb{R}^n$. We let $\left\{ B\left(\xi_j, \frac{\rho_j}{5}\right) \right\}_{j=1}^{\infty}$ be a maximal disjoint family, where $\rho_j \equiv \rho(\xi_j)$ for $j \in \mathbb{N}$.

(1)
$$\Omega = \bigcup_{j=1}^{\infty} B\left(\xi_{j}, \frac{\rho_{j}}{2}\right).$$

(2) For each $j \in \mathbb{N}$, let

$$\mathcal{J}_{j} \equiv \left\{\nu \in \mathbb{N} \cap (j, \infty) : B\left(\xi_{j}, \frac{3}{4}\rho_{j}\right) \cap B\left(\xi_{\nu}, \frac{3}{4}\rho_{\nu}\right) \neq \emptyset\right\}.$$

Then $\sharp \mathcal{J}_{j} \leq 300^{n}$ and $7^{-1}\rho_{\nu} \leq \rho_{j} \leq 7\rho_{\nu}$ for all $\nu \in \mathcal{J}_{j}.$

PROOF. This is essentially contained in [?]. However, the number 300 did not appear in [?]. For the sake of convenience, we clarify why this number appears. Notice that

$$\sum_{\nu \in \mathcal{J}_j} \chi_{B\left(\xi_{\nu}, \frac{\rho_j}{35}\right)} \leq \sum_{\nu \in \mathcal{J}_j} \chi_{B\left(\xi_{\nu}, \frac{\rho_{\nu}}{5}\right)} \leq \chi_{B\left(\xi_j, \frac{37}{5}\rho_j\right)}$$

since

$$\frac{3}{4}\rho_j + \frac{3}{4}\rho_\nu + \frac{1}{5}\rho_\nu \le 6\rho_j + \frac{7}{5}\rho_j = \frac{37}{5}\rho_j.$$

Thus,

$$\sharp \mathcal{J}_j \times \frac{1}{35^n} \le \frac{37^n}{5^n},$$

implying $\sharp \mathcal{J}_j \leq 259^n \leq 300^n$.

3. Proof of Theorem ??

We transform Theorem ?? to the following equivalent form:

PROPOSITION 3.1. Let $0 . Let <math>f \in H^p(\mathbb{R}^n)$ and $L \in \mathbb{Z} \cap [[\sigma_p], \infty)$. Then there exists a countable collection $\{F_{j,r}\}_{j \in \mathbb{N}, r \in \mathbb{Z}}$ of L_c^{∞} -functions having moment of order L with the following properties:

(1) In $\mathcal{S}'(\mathbb{R}^n)$,

$$f = \sum_{(j,r)\in\mathbb{N}\times\mathbb{Z}} F_{j,r}.$$
(3.1)

(2) For all $j \in \mathbb{N}$ and $r \in \mathbb{Z}$, there exist $\xi_{j,r} \in \mathbb{R}^n$ and $\rho_{j,r} > 0$ such that

$$\operatorname{supp}(F_{j,r}) \subset B(\xi_{j,r}, 5\rho_{j,r}).$$
(3.2)

(3) For all $0 < u < \infty$,

$$\left(\sum_{(j,r)\in\mathbb{N}\times\mathbb{Z}} (\|F_{j,r}\|_{L^{\infty}}\chi_{B(\xi_{j,r},2^{-1}\rho_{j,r})})^{u}\right)^{\frac{1}{u}} \lesssim \mathcal{M}_{N}f,$$
(3.3)

where the implicit constant depends on u, N and n.

Section ?? is devoted to the proof of Proposition ?? assuming that $f \neq 0$. For each $k, r \in \mathbb{Z}$, we set

$$\Omega_r \equiv \{x \in \mathbb{R}^n : \mathcal{M}_N f(x) > 2^r\}$$

and

$$V_{k,r} \equiv \{ x \in \mathbb{R}^n : B(x, 2^{-k+1}) \subset \Omega_r \}.$$

Notice that each Ω_r is an open set and hence

$$\Omega_r = \bigcup_{k=-\infty}^{\infty} V_{k,r}$$

If $f \in \mathcal{S}'(\mathbb{R}^n) \setminus \{0\}$, then

$$\bigcup_{r=-\infty}^{\infty} \Omega_r = \mathbb{R}^n.$$

Here is a geometric observation we need.

LEMMA 3.2. Let
$$l_0, l_1, k, r \in \mathbb{Z}$$
 and $x \in (V_{l_0+1,r} \setminus V_{l_0,r}) \cap (V_{l_1+1,r+1} \setminus V_{l_1,r+1})$.
(1) $l_0 \leq l_1$.

- (2) If $B(x, 2^{-k}) \cap (V_{k,r} \setminus V_{k,r+1}) \neq \emptyset$, then $l_0 \le k \le l_1 + 1$. (3) If $l_0 + 2 \le k \le l_1 1$, then $B(x, 2^{-k}) \subset V_{k,r} \setminus V_{k,r+1}$.

PROOF. We remark that $x \in (V_{l_0+1,r} \setminus V_{l_0,r}) \cap (V_{l_1+1,r+1} \setminus V_{l_1,r+1})$ if and only if $2^{-l_0} \leq \operatorname{dist}(x, \partial \Omega_r) < 2^{-l_0+1}$ and $2^{-l_1} \leq \operatorname{dist}(x, \partial \Omega_{r+1}) < 2^{-l_1+1}$.

- (1) Since $\Omega_r \supset \Omega_{r+1}$, $\operatorname{dist}(x, \partial \Omega_{r+1}) \leq \operatorname{dist}(x, \partial \Omega_r)$. Thus, in view of the above observation, the result follows immediately.
- (2) Let $y \in B(x, 2^{-k}) \cap (V_{k,r} \setminus V_{k,r+1})$. Since $y \in V_{k,r}$,

$$2^{-l_0+1} > \operatorname{dist}(x, \partial \Omega_r) \ge \operatorname{dist}(y, \partial \Omega_r) - |x - y| \ge 2^{1-k} - 2^{-k} = 2^{-k},$$

implying $k \ge l_0$. Likewise, since $y \notin V_{k,r+1}$,

$$2^{-l_1} \le \operatorname{dist}(x, \partial \Omega_{r+1}) \le \operatorname{dist}(y, \partial \Omega_{r+1}) + |x-y| \le 2^{1-k} + 2^{-k} < 2^{2-k}.$$

implying $k \le l_1 + 1$.

(3) Let $z \in B(x, 2^{-k})$. Then since $x \in V_{l_0+1,r}$ and $k \ge l_0 + 2$, $\operatorname{dist}(z,\partial\Omega_r) \ge \operatorname{dist}(x,\partial\Omega_r) - |x-z| \ge 2^{-l_0} - 2^{-k} \ge 2^{1-k}.$

Hence $B(x, 2^{-k}) \subset V_{k,r}$. Likewise, since $x \notin V_{l_1, r+1}$,

dist
$$(z, \partial \Omega_{r+1}) \leq dist(x, \partial \Omega_{r+1}) + |x-z| < 2^{1-l_1} + 2^{-k} \leq 2^{1-k}$$

Hence $B(x, 2^{-k}) \cap V_{k, r+1} = \emptyset$.

Fix an integer $L > \frac{n}{2p}$ here and below. Let $\Phi, \Psi, \Theta \in C_{c}^{\infty}(\mathbb{R}^{n})$ be even functions supported in the unit ball and satisfy

$$\Psi = \Phi^1 - \Phi = \Delta^L \Theta, \quad \int_{\mathbb{R}^n} \Phi(x) dx = 1.$$
(3.4)

The pair (Φ, Ψ, Θ) is known to exist [?]. Write $\tilde{\Psi} \equiv \Phi^1 + \Phi$.

Let $f \in \mathcal{S}'(\mathbb{R}^n) \setminus \{0\}$ be a distribution vanishing weakly at infinity. Also let $k, r \in \mathbb{Z}$. We set

$$f_{k,r} \equiv \Psi^k * (\chi_{V_{k,r} \setminus V_{k,r+1}} \cdot \tilde{\Psi}^k * f).$$

A geometric observation shows that $f_{k,r}$ is supported on Ω_r . We also need the L^{∞} -bound for the function of this type.

LEMMA 3.3. Let $\Gamma, \tilde{\Gamma} \in C_c^{\infty}(\mathbb{R}^n)$ with $\operatorname{supp}(\Gamma), \operatorname{supp}(\tilde{\Gamma}) \subset B(1)$. Also let $E \subset$ \mathbb{R}^n be a measurable set. Then

$$|\Gamma^k * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap E} \cdot \tilde{\Gamma}^k * f)(x)| \lesssim 2^n$$

for all $x \in \mathbb{R}^n$.

PROOF. Since

$$\begin{aligned} &|\Gamma^{k} * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap E} \cdot \tilde{\Gamma}^{k} * f)(x)| \\ &\leq \int_{V_{k,r} \setminus V_{k,r+1}} |\Gamma^{k}(x-y)\tilde{\Gamma}^{k} * f(y)| \mathrm{d}y \\ &\leq A \int_{V_{k,r} \setminus V_{k,r+1}} |\Gamma^{k}(x-y)| \left(\inf_{z \in B(y, 2^{2-k})} |\tilde{\Gamma}^{k} * f(z)|\right) \mathrm{d}y \end{aligned}$$

thanks to Lemma ??, we have

$$|\Gamma^k * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap E} \cdot \tilde{\Gamma}^k * f)(x)| \lesssim 2^r \int_{V_{k,r} \setminus V_{k,r+1}} |\Gamma^k(x-y)| \mathrm{d}y \lesssim 2^r$$

by the definition of $\mathcal{M}_N f$, $V_{k,r+1}$ and Ω_r .

We decompose

$$f = \sum_{k=-\infty}^{\infty} \Psi^k * \tilde{\Psi}^k * f = \sum_{k=-\infty}^{\infty} \left(\sum_{r=-\infty}^{\infty} f_{k,r} \right).$$
(3.5)

We need to pay attention to the order of the summation in (??). However, if f is good enough, then we can interchange the order of the summation.

LEMMA 3.4. Assume that $f \in H^p(\mathbb{R}^n)$ with $0 and that the integer L in (??) satisfies <math>L \in \mathbb{Z} \cap \left(\frac{n}{2p}, \infty\right)$. Then

$$f = \sum_{k,r \in \mathbb{Z}} f_{k,r}$$

in the sense of absolute convergence in $\mathcal{S}'(\mathbb{R}^n)$. Namely,

$$\sum_{k,r\in\mathbb{Z}} |\langle f_{k,r},\varphi\rangle| < \infty$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

PROOF. Fix $k, r \in \mathbb{Z}$. Recall that Ψ is an even function. We calculate

$$\langle f_{k,r}, \varphi \rangle = \int_{V_{k,r} \setminus V_{k,r+1}} \Psi^k * \varphi(y) \tilde{\Psi}^k * f(y) \mathrm{d}y.$$

Thanks to (??), by using integration by parts, we have

$$\left|\Psi^{k} * \varphi(y)\right| = \left| (\Delta^{L} \Theta)^{k} * \varphi(y) \right| \lesssim 2^{-\max(0,2kL)} \langle y \rangle^{-2n-1} \quad (y \in \mathbb{R}^{n}),$$

if $k \in \mathbb{Z}$. Meanwhile, if $y \in V_{k,r} \setminus V_{k,r+1}$, we have

$$|\tilde{\Psi}^{k} * f(y)| \le Ap_{N}(\tilde{\Psi}) \inf_{z \in B(y, 2^{-k})} \mathcal{M}_{N}f(z) \lesssim 2^{\frac{kn}{p}} \|\mathcal{M}_{N}f\|_{L^{p}} = 2^{\frac{kn}{p}} \|f\|_{H^{p}}$$
(3.6)

thanks to Lemma ??. As a consequence,

$$|\langle f_{k,r},\varphi\rangle| \lesssim 2^{\frac{kn}{p} - \max(0,2kL)} \|f\|_{H^p} \int_{V_{k,r} \setminus V_{k,r+1}} \frac{\mathrm{d}y}{\langle y \rangle^{2n+1}}$$

If we add this inequality over $r \in \mathbb{Z}$, then we obtain

$$\sum_{r\in\mathbb{Z}} |\langle f_{k,r},\varphi\rangle| \lesssim 2^{\frac{kn}{p}-\max(0,2kL)} ||f||_{H^p} \int_{\mathbb{R}^n} \frac{\mathrm{d}y}{\langle y\rangle^{2n+1}}$$

$$\sim 2^{\frac{kn}{p}-\max(0,2kL)} ||f||_{H^p}.$$
(3.7)

If $L > \frac{n}{2p}$, then this estimate is summable over $k \in \mathbb{Z}$.

Once we can prove that the series converges absolutely, we see that the series converges back to f thanks to (??).

Remark that the power 2n + 1 in the above proof (see (??) for example) seems superfluous: This number will turn out important in Section ??.

From Lemma ??,

$$f = \sum_{r=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} f_{k,r} \right)$$
(3.8)

in $\mathcal{S}'(\mathbb{R}^n)$. We analyze the summand with r fixed.

LEMMA 3.5. Let $r \in \mathbb{Z}$. Then

$$\left|\sum_{k=-\infty}^{\infty} f_{k,r}(x)\right| \lesssim 2^r$$

for all $x \in \mathbb{R}^n$.

PROOF. Since each $f_{k,r}$ is supported on Ω_r , we may assume that $x \in \Omega_r$. We distinguish two cases:

• Let $x \in \Omega_{r+1}$. Choose $l_0, l_1 \in \mathbb{Z}$ so that $x \in (V_{l_0+1,r} \setminus V_{l_0,r}) \cap (V_{l_1+1,r+1} \setminus V_{l_1,r+1})$. Thanks to Lemma ??(1), $l_0 \leq l_1$. We further assume that $l_0 + 3 \leq l_1$; otherwise we may simply use Lemma ??

Fix $x \in \mathbb{R}^n$ and $k \in \mathbb{Z}$ so that $f_{k,r}(x) \neq 0$. Then $B(x, 2^{-k}) \cap (V_{k,r} \setminus V_{k,r+1}) \neq \emptyset$. Thus $l_0 \leq k \leq l_1 + 1$ according to Lemma ??(2).

Due to Lemma ??(3), $f_{k,r}(x) = \Psi^k * \tilde{\Psi}^k * f(x) = \Phi^{k+1} * \Phi^{k+1} * f(x) - \Phi^k * \Phi^k * f(x)$ if $l_0 + 2 \le k \le l_1 - 1$. Hence thanks to Lemma ??

$$\sum_{k=l_0+2}^{l_1-1} f_{k,r}(x) = \Phi^{l_1} * \Phi^{l_1} * f(x) - \Phi^{l_0+2} * \Phi^{l_0+2} * f(x) = \mathcal{O}(2^r).$$

We do not have to take into account the terms for $k \ge l_1 + 2$ or $k \le l_0 - 1$ since they vanish according to Lemma ??(2). If we handle the terms for $l_0 \le k \le l_0 + 1$ and $l_1 \le k \le l_1 + 1$ using Lemma ?? again, then we obtain the desired result.

• Let $x \in \Omega_r \setminus \Omega_{r+1}$. Then let $l_1 = \infty$ and $x \in V_{l_0+1,r} \setminus V_{l_0,r}$ with $l_0 \in \mathbb{Z}$ in the above and go through the same argument.

We can generalize Lemma ??, whose proof we omit.

LEMMA 3.6. Let $l_0, l_1, r \in \mathbb{Z}$ satisfy $l_0 < l_1$. Then

$$\left|\sum_{k=l_0}^{l_1} f_{k,r}(x)\right| \lesssim 2^r$$

for all $x \in \mathbb{R}^n$, where the implicit constant does not depend on l_0 and l_1 .

For an arbitrary set S, define an open set S_k by $S_k \equiv \{y \in \mathbb{R}^n : \operatorname{dist}(y, S) < 2^{1-k}\}.$

LEMMA 3.7. Let $l \in \mathbb{Z}$ and $x \in S_l \setminus S_{l+1}$.

- (1) Whenever $k < l, B(x, 2^{-k}) \subset S_k$.
- (2) Whenever $k \ge l+2$, $B(x, 2^{-k}) \cap S_k = \emptyset$.

PROOF. Since $x \in S_l \setminus S_{l+1}$, $2^{-l} \leq \operatorname{dist}(x, S) < 2^{1-l}$. Let $y \in B(x, 2^{-k})$.

(1) Using the triangle inequality, we obtain

$$\operatorname{dist}(y,S) \le |x-y| + \operatorname{dist}(x,S) \le 2^{-k} + 2^{1-l} \le 2^{1-k},$$

implying $y \in S_k$.

(2) Using the triangle inequality again, we obtain

$$\operatorname{dist}(y,S) \ge -|x-y| + \operatorname{dist}(x,S) > -2^{-k} + 2^{1-l} \ge 2^{1-k},$$
implying $y \notin S_k.$

Let S be a set. Set

$$F_S(x) \equiv \sum_{k=-\infty}^{\infty} \Psi^k * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap S_k} \cdot \tilde{\Psi}^k * f)(x) \quad (x \in \mathbb{R}^n).$$

If S is bounded, then by the Fubini theorem, we see that F_S satisfies the same moment condition as Ψ^k .

LEMMA 3.8. For any set S and $r \in \mathbb{Z}$, $||F_S||_{L^{\infty}} \leq 2^r$.

PROOF. Let $x \in S$ and $k \in \mathbb{Z}$. Then $B(x, 2^{-k}) \subset S_k$ and hence

$$(V_{k,r} \setminus V_{k,r+1}) \cap S_k \cap B(x, 2^{-k}) = (V_{k,r} \setminus V_{k,r+1}) \cap B(x, 2^{-k}).$$

Thus

$$F_S(x) = \sum_{k=-\infty}^{\infty} \Psi^k * (\chi_{V_{k,r} \setminus V_{k,r+1}} \cdot \tilde{\Psi}^k * f)(x) = \mathcal{O}(2^r).$$

Suppose $x \in S_l \setminus S_{l+1}$ for some $l \in \mathbb{Z}$. Then thanks to Lemmas ??, ?? and ??,

$$F_{S}(x) = \sum_{k=-\infty}^{l-1} \Psi^{k} * (\chi_{V_{k,r} \setminus V_{k,r+1}} \cdot \tilde{\Psi}^{k} * f)(x) + \sum_{k=l}^{l+1} \Psi^{k} * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap S_{k}} \cdot \tilde{\Psi}^{k} * f)(x) = O(2^{r}).$$

We slightly generalize Lemma ??. Let S be a set and $\kappa \in \mathbb{R}$. Set

$$F_{S,\kappa}(x) \equiv \sum_{k=-\infty}^{\infty} \chi_{(\kappa,\infty)}(k) \Psi^k * (\chi_{(V_{k,r} \setminus V_{k,r+1}) \cap S_k} \cdot \tilde{\Psi}^k * f)(x) \quad (x \in \mathbb{R}^n).$$

LEMMA 3.9. For any set $S, \kappa \in \mathbb{R}$ and $r \in \mathbb{Z}, ||F_{S,\kappa}||_{L^{\infty}} \leq 2^r$.

We do not prove Lemma ?? since it is similar to Lemma ??.

Form the Whitney decomposition of $\Omega_r = \{x \in \mathbb{R}^n : \mathcal{M}_N f(x) > 2^r\}$ for each $r \in \mathbb{Z}$. For $x \in \mathbb{R}^n$ and $r \in \mathbb{Z}$, we let $\rho_r(x) \equiv \operatorname{dist}(x, \partial \Omega_r)$. We let $\{B\left(\xi_{j,r}, \frac{\rho_{j,r}}{5}\right)\}_{j=1}^{\infty}$ be a maximal disjoint family, where $\rho_{j,r} \equiv \rho_r(\xi_{j,r})$ for $j \in \mathbb{N}$ and $r \in \mathbb{Z}$. Then we have the following properties:

(1)
$$\Omega_r = \bigcup_{j=1}^{\infty} B\left(\xi_{j,r}, 2^{-1}\rho_{j,r}\right).$$

(2) Let $j \in \mathbb{N}$ and $r \in \mathbb{Z}$. Set

$$\mathcal{J}_{j,r} \equiv \left\{ \nu \in \mathbb{N} \cap (j,\infty) : B\left(\xi_{j,r}, \frac{3}{4}\rho_{j,r}\right) \cap B\left(\xi_{\nu,r}, \frac{3}{4}\rho_{\nu,r}\right) \neq \emptyset \right\}.$$

Then
$$\#\mathcal{J}_{j,r} \leq 300^n$$
 and $7^{-1}\rho_{\nu,r} \leq \rho_{j,r} \leq 7\rho_{\nu,r}$ for each $\nu \in \mathcal{J}_{j,r}$.

Let $j \in \mathbb{N}$ and $k, r \in \mathbb{Z}$. We define $E_{j,k,r} \equiv B\left(\xi_{j,r}, 2^{-1}\rho_{j,r} + 2^{1-k}\right) \cap (V_{k,r} \setminus V_{k,r+1})$ if $B\left(\xi_{j,r}, 2^{-1}\rho_{j,r}\right) \cap (V_{k,r} \setminus V_{k,r+1}) \neq \emptyset$. If $B\left(\xi_{j,r}, 2^{-1}\rho_{j,r}\right) \cap (V_{k,r} \setminus V_{k,r+1}) = \emptyset$, then define $E_{j,k,r} \equiv \emptyset$. We have

$$\bigcup_{j=1}^{\infty} E_{j,k,r} = V_{k,r} \setminus V_{k,r+1} \quad (k,r \in \mathbb{Z}).$$

We set

$$R_{j,k,r} \equiv E_{j,k,r} \setminus \bigcup_{\nu=j+1}^{\infty} E_{\nu,k,r} \quad (j \in \mathbb{N}, k, r \in \mathbb{Z})$$

We write

$$F_{j,k,r} \equiv \Psi^k * (\chi_{R_{j,k,r}} \cdot \tilde{\Psi}^k * f)$$

and

$$F_{j,r} \equiv \sum_{l=-\infty}^{\infty} F_{j,l,r}$$

for $j \in \mathbb{N}$ and $k, r \in \mathbb{Z}$. As before, we can check that the sum defining $F_{j,r}$ converges absolutely in $\mathcal{S}'(\mathbb{R}^n)$. The next lemma shows that the limit belongs to $L^{\infty}(\mathbb{R}^n)$. Also observe that

$$f = \sum_{(k,r)\in\mathbb{Z}^2} f_{k,r} = \sum_{(j,k,r)\in\mathbb{N}\times\mathbb{Z}^2} F_{j,k,r} = \sum_{(j,r)\in\mathbb{N}\times\mathbb{Z}} F_{j,r}.$$

LEMMA 3.10. For all $j \in \mathbb{N}$ and $r \in \mathbb{Z}$, $|F_{j,r}| \leq 2^r \chi_{B(\xi_{j,r}, 8\rho_{j,r})}$.

PROOF. The proof consists of two steps.

• Let us verify that $F_{j,r}$ vanishes outside $B(\xi_{j,r}, 5\rho_{j,r})$. Let $k \in \mathbb{Z}$ satisfy $R_{j,k,r} \neq \emptyset$. Then $B(\xi_{j,r}, 2^{-1}\rho_{j,r}) \cap (V_{k,r} \setminus V_{k,r+1}) \neq \emptyset$. Let $z \in B(\xi_{j,r}, 2^{-1}\rho_{j,r}) \cap (V_{k,r} \setminus V_{k,r+1})$. Then

$$\frac{3}{2}\rho_{j,r} \ge |\xi_{j,r} - z| + \operatorname{dist}(\xi_{j,r}, \partial\Omega_r) \ge \operatorname{dist}(z, \partial\Omega_r) \ge 2^{1-k},$$

so that $\rho_{j,r} \ge \frac{4}{3} \cdot 2^{-k}$. Thus, $B(\xi_{j,r}, 2^{-1}\rho_{j,r} + 2^{1-k}) \subset B(\xi_{j,r}, 2\rho_{j,r})$. Since

$$\sup(F_{j,k,r}) \subset B\left(\xi_{j,r}, \frac{1}{2}\rho_{j,r} + 2^{1-k} + 2^{-k}\right) \subset B(\xi_{j,r}, 5\rho_{j,r})$$

we obtain the desired result.

• Let us obtain the L^{∞} -bound of $F_{j,r}$. If $k \in \mathbb{Z}$ satisfies $2^{-k} \geq 2\rho_{j,r}$, then from the definition of $\rho_{j,r}$,

$$\sup_{z \in B(\xi_{j,r}, 2^{-1}\rho_{j,r})} \operatorname{dist}(z, \partial\Omega_r) = \frac{3}{2}\rho_{j,r} \le 2^{-k}$$

and hence $B(\xi_{j,r}, 2^{-1}\rho_{j,r}) \cap (V_{k,r} \setminus V_{k,r+1}) = \emptyset$. Namely, if $k \leq -\log_2 \rho_{j,r} - 1$, then $B(\xi_{j,r}, 2^{-1}\rho_{j,r}) \cap (V_{k,r} \setminus V_{k,r+1}) = \emptyset$. From the definition of $\mathcal{J}_{j,r}$,

$$B(\xi_{\nu,r}, 2^{-1}\rho_{\nu,r} + 2^{1-k}) \subset B\left(\xi_{\nu,r}, \frac{3}{4}\rho_{\nu,r}\right)$$

for all $k \geq 10 - \log_2 \rho_{j,r}$ and $\nu \in \mathcal{J}_{j,r}$. Let

$$S \equiv \bigcup_{\nu \in \mathcal{J}_{j,r}} B(\xi_{\nu,r}, 2^{-1}\rho_{\nu,r}), \quad \tilde{S} \equiv S \cup B(\xi_{j,r}, 2^{-1}\rho_{j,r}).$$

Then we have

$$S_{k} \equiv \bigcup_{\nu \in \mathcal{J}_{j,r}} B(\xi_{\nu,r}, 2^{-1}\rho_{\nu,r} + 2^{1-k}), \quad (\tilde{S})_{k} \equiv S_{k} \cup B(\xi_{j,r}, 2^{-1}\rho_{j,r} + 2^{1-k})$$

and
$$R_{j,k,r} = \left\{ (\tilde{S})_{k} \cap (V_{k,r} \setminus V_{k,r+1}) \right\} \setminus \{S_{k} \cap (V_{k,r} \setminus V_{k,r+1})\}.$$

Thus

$$F_{j,r} = F_{\tilde{S},10-\log_2 \rho_{j,r}} - F_{S,10-\log_2 \rho_{j,r}} + \sum_{-\log_2 \rho_{j,r} \le k \le -\log_2 \rho_{j,r} + 10} F_{j,k,r}$$

It remains to use Lemma ??.

We conclude the proof of Proposition ??. Equality (??) is a consequence of Lemma ??. Thanks to Lemma ??, $f_{k,r}$ satisfies (??). It remains to prove (??). Using Lemma ?? again and the definition of Ω_r , we estimate

$$\sum_{(j,r)\in\mathbb{N}\times\mathbb{Z}} (\|F_{j,r}\|_{L^{\infty}}\chi_{B(\xi_{j,r},2^{-1}\rho_{j,r})})^{u} \lesssim \sum_{(j,r)\in\mathbb{N}\times\mathbb{Z}} 2^{ur}\chi_{B(\xi_{j,r},2^{-1}\rho_{j,r})}$$
$$\lesssim \sum_{r=-\infty}^{\infty} 2^{ur}\chi_{\Omega_{r}}$$
$$= \sum_{r=-\infty}^{\infty} 2^{ur}\chi_{(2^{r},\infty]}(\mathcal{M}_{N}f)$$
$$\lesssim (\mathcal{M}_{N}f)^{u},$$

as required.

4. Applications to Hardy spaces based on other ball Banach spaces

Here we modify the proof especially (??) to obtain the decomposition results for distributions in Hardy spaces based on other ball Banach spaces. As we saw in Section ??, it matters that the distribution vanishes weakly at infinity and that the distribution satisfies (??). Section ?? considers the weighted Hardy space $H^p(w)$ with $0 and <math>w \in A_1$. As an application of Section ??, we consider Hardy spaces based on ball Banach function spaces. We can locate Sections ??, ?? and ?? as further examples of Section ??. Hardy spaces with weight in A_{∞} , variable Hardy spaces and Hardy–Morrey spaces are considered in Sections ??, ?? and ??, respectively. We will give a precise condition on L in Sections ??, ?? and ??. We need to define the above spaces by way of \mathcal{M}_N . It is known in [?] that the function spaces we are going to handle in this section do not depend on the choice of N as long as $N \gg 1$. This condition L is used to obtain the boundedness of operators. However, as we mentioned, the condition on L can be tightened since we are considering the decompositions of distributions. So, although we present some concrete conditions on L in Sections ??, ?? and ??, we still may assume that L is large enough.

We will make use of the Hardy–Littlewood maximal operator M. The space $L^0(\mathbb{R}^n)$ denotes the set of all complex/ $[0, \infty]$ -valued measurable functions considered modulo the difference on the set of measure zero. For $f \in L^0(\mathbb{R}^n)$, define a function Mf by

$$Mf(x) \equiv \sup_{B \in \mathcal{B}} \chi_B(x) m_B(|f|) \quad (x \in \mathbb{R}^n).$$
(4.1)

Here $m_B(f)$ stands for the average of a locally integrable or non-negative function f over B. The mapping $M : f \mapsto Mf$ is called the Hardy-Littlewood maximal operator. We also use the powered Hardy-Littlewood maximal operator $M^{(\eta)}$ defined by

$$M^{(\eta)}f(x) \equiv \sup_{B \in \mathcal{B}} \left(\chi_B(x) m_B(|f|^{\eta}) \right)^{\frac{1}{\eta}},$$

where $0 < \eta < \infty$ and $f \in L^0(\mathbb{R}^n)$. Together with the Hardy–Littlewood maximal operator, we need to recall the notion of weights as well as their fundamental properties, which will be done in Sections ?? and ??. See [?] for more details on weights.

We remark that the same idea can be used for Hardy spaces based on other function spaces such as the ones considered in [?, ?, ?, ?, ?].

4.1. Weighted Hardy space $H^p(w)$ with $w \in A_1$. As the starting point, we seek to change $L^p(\mathbb{R}^n)$ by $L^p(w)$ for some good class of weights. Although we work in a rather special setting, this setting will be a core of our argument. By a weight we mean a function $w \in L^0(\mathbb{R}^n)$ which satisfies $0 < w(x) < \infty$ for almost all $x \in \mathbb{R}^n$. We write $w(A) \equiv \int_A w(x) dx$ if A is a measurable set of \mathbb{R}^n . The space

 $L^p(w)$ is the set of all $f \in L^0(\mathbb{R}^n)$ for which $\|f\|_{L^p(w)} \equiv \|fw^{\frac{1}{p}}\|_{L^p} < \infty$ (cf. [?]).

To proceed further, we compare the weights w and 1. Here we introduce a general definition following the book [?, p. 402]. A weight w_1 is comparable to a weight w_2 if there exist $\alpha, \beta < 1$ such that $w_1(A) \leq \beta w_1(B)$ for any measurable set A and any $B \in \mathcal{B}$ satisfying $A \subset B$ and $w_2(A) \leq \alpha w_2(B)$. It is important that comparability is symmetric; w_1 is comparable to w_2 if and only if w_2 is comparable to w_1 . In this case there exists $\delta > 0$ such that

$$\frac{w_1(A)}{w_1(B)} \lesssim \left(\frac{w_2(A)}{w_2(B)}\right)^{\delta} \tag{4.2}$$

and that

$$\frac{w_2(A)}{w_2(B)} \lesssim \left(\frac{w_1(A)}{w_1(B)}\right)^{\delta} \tag{4.3}$$

for any measurable set A and any $B \in \mathcal{B}$ satisfying $A \subset B$.

Let $0 , w be a weight and <math>f \in \mathcal{S}'(\mathbb{R}^n)$. Define

$$\|f\|_{H^p(w)} \equiv \|\mathcal{M}_N f\|_{L^p(w)}.$$

The weighted Hardy space $H^p(w)$ is the set of all $f \in \mathcal{S}'(\mathbb{R}^n)$ for which the quantity $||f||_{H^p(w)}$ is finite. In the present paper, as long as $N \gg 1$, the definition of $H^p(w)$ does not depend on the choice of N.

As a preliminary and important step, we consider A_1 -weights among other classes of weights. Recall that a locally integrable weight w is said be an A_1 -weight, if there exists $C_0 > 0$ such that

$$Mw(x) \le C_0 w(x) \tag{4.4}$$

for a.e. $x \in \mathbb{R}^n$. The infimum of C_0 satisfying (??) is called the A_1 -norm. Let $\Gamma \in \mathcal{S}(\mathbb{R}^n)$ and $k \in \mathbb{Z}$. We estimate

$$|\Gamma^{k} * f(x)| \le A \inf_{y \in B(x, 2^{-k})} |\Gamma^{k} * f(y)| \le \frac{Ap_{N}(\Gamma)}{w(B(x, 2^{-k}))^{\frac{1}{p}}} ||f||_{H^{p}(w)}$$

using Lemma ??. It follows from (??) and (??) that

$$\frac{w(B(x,1))}{w(B(x,2^{-k}))} \lesssim \left(\frac{|B(x,1)|}{|B(x,2^{-k})|}\right)^{\delta} = 2^{kn\delta}$$

for all $x \in \mathbb{R}^n$ and $k \in \mathbb{Z} \setminus \mathbb{N}$ and that

$$\frac{w(B(x,2^{-k}))}{w(B(x,1))} \gtrsim \left(\frac{|B(x,2^{-k})|}{|B(x,1)|}\right)^{\delta} = 2^{-kn\delta}$$

for all $x \in \mathbb{R}^n$ and $k \in \mathbb{N}$. Also, it follows from (??) that

$$\langle x \rangle^{-n} w(B(1)) \lesssim w(B(x,1)) \lesssim \langle x \rangle^n w(B(1))$$

Therefore,

$$|\Gamma^{k} * f(x)| \lesssim \frac{2^{\frac{kn\delta}{p}}}{w(B(x,1))^{\frac{1}{p}}} ||f||_{H^{p}(w)} \lesssim 2^{\frac{kn\delta}{p}} \langle x \rangle^{\frac{n}{p}} ||f||_{H^{p}(w)}.$$
(4.5)

Recall that $\Gamma \in \mathcal{S}(\mathbb{R}^n)$ is arbitrary. By letting $\Gamma = \tilde{\Psi}$, we learn that a counterpart to (??) still holds. Estimate (??) also shows that f vanishes weakly at infinity. As in [?], $A_1 \cap L^1(\mathbb{R}^n) = \emptyset$. Thus, Ω_r , the level set of $\mathcal{M}_N f$ at 2^r , can not coincide with \mathbb{R}^n , allowing us to use Lemma ??. Therefore, the same conclusion with $L \gg 1$ as Theorem ?? holds.

THEOREM 4.1. Let $0 , <math>f \in H^p(w)$ with $w \in A_1$ and let $L \gg 1$. Then there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).

4.2. Hardy spaces based on ball Banach function spaces. Based on Section **??**, we establish a general theory of the decomposition of distributions in Hardy spaces based on ball Banach function spaces.

DEFINITION 4.2 (Ball Banach function space). A mapping $\|\cdot\|_Y \to [0,\infty]$ is said to be a ball Banach function norm and the couple $(Y(\mathbb{R}^n), \|\cdot\|_Y)$ is said to be a ball Banach function space if $(Y(\mathbb{R}^n), \|\cdot\|_Y)$ satisfies (1)–(7) for all $f, g, f_j \subset L^0(\mathbb{R}^n), j \in \mathbb{N}$, and $\lambda \in \mathbb{C}$.

- (1) $(Y(\mathbb{R}^n), \|\cdot\|_Y)$ is a Banach space with the following property: $f \in Y(\mathbb{R}^n)$ if and only if $\|f\|_Y < \infty$.
- (2) (Norm property):
 - (A1) (Positivity): $||f||_Y \ge 0$.
 - (A2) (Strict positivity) $||f||_Y = 0$ if and only if f = 0 a.e..
 - (B) (Homogeneity): $\|\lambda f\|_Y = |\lambda| \cdot \|f\|_Y$.
 - (C) (Triangle inequality): $||f + g||_Y \le ||f||_Y + ||g||_Y$.
- (3) (Symmetry): $||f||_Y = |||f|||_Y$.
- (4) (Lattice property): If $0 \le g \le f$ a.e., then $||g||_Y \le ||f||_Y$.
- (5) (Fatou property): If $0 \le f_1 \le f_2 \le \cdots$ and $\lim_{j \to \infty} f_j = f$, then $\lim_{j \to \infty} ||f_j||_Y = ||f||_Y$.
- (6) For $B \in \mathcal{B}, \chi_B \in Y(\mathbb{R}^n)$.

(7) If
$$B \in \mathcal{B}$$
 and $f \in Y(\mathbb{R}^n)$, then $\chi_B f \in L^1(\mathbb{R}^n)$.

For a ball Banach function space $Y(\mathbb{R}^n)$, we let

$$Y'(\mathbb{R}^n) \equiv \left\{ f \in L^0(\mathbb{R}^n) : \|f\|_{Y'} \equiv \sup_{g \in Y, \|g\|_Y = 1} \|f \cdot g\|_{L^1} < \infty \right\}.$$

The space $Y'(\mathbb{R}^n)$ is called the Köthe dual of $Y(\mathbb{R}^n)$ and it is known that $Y'(\mathbb{R}^n)$ is a ball Banach space if $Y(\mathbb{R}^n)$ is a ball Banach space; see [?, Proposition 2.3]. Assume that $Y(\mathbb{R}^n)$ is a ball Banach function space such that M is bounded on $Y(\mathbb{R}^n)$ and $Y'(\mathbb{R}^n)$. Then there exists $\eta > 1$ such that $M^{(\eta)}$ is also bounded on $Y'(\mathbb{R}^n)$ according to [?, Corollary 6.1]. Thus, for all $f \in Y(\mathbb{R}^n)$,

$$\|f\|_{L^{1}(M^{(\eta)}\chi_{B(1)})} \leq \|f\|_{Y} \|M^{(\eta)}\chi_{B(1)}\|_{Y'} \lesssim \|f\|_{Y} \|\chi_{B(1)}\|_{Y'} \sim \|f\|_{Y}.$$
(4.6)

We can develop the theory of the decomposition of Hardy spaces based on $Y(\mathbb{R}^n)$. But we can extend the class of linear spaces to some extent. Consider the power of $Y(\mathbb{R}^n)$: For 0 , we define

$$||f||_{Y^{(p)}} \equiv (||f|^p||_Y)^{\frac{1}{p}}$$

for all $f \in L^0(\mathbb{R}^n)$. The *p*-convexification $Y^{(p)}(\mathbb{R}^n)$ of $Y(\mathbb{R}^n)$ is the set of all $f \in L^0(\mathbb{R}^n)$ for which $||f||_{Y^{(p)}} < \infty$. For example, $(L^p)^{(u)}(\mathbb{R}^n) = L^{pu}(\mathbb{R}^n)$ for all $0 < u < \infty$ and $1 \le p \le \infty$.

Let $Y(\mathbb{R}^n)$ be as above and let $X(\mathbb{R}^n) \equiv Y^{(p)}(\mathbb{R}^n)$ for some 0 . The X $based Hardy space <math>HX(\mathbb{R}^n)$ collects all $f \in \mathcal{S}'(\mathbb{R}^n)$ for which $||f||_{HX} \equiv ||\mathcal{M}_N f||_X$ is finite. The number N will do as long as $N \gg 1$. As is seen from (??), $HX(\mathbb{R}^n)$ is embedded into $H^p(w)$ for some $w \in A_1$. Therefore, the space $HX(\mathbb{R}^n)$ falls within the scope of Theorem ??.

THEOREM 4.3. Let $Y(\mathbb{R}^n)$ be a ball Banach function space such that M is bounded on $Y(\mathbb{R}^n)$ and $Y'(\mathbb{R}^n)$. Let $0 and define <math>X(\mathbb{R}^n) \equiv Y^{(p)}(\mathbb{R}^n)$. Then for any $f \in HX(\mathbb{R}^n)$ and $L \gg 1$, there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).

4.3. A_{∞} -Weighted Hardy spaces. We expand Section ?? using Section ??. A locally integrable weight w is said to be an A_{∞} -weight, if

$$[w]_{A_{\infty}} \equiv \sup_{B \in \mathcal{B}} m_B(w) \exp(-m_B(\log w)) < \infty.$$

The quantity $[w]_{A_{\infty}}$ is referred to as the A_{∞} -constant.

An important property of the class A_{∞} is that any weight in A_{∞} belongs to A_p for some $1 . Let <math>1 . A locally integrable weight w is an <math>A_p$ -weight, if

$$[w]_{A_p} \equiv \sup_{B \in \mathcal{B}} m_B(w) (m_B(w^{-\frac{1}{p-1}}))^{p-1} < \infty.$$

It is remarkable that $w \in A_p$ if and only if M is bounded on $L^p(w)$. A direct consequence of the definition is that $w \in A_p$ if and only if $\sigma \in A_{p'}$, where $\sigma \equiv w^{-\frac{1}{p-1}}$. Remark also that $\{A_p\}_{p \in [1,\infty]}$ is nested: $A_1 \subset A_p \subset A_q \subset A_\infty$ if $1 \leq p \leq q \leq \infty$.

Let $w \in A_{\infty}$ and $0 . Based on Section ??, we consider <math>H^p(w)$. Let $w \in A_{\infty}$, so that $w \in A_u$ for some $1 < u < \infty$. Then as we saw, M is bounded on $Y(\mathbb{R}^n) \equiv L^u(w)$ and on $Y'(\mathbb{R}^n) = L^{u'}(\sigma)$, where $\sigma \equiv w^{-\frac{1}{u-1}}$. Since $Y^{(p)}(\mathbb{R}^n) = L^{pu}(w)$ for all $0 , the space <math>L^p(w)$ with $0 and <math>w \in A_\infty$ falls within the scope of Theorem ??. In particular, Theorem ?? below can be used for another proof of the decomposition result in [?].

THEOREM 4.4. The same conclusion as Theorem ?? holds if we assume merely $w \in A_{\infty}$ in Theorem ??.

4.4. Variable Hardy spaces. For a measurable function $p(\cdot) : \mathbb{R}^n \to (0, \infty)$, the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$ with variable exponent $p(\cdot)$ is defined by

$$L^{p(\cdot)}(\mathbb{R}^n) \equiv \bigcup_{\lambda>0} \{ f \in L^0(\mathbb{R}^n) : \rho_p(\lambda^{-1}f) < \infty \},\$$

where

$$\rho_p(f) \equiv ||f|^{p(\cdot)}||_{L^1}$$

Moreover, for $f \in L^{p(\cdot)}(\mathbb{R}^n)$ we define the variable Lebesgue norm $\|\cdot\|_{L^{p(\cdot)}}$ by

$$||f||_{L^{p(\cdot)}} \equiv \inf \left(\{ \lambda > 0 : \rho_p(\lambda^{-1}f) \le 1 \} \cup \{\infty\} \right).$$

Here we postulate the following conditions with some positive constants c_* , c^* and p_{∞} independent of x and y:

• Local log-Hölder continuity condition:

$$|p(x) - p(y)| \le \frac{c_*}{\log(|x - y|^{-1})}$$
 for $x, y \in \mathbb{R}^n$ satisfying $|x - y| \le \frac{1}{2}$, (4.7)

• log-Hölder-type decay condition at infinity:

$$|p(x) - p_{\infty}| \le \frac{c^*}{\log(e+|x|)} \text{ for } x \in \mathbb{R}^n.$$

$$(4.8)$$

Assuming (??) and (??) as well as $0 < p_{-} \equiv \inf p(\cdot) \leq p_{+} \equiv \sup p(\cdot) < \infty$, we can define variable Hardy space $H^{p(\cdot)}(\mathbb{R}^{n})$ as the set of all $f \in \mathcal{S}'(\mathbb{R}^{n})$ for which $\mathcal{M}_{N}f \in L^{p(\cdot)}(\mathbb{R}^{n})$. The number N will do as long as $N \gg 1$. Theorem ?? did not use the structure of the underlying space $L^{p}(\mathbb{R}^{n})$ heavily except in (??) and in the proof of the fact that the distribution vanishes weakly at infinity. Modify slightly the proof of Theorem ??, in particular (??), to have the following short proof of the key estimates of the decomposition theorems in [?, ?].

THEOREM 4.5. Assume that the exponent $p(\cdot)$ satisfies the above conditions. Let $f \in H^{p(\cdot)}(\mathbb{R}^n)$ and $L \in \mathbb{Z} \cap [[\sigma_{p_-}], \infty)$. Then there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying $(\ref{eq:relation})$, $(\ref{eq:relation})$.

We may use Theorem ?? for another proof of Theorem ??, since M is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$ and on $L^{p'(\cdot)}(\mathbb{R}^n)$ as long as $p(\cdot)$ satisfies (??) and (??) as well as $1 < p_- \leq p_+ < \infty$. Here $p'(\cdot) = \frac{p(\cdot)}{p(\cdot)-1}$ stands for the dual exponent.

4.5. Hardy–Morrey spaces. First of all, let us recall the Morrey space $\mathcal{M}^p_q(\mathbb{R}^n)$ with $0 < q \leq p < \infty$. Define the Morrey norm $\|\cdot\|_{\mathcal{M}^p_q}$ by

$$||f||_{\mathcal{M}^p_q} \equiv \sup\left\{|B|^{\frac{1}{p}-\frac{1}{q}}||f||_{L^q(B)} : B \in \mathcal{B}\right\}$$

for $f \in L^0(\mathbb{R}^n)$. See [?] for example. The Morrey space $\mathcal{M}^p_q(\mathbb{R}^n)$ is the set of all $f \in L^0(\mathbb{R}^n)$ for which $\|f\|_{\mathcal{M}^p_q}$ is finite. The Hardy–Morrey space $H\mathcal{M}^p_q(\mathbb{R}^n)$ is the

set of all $f \in \mathcal{S}'(\mathbb{R}^n)$ for which $||f||_{H\mathcal{M}^p_q} \equiv ||\mathcal{M}_N f||_{\mathcal{M}^p_q}$ is finite. The number N will do as long as $N \gg 1$.

We recall the following facts:

- (1) Thanks to [?], M is bounded on $\mathcal{M}^p_a(\mathbb{R}^n)$ if $1 < q \le p < \infty$.
- (2) In [?], the Köthe dual of $\mathcal{M}_q^p(\mathbb{R}^n)$ is specified if $1 < q \le p < \infty$.
- (3) Thanks to [?], M is bounded on the Köthe dual of $\mathcal{M}_q^p(\mathbb{R}^n)$ if $1 < q \leq p < \infty$.

Let $0 < q \leq p < \infty$ again. Then from the above observation the space $\mathcal{M}_q^p(\mathbb{R}^n)$ falls under the scope of Theorem ??.

THEOREM 4.6. Let $0 < q \le p < \infty$. Let $f \in H\mathcal{M}_q^p(\mathbb{R}^n)$ and $L \in \mathbb{Z} \cap [[\sigma_q], \infty)$. Then there exist a countable collection $\{f_j\}_{j=1}^{\infty}$ of L_c^{∞} -functions having moment of order L and a countable collection $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying $(\ref{eq:relation})$, $(\ref{eq:relation})$.

Theorem ?? recovers the results in [?, ?, ?]. It is noteworthy that in the present paper we did not depend on the diagonal argument in [?, ?]. As we did for variable Hardy spaces, we may also reexamine the proof of Theorem ?? to prove Theorem ??.

References

- D.R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 279 (1986), no. 1, 73–94.
- [2] A. Akbulut, V.S. Guliyev, T. Noi and Y. Sawano, Generalized Hardy-Morrey spaces, Z. Anal. Anwend., 36 (2017), no. 2, 129–149.
- [3] D. Cruz-Uribe and D.L. Wang, Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), no. 2, 447–493.
- [4] F. Chiarenza and M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat., 7 (1987), 273–279.
- [5] S. Dekel, G. Kerkyacharian, G. Kyriazis and P. Petrushev, A New Proof of the Atomic Decomposition of Hardy Spaces, CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2016 (K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 59-73 Prof. Marin Drinov Academic Publishing House, Sofia, 2018.
- [6] J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud., 116 1985.
- [7] K.P. Ho, Atomic decompositions of weighted Hardy spaces with variable exponents, Tohoku Math. J. (2) 69 (2017), no. 3, 383–413.
- [8] K.P. Ho, Atomic decompositions and Hardy's inequality on weak Hardy–Morrey spaces, Sci. China Math. 60 (2017), no. 3, 449–468.
- [9] K.P. Ho, Y. Sawano, D. Yang, and S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. 525 (2017), 1–102.
- [10] G. Di Fazio, D.I. Hakim and Y. Sawano, Morrey Spaces. Vol. I. Introduction and applications to integral operators and PDE's. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2020. 479 pp. ISBN: 978-1-4987-6551-0; 978-0-429-08592-5 46-02 (2020)
- [11] T. Iida, Y. Sawano and H. Tanaka, Atomic decomposition for Morrey spaces, Z. Anal. Anwend., 33 (2014), no. 2, 149–170.
- [12] H. Jia and H. Wang, Decomposition of Hardy–Morrey spaces, J. Math. Anal. Appl. 354 (2009), 99–110.
- [13] A. Miyachi, Change of variables for weighted Hardy spaces on a domain, Hokkaido Math. J. 38(3): 519–555. DOI: 10.14492/hokmj/1258553975
- [14] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), 3665–3748.
- [15] Y. Sawano, Theory of Besov spaces, Developments in Mathematics, 56. Springer, Singapore, 2018. xxiii+945 pp.

- [16] Y. Sawano and H. Tanaka, Predual spaces of Morrey spaces with non-doubling measures, Tokyo J. Math. 32 (2009), 471–486.
- [17] Y. Sawano and H. Tanaka. The Fatou property of block spaces, J. Math. Sci. Univ. Tokyo. 22 (2015), 663–683.
- [18] T. Schott, Function spaces with exponential weights I. Math. Nachr. 189 (1998), 221–242.
- [19] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, 1993.
- [20] J.O. Strömberg and A. Torchinsky, Weighted Hardy spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)
- [21] J.S. Sun,D. Yang and W. Yuan, Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón-Zygmund operators, J. Geom. Anal. **32** (2022), no. 7, Paper No. 191, 85 pp.
- [22] Y.Y. Zhang, D. Yang and W. Yuan, Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions, Commun. Contemp. Math. 24 (2022), no. 6, Paper No. 2150004, 35 pp.
- [23] Y.Y. Zhang, D. Yang, W. Yuan and S.B. Wang, Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math. 64 (2021), no. 9, 2007–2064.

Department of Mathematics, Chuo University, 1-13-27, Kasuga, 112-8551, Tokyo, Japan

Email address: yoshihiro-sawano@celery.ocn.ne.jp

Department of Mathematics, Chuo University, 1-13-27, Kasuga, 112-8551, Tokyo, Japan

Email address: a19.dad7@g.chuo-u.ac.jp

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊	行年月	論文名	著者
No. 1	1988	ON THE DEFORMATIONS OF WITT GROUPS TO TORI II	Tsutomu SEKIGUCHI
No. 2	1988	On minimal Einstein submanifold with codimension two	Yoshio MATSUYAMA
No. 3	1988	Minimal Einstein submanifolds	Yoshio MATSUYAMA
No. 4	1988	Submanifolds with parallel Ricci tensor	Yoshio MATSUYAMA
No. 5	1988	A CASE OF EXTENSIONS OF GROUP SCHEMES OVER	Tsutomu SEKIGUCHI
		A DISCRETE VALUATION RING	and Noriyuki SUWA
No. 6	1989	ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES	S.HURDER
			and Y.MITSUMATSU
No. 7	1989	ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR	Paul DUPUIS and Hitoshi ISHII
		SECOND-ORDER ELLIPTIC PDE'S ON NONSMOOTH DOMAINS	
No. 8	1989	SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER	Tsutomu SEKIGUCHI
		A DI SCRETE VALUATION RING I	and Noriyuki SUWA
No. 9	1989	ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR	Paul DUPUIS
		SECOND- ORDER ELLIPTIC PDE'S ON DOMAINS WITH CORNERS	and Hitoshi ISHII
No. 10	1989	MILNOR'S INEQUALITY FOR 2-DIMENSIONAL ASYMPTOTIC CYCLES	Yoshihiko MITSUMATSU
No. 11	1989	ON THE SELF-INTERSECTIONS OF FOLIATION CYCLES	Yoshihiko MITSUMATSU
No. 12	1989	On curvature pinching of minimal submanifolds	Yoshio MATSUYAMA
No. 13	1990	The Intersection Product of Transverse Invariant Measures	S.HURDER
			and Y.MITSUMATSU
No. 14	1990	The Transverse Euler Class for Amenable Foliations	S.HURDER
			and Y.MITSUMATSU
No. 14	1989	The Maximum Principle for Semicontinuous Functions	M.G.Crandall and H.ISHII
No. 15	1989	Fully Nonliear Oblique DerivativeProblems for Nonlinear Second-Order Elliptic PDE's.	Hitoshi ISHII
No. 15	1990	On Bundle Structure Theorem for Topological Semigroups.	Yoichi NADUMO, Masamichi TOKIZAWA
			and Shun SATO
No. 16	1990	On Linear Orthogonal Semigroup \mathfrak{O}_n	
		- Sphere bundle structure, homotopy type and Lie algebra -	Masamichi TOKIZAWA and Shun SATO
No. 17	1990	On a hypersurface with birecurrent second fundamental tensor.	Yoshio MATSUYAMA
No. 18	1990	User's guide to viscosity solutions of second order partial differential equationd.	M. G. CRANDALL, H. ISHII and P. L. LIONS
No. 19	1991	Viscosity solutions for a class of Hamilton-Jacobi equations	H. ISHII
		in Hilbert spaces.	
No. 20	1991	Perron's methods for monotone systems of second-order elliptic PDEs.	H. ISHII
No. 21	1991	Viscosity solutions for monotone systems of second-order elliptic PDEs.	H. ISHII and S. KOIKE
No. 22	1991	Viscosity solutions of nonlinear second-order partial differential equations in Hilbert spaces.	H. ISHII
No. 23		· · · · · ·	
No. 24	1992	On some pinching of minimal submanifolds.	Y. MATSUYAMA
No. 25	1992	Transverse Euler Class of Foliations on Almost Compact Foliation Cycles.	S. HURDER
20			and Y. MITSUMATSU
No. 26	1992	Local Homeo- and Diffeomorphisms: Invertibility and Convex Image.	G. ZAMPIERI and G. GORNI

No.	$27\ 1$.992	Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space.	. G. ZAMPIERI and G. GORNI
No.	$28 \ 1$.992	Uniqueness of solutions to the Cauchy problems for $u_t - \triangle u + r \bigtriangledown u ^2 =$	0I. FUKUDA, H. ISHII
				and M. TSUTSUMI
No.	29 1	992	Viscosity solutions of functional differential equations.	H. ISHII and S. KOIKE
No.	$30 \ 1$.993	On submanifolds of sphere with bounded second fundamental form	Y. MATSUYAMA
No.	$31 \ 1$.993	On the equivalence of two notions of weak solutions, viscosty solutions	H. ISHII
			and distributional solutions.	
No.	$32\ 1$.993	On curvature pinching for totally real submanifolds of $CP^n(c)$	Y. MATSUYAMA
No.	$33\ 1$.993	On curvature pinching for totally real submanifolds of $HP^n(c)$	Y. MATSUYAMA
No.	$34\ 1$.993	On curvature pinching for totally complex submanifolds of $HP^n(c)$	Y. MATSUYAMA
No.	$35 \ 1$.993	A new formulation of state constracts problems for first-order PDEs.	H. ISHII and S. KOIKE
No.	$36\ 1$.993	On Multipotent Invertible Semigroups.	M. TOKIZAWA
No.	$37\ 1$.993	On the uniquess and existence of sulutions of fully nonlinear parabolic	H. ISHII and K. KOBAYASHI
			PDEs under the Osgood type condition	
No.	$38 \ 1$.993	Curvatura pinching for totally real submanifolds of $CP^{n}(c)$	Y. MATSUYAMA
No.	$39\ 1$.993	Critical Gevrey index for hypoellipticity of parabolic operators and	T. GRAMCHEV
			Newton polygones	P.POPIVANOV
				and M.YOSHINO
No.	40 1	993	Generalized motion of noncompact hypersurfaces with velocity having	H. ISHII
			arbitray growth on the curvature tensor.	and P. E.SOUGANIDIS
No.	41 1	.994	On the unified Kummer-Artin-Schreier-Witt theory	T. SEKIGUCHI and N. SUWA
No.	42 1	.995	Uniqueness results for a class of Hamilton-Jacobi equations with	Hitoshi ISHII
			singular coefficients.	and Mythily RAMASWARY
No.	43 1	.995	A genaralization of Bence, Merriman and Osher algorithm for motion	
			by mean curvature.	
No.	44 1	995	Degenerate parabolic PDEs with discontinuities and generalized	Todor GRAMCHEV
				and Masafumi YOSHINO
No.	45 1	995	Normal forms of pseudodifferential operators on tori and diophantine	Todor GRAMCHEV
			phenomena.	and Masafumi YOSHINO
No.	46 1	996	On the dustributions of likelihood ratio criterion for equality	Shin-ichi TSUKADA
			of characteristic vectors in two populations.	and Takakazu SUGIYAMA
No.	47 1	.996	On a quantization phenomenon for totally real submanifolds of $CP^n(c)$	Yoshio MATSUYAMA
No.	48 1	.996	A charactarization of real hypersurfaces of complex projective space.	Yoshio MATSUYAMA
No.	49 1	.999	A Note on Extensions of Algebraic and Formal Groups, IV.	T. SEKIGUCHI and N. SUWA
No.	$50 \ 1$.999	On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_a$	Mitsuaki YATO
			over a $\mathbb{Z}_{(p)}$ -algebra	
No.	$51\ 2$	2003	On the descriptions of $\mathbb{Z}/p^n\mathbb{Z}$ -torsors	Kazuyoshi TSUCHIYA
			by the Kummer-Artin-Schreier-Witt theory	
No.	$52\ 2$	2003	ON THE RELATION WITH THE UNIT GROUP SCHEME $U(\mathbb{Z}/p^n)$	Noritsugu ENDO
			AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME	
No.	$54\ 2$	2004	ON NON-COMMUTATIVE EXTENTIONS OF	Yuki HARAGUCHI
			$\mathbb{G}_{a,A}$ BY $\mathbb{G}_{m,A}$ OVER AN \mathbb{F}_p -ALGEBRA	
No.	$55\ 2$	2004	ON THE EXTENSIONS OF \widehat{W}_n BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$ -ALGEBRA	Yasuhiro NIITSUMA
No.	$56\ 2$	2005	On inverse multichannel scattering	V.MARCHENKO
				K.MOCHIZUKI
				and I.TROOSHIN
No.	$57\ 2$	2005	On Thurston's inequality for spinnable foliations	H.KODAMA, Y.MITSUMATSU
				S.MIYOSHI and A.MORI

No.	58	2006	Tables of Percentage Points for Multiple Comparison Procedures	Y.MAEDA, T.SUGIYAMA and Y.EUJIKOSHI
No.	59	2006	COUTING POINTS OF THE CURVE $y^4 = x^3 + a$ OVER A FINITE FIELD	Eiji OZAKI
No.	60	2006	TWISTED KUMMER AND KUMMER-ARTIN-SCHREIER THEORIES	Norivuki SUWA
No.	61	2006	Embedding a Gaussian discrete-time $ARMA(3,2)$ process in a Gaussian continuous-time $ARMA(3,2)$ process	Mituaki HUZII
No.	62	2006	Statistical test of randomness for cryptographic applications	Mituaki HUZII, Yuichi TAKEDA Norio WATANABE Toshinari KAMAKURA and Takakazu SUGIYAMA
No.	63	2006	ON NON-COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_a$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_p -algebra	Yuki HARAGUCHI
No.	64	2006	Asymptotic distribution of the contribution ratio in high dimensional	Y.FUJIKOSHI
			principal component analysis	T.SATO and T.SUGIYAMA
No.	65	2006	Convergence of Contact Structures to Foliations	Yoshihiko MITSUMATSU
No.	66	2006	多様体上の流体力学への幾何学的アプローチ	三松 佳彦
No.	67	2006	Linking Pairing, Foliated Cohomology, and Contact Structures	Yoshihiko MITSUMATSU
No.	68	2006	On scattering for wave equations with time dependent coefficients	Kiyoshi MOCHIZUKI
No.	69	2006	On decay-nondecay and scattering for <i>Schrödinger</i> equations with	K.MOCHIZUKI and T.MOTAI
No	70	2006	time dependent complex potentials Counting Deinte of the Curre $a^2 = m^{12} + a$ even a Finite Field	Vegenhing NHTCHMA
No.	70	2000	Counting Fouries of the Curve $y = x^{-} + a$ over a Finite Field Quesi conformally flat manifolds satisfying cortain condition	I C Do and V MATSUVAMA
110.	11	2000	on the Ricci tensor	0.0.De and 1.MAISUIAMA
No	79	2006	Symplectic volumes of certain symplectic quotients	T SUZUKI and T TAKAKURA
110.	12	2000	associated with the special unitary group of degree three	
No	73	2007	Foliations and compact leaves on 4-manifolds I	Y MITSUMATSU and E VOGT
110.	10	2001	Realization and self-intersection of compact leaves	
No.	74	2007	ON A TYPE OF GENERAL BELATIVISTIC SPACETIME	A.A.SHAIKH
1.01		-00.	WITH W2-CURVATURE TENSOR	and Y.MATSUYAMA
No.	75	2008	Remark on TVD schemes to nonstationary convection equation	Hirota NISHIYAMA
No.	76	2008	THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL	Masashi TAKAMURA
110.			POISSON VECTOR FIELDS AND LAPLACE OPERATORS	
No.	77	2008	Reeb components and Thurston's inequality	S.MIYOSHI and A.MORI
No.	78	2008	Permutation test for equality of individual	H.MURAKAMI, E.HINO
			eigenvalues from covariance matrix in high-dimension	and T.SUGIYAMA
No.	79	2008	Asymptotic Distribution of the Studentized Cumulative	M.HYODO, T.YAMADA
			Contribution Ratio in High-Dimensional PrincipalComponent Analysis	and T.SUGIYAMA
No.	80	2008	Table for exact critical values of multisample Lepage type statistics when $h = 2$	Hidetoshi MURAKAMI
No	01	2008	when $k = 5$	Novigula SUWA
No.	81 82	2008	DEEODMATIONS OF THE KUMMED SEQUENCE	Vuii TSUNO
No.	04 82	2008 2008	ON RENNEOUIN'S ISOTOPY LEMMA	Tuji ISUNO Voshihiko MITSUMATSU
110.	00	2000	AND THURSTON'S INFOUALITY	Iosimiko WIIISOWAISO
No	8/	2000	On solvability of Stokes problems in special Morrov space La	N KIKUCHI and C & SERECIN
No.	85	2009	On the Cartier Duality of Certain Finite Group Schemes of type (p^n, p^n)	N.AKI and M.AMANO

No. 86 2010	Construction of solutions to the Stokes equations	Norio KIKUCHI
No. 87 2010	RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A	U.C.De and Y.MATSUYAMA
	KENMOTSU MANIFOLD	
No. 88 2010	On the group of extensions $\operatorname{Ext}^{1}(\mathcal{G}^{(\lambda_{0})}, \mathcal{E}^{(\lambda_{1}, \dots, \lambda_{n})})$	Takashi KONDO
	over a discrete valuation ring	
No. 89 2010	Normal basis problem for torsors under a finite flat group scheme	Yuji TSUNO
No. 90 2010	On the homomorphism of certain type of models of algebraic tori	Nobuhiro AKI
No. 91 2011	Leafwise Symplectic Structures on Lawson's Foliation	Yoshihiko MITSUMATSU
No. 92 2011	Symplectic volumes of double weight varieties associated with $SU(3)/T$	Taro SUZUKI
No. 93 2011	On vector partition functions with negative weights	Tatsuru TAKAKURA
No. 94 2011	Spectral representations and scattering for	K.MOCHIZUKI
	Schrodinger operators on star graphs	and I.TOROOSHIN
No. 95 2011	Normally contracting Lie group actions	T.INABA, S.MATSUMOTO
		and Y.MITSUMATSU
No. 96 2012	Homotopy invariance of higher K-theory for abelian categories	S.MOCHIZUKI and A.SANNAI
No. 97 2012	CYCLE CLASSES FOR <i>p</i> -ADIC ÉTALE TATE TWISTS	Kanetomo SATO
1101 01 2012	AND THE IMAGE OF <i>p</i> -ADIC REGULATORS	
No. 98 2012	STRONG CONVERGENCE THEOREMS FOR GENERALIZED	YUKINO TOMIZAWA
110. 00 2012	EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE	
	MAPPINGS IN BANACH SPACES	
No. 99 2013	Global solutions for the Navier-Stokes equations	Tsukasa Iwabuchi
	in the ratational framework	and Rvo Takada
No.100 2013	On the cyclotomic twisted torus and some torsors	Tsutomu Sekiguchi
		and Yohei Toda
No.101 2013	Helicity in differential topology and incompressible fluids	Yoshihiko Mitsumatsu
	on foliated 3-manifolds	
No.102 2013	LINKS AND SUBMERSIONS TO THE PLANE	SHIGEAKI MIYOSHI
	ON AN OPEN 3-MANIFOLD	
	この論文には改訂版(No.108)があります。そちらを参照してください。	
No.103 2013	GROUP ALGEBRAS AND NORMAL BASIS PROBLEM	NORIYUKI SUWA
No.104 2013	Symplectic volumes of double weight varieties associated with $SU(3)$. II	Taro Suzuki
No.105 2013	REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC	SHYAMAL KUMAR HUI
	COMPLEX PROJECTIVE SPACE	AND YOSHIO MATSUYAMA
No.106 2014	CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF	YUKINO TOMIZAWA
1101100 2011	NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES	
No.107 2014	Thurston's h-principle for 2-dimensional Foliations	Yoshihiko MITSUMATSU
	of Codimension Greater than One	and Elmar VOGT
No 108 2015	LINKS AND SUBMERSIONS TO THE PLANE	SHIGEAKI MIYOSHI
110.100 2010	ON AN OPEN 3-MANIFOLD	
No 109 2015	KUMMER THEORIES FOR ALGEBRAIC TORI	NOBIYIIKI SUWA
110.100 2010	AND NORMAL BASIS PROBLEM	
No 110 2015	L^p -MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS	TSUKASA IWABUCHI
10.110 2010	IN OPEN SETS OF \mathbb{R}^d	TOKIO MATSUVAMA
		AND KOICHI TANICUCHI
No 111 2015	Nonautonomous differential equations and	Voshikazu Kohavashi Naoki Tanaka
110.111 2010	Linschitz evolution operators in Banach spaces	and Yukino Tomizawa
No 119 2015	Clobal solvability of the Kirchhoff equation with Course data	Tokio Matsuvama
110.112 2010	Grobal solvability of the Michigan equation with Gevrey data	and Michael Buzhansky
		and minimati muzitalisky

No.113 2015 A small remark on flat functions

No.114 2015 Reeb components of leafwise complex foliations and their symmetries I

No.115 2015 Reeb components of leafwise complex foliations and their symmetries II No.116 2015 Reeb components of leafwise complex foliations and their symmetries III

No.117 2016 Besov spaces on open sets

No.118 2016 Decay estimates for wave equation with a potential on exterior domains

No.119 2016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A GENERAL TYPE OF DISSIPATIVITY CONDITIONS

No.120 2017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE

No.121 2017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

No.122 2018 Geometric aspects of Lucas sequences, I

No.123 2018 Derivatives of flat functions

No.124 2018 Geometry and dynamics of Engel structures

- No.125 2018 Geometric aspects of Lucas sequences, II
- No.126 2018 On volume functions of special flow polytopes

No.127 2019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY

No.128 2019 On syntomic complex with modulus for semi-stable reduction case

- No.129 2019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES
- No.130 2020 Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces
- No.131 2020 Global well-posedness of the Kirchhoff equation
- No.132 2021 Sparse non-smooth atomic decomposition of quasi-Banach lattices
- No.133 2021 Integer values of generating functions for Lucas sequences
- No.134 2022 Littlewood–Paley characterization of discrete Morrey spaces and its application to the discrete martingale transform
- No.135 2023 A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

Kazuo MASUDA and Yoshihiko MITSUMATSU Tomohiro HORIUCHI and Yoshihiko MITSUMATSU Tomohiro HORIUCHI and Yoshihiko MITSUMATSU Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Vladimir Georgiev and Tokio Matsuyama YOSHIKAZU KOBAYASHI AND NAOKI TANAKA YOSHIO MATSUYAMA

Tsukasa Iwabuchi, Tokio Matsuyama and Koichi Taniguchi Noriyuki Suwa Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU Yoshihiko MITSUMATSU Noriyuki Suwa Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA Noriyuki Suwa Kento YAMAMOTO Noriyuki Suwa Kanetomo Sato

Tokio Matsuyama Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano Noriyuki Suwa Yuto Abe, Yoshihiro Sawano

Yoshihiro Sawano and Kazuki Kobayashi

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN