CHUO MATH NO.135(2023)

A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

by
Yoshihiro Sawano and Kazuki Kobayashi

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY
 BUNKYOKU TOKYO JAPAN

JAN. 25, 2023

A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

Yoshihiro Sawano and Kazuki Kobayashi

Abstract

The purpose of the present note is to slightly shorten the proof of the atomic decomposition based on the paper by Dekel et. al. The atomic decomposition in the present paper is applicable to Hardy spaces based on the convexification of ball Banach spaces. The decomposition is rather canonical although it does not depend linearly on functions. Also, this decomposition is applicable under a rather weak condition as we will see.

1. Introduction

The goal of the present paper is to consider the atomic decomposition of the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ for $p \in(0, \infty)$. Recall that the Hardy space $H^{p}\left(\mathbb{R}^{n}\right), 0<p<$ ∞, collects all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which

$$
\left\|\sup _{t>0}\left|e^{t \Delta} f\right|\right\|_{L^{p}}<\infty
$$

where $\left\{e^{t \Delta}\right\}_{t>0}$ stands for the heat semigroup.
We use the following notation in the present paper: Let $\mathbb{N}_{0} \equiv\{0,1, \ldots\}$. A function $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ with compact support is said to have moment of order L if

$$
\int_{\mathbb{R}^{n}} x^{\alpha} f(x) \mathrm{d} x=0
$$

for all $\alpha \in \mathbb{N}_{0}{ }^{n}$ with $|\alpha| \leq L$. Let $A, B \geq 0$. Then $A \lesssim B$ means that there exists a constant $C>0$ such that $A \leq C B$, where C depends only on the parameters of importance. The symbol $A \sim B$ means that $A \lesssim B$ and $B \lesssim A$ happen simultaneously. The index σ_{p} is given by $\sigma_{p} \equiv \frac{n}{\min (1, p)}-n$ for $0<p<\infty$.

The goal of the present note is to provide a short proof of a well-known theorem based on the paper [?]. To this end, we set up some notation. Let $x \in \mathbb{R}^{n}$ and $r>0$. We denote by $B(x, r)$ the ball centered at x of radius r. Namely, we write

$$
B(x, r) \equiv\left\{y \in \mathbb{R}^{n}:|x-y|<r\right\} .
$$

If $x=0$, then omit it to write $B(r)$ instead of $B(x, r)$. The set of all balls is denoted by \mathcal{B}.

[^0]Theorem 1.1. Let $0<p \leq 1$. Let $f \in H^{p}\left(\mathbb{R}^{n}\right)$ and $L \in \mathbb{Z} \cap\left[\left[\sigma_{p}\right], \infty\right)$. Then there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ such that

$$
\begin{equation*}
f=\sum_{j=1}^{\infty} f_{j} \tag{1.1}
\end{equation*}
$$

in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, that

$$
\begin{equation*}
\operatorname{supp}\left(f_{j}\right) \subset 8 B_{j} \tag{1.2}
\end{equation*}
$$

for all $j \in \mathbb{N}$ and that

$$
\begin{equation*}
\left(\sum_{j=1}^{\infty}\left\|f_{j}\right\|_{L^{\infty}}^{p}\left|B_{j}\right|\right)^{\frac{1}{p}} \lesssim\|f\|_{H^{p}} \tag{1.3}
\end{equation*}
$$

Here $a B_{j}$ stands for the a-times expansion of B_{j} for $a>0$. As in [?], the proof of Theorem ?? uses some Hilbert spaces and estimates as in Lemma ?? to control the grand maximal function. Recently Dekel, Kerkyacharian, Kyriazis and Petrushev significantly reduced this argument [?]. The goal of the present paper is to reexamine their proof and expand it to other Hardy spaces based on ball Banach function spaces.

In order to extend Theorem ?? to other Hardy spaces such as the one based on variable Lebesgue spaces, we slightly generalize Theorem ??. To this end, we recall an equivalent definition of $H^{p}\left(\mathbb{R}^{n}\right)$. We will use the notation $\langle x\rangle \equiv \sqrt{1+|x|^{2}}$ for $x \in \mathbb{R}^{n}$. To simplify the notation, for $N \in \mathbb{N}_{0}$, we define

$$
\begin{equation*}
p_{N}(\phi) \equiv \sum_{\substack{\alpha \in \mathbb{N}_{0}^{n} \\|\alpha| \leq N}}\left(\sup _{x \in \mathbb{R}^{n}}\langle x\rangle^{N}\left|\partial^{\alpha} \phi(x)\right|\right), \quad \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{1.4}
\end{equation*}
$$

We define the unit ball \mathcal{F}_{N} with respect to p_{N} by

$$
\begin{equation*}
\mathcal{F}_{N} \equiv\left\{\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right): p_{N}(\phi) \leq 1\right\} \tag{1.5}
\end{equation*}
$$

For $j \in \mathbb{Z}$ and $\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we write

$$
\begin{equation*}
\phi^{j} \equiv 2^{j n} \phi\left(2^{j} \cdot\right) \tag{1.6}
\end{equation*}
$$

Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. We define the grand maximal operator $\mathcal{M}_{N} f$ by

$$
\mathcal{M}_{N} f(x) \equiv \sup _{k \in \mathbb{Z}, \phi \in \mathcal{F}_{N}}\left|\phi^{k} * f(x)\right| \quad\left(x \in \mathbb{R}^{n}\right)
$$

Let $0<p \leq 1$. We can say that the Hardy space $H^{p}\left(\mathbb{R}^{n}\right)$ is the set of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which the quantity $\|f\|_{H^{p}} \equiv\left\|\mathcal{M}_{N} f\right\|_{L^{p}}$ is finite; this definition coincides with the one above as long as $N \gg 1[?$, p. 91].

Denote by χ_{E} the indicator function of a set E. We refine Theorem ?? based on the spirit of Miyachi [?].

ThEOREM 1.2. Let $0<p \leq 1$. Let $f \in H^{p}\left(\mathbb{R}^{n}\right)$ and $L \in \mathbb{Z} \cap\left[\left[\sigma_{p}\right], \infty\right)$. Then there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and

$$
\begin{equation*}
\left(\sum_{j=1}^{\infty}\left(\left\|f_{j}\right\|_{L^{\infty}} \chi_{\frac{1}{2} B_{j}}\right)^{u}\right)^{\frac{1}{u}} \lesssim \mathcal{M}_{N} f \tag{1.7}
\end{equation*}
$$

for all $0<u<\infty$ with the implicit constant depends only on n, N and u.
Once Theorem ?? is proved, we can prove Theorem ?? with ease. In fact, letting $r=p \in(0,1]$, we integrate (??) to have (??). So, we concentrate on (re)proving Theorem ?? in the present note after stating some preliminary facts in Section ??. The proof of Theorem ?? is quite akin to the one in [?]. Since the conclusion gets tighter as L is larger, we may assume that $L \gg 1$. However, we start the proof from scratch to clarify what is actually needed for the decomposition. We prove Theorem ?? with the spirit of [?]. We actually prove Theorem ?? in Section ??. Section ?? expands what we proved in Section ??. As the starting point, we consider weighted Hardy spaces with weights in A_{1}. After that, we investigate other function spaces based on weighted Hardy spaces with weights in A_{1}.

2. Preliminaries

A distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is said to vanish weakly at infinity if $\psi^{j} * f \rightarrow 0$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $j \rightarrow-\infty$ for all $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Since

$$
\left\|\psi^{j} * f\right\|_{L^{\infty}}=\mathrm{O}\left(2^{\frac{j n}{p}}\|f\|_{H^{p}}\right)
$$

for all $f \in H^{p}\left(\mathbb{R}^{n}\right)$, as $j \rightarrow-\infty$, any element in $H^{p}\left(\mathbb{R}^{n}\right)$ vanishes weakly at infinity.
By taking advantage of the class \mathcal{F}_{N}, we use the following observation:
Lemma 2.1. There exists $A>1$ such that

$$
\begin{equation*}
\sup _{\phi \in \mathcal{F}_{N}}\left|\phi^{k} * f(x)\right| \leq A \sup _{\phi \in \mathcal{F}_{N}}\left|\phi^{k} * f(y)\right| \tag{2.1}
\end{equation*}
$$

for all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $k \in \mathbb{Z}$ if $x, y \in \mathbb{R}^{n}$ satisfy $|x-y| \leq 2^{2-k}$.
Proof. Let $\phi \in \mathcal{F}_{N}$. We calculate

$$
\phi^{k} * f(x)=\left\langle f, \phi^{k}(x-\cdot)\right\rangle=\left\langle f, \phi^{k}((x-y)+(y-\cdot))\right\rangle .
$$

Let $A>1$ be the constant in Lemma ??. Set

$$
\phi_{k, x, y}(z) \equiv \phi\left(2^{k}(x-y)+z\right) \quad\left(z \in \mathbb{R}^{n}\right)
$$

Then we have $p_{N}\left(\phi_{k, x, y}\right) \leq A p_{N}(\phi)$ with the constant $A>1$ depending on N. Thus,

$$
\sup _{\phi \in \mathcal{F}_{N}}\left|\phi^{k} * f(x)\right|=A \sup _{\phi \in \mathcal{F}_{N}}\left|A^{-1}\left(\phi_{k, x, y}\right)^{k} * f(y)\right| \leq A \sup _{\phi \in \mathcal{F}_{N}}\left|\phi^{k} * f(y)\right|
$$

proving (??).
We also need the well-known Whitney covering lemma.
Lemma 2.2. Let Ω be a proper open set in \mathbb{R}^{n}. Write $\rho(x) \equiv \operatorname{dist}(x, \partial \Omega)$ for $x \in \mathbb{R}^{n}$. We let $\left\{B\left(\xi_{j}, \frac{\rho_{j}}{5}\right)\right\}_{j=1}^{\infty}$ be a maximal disjoint family, where $\rho_{j} \equiv \rho\left(\xi_{j}\right)$ for $j \in \mathbb{N}$.
(1) $\Omega=\bigcup_{j=1}^{\infty} B\left(\xi_{j}, \frac{\rho_{j}}{2}\right)$.
(2) For each $j \in \mathbb{N}$, let

$$
\mathcal{J}_{j} \equiv\left\{\nu \in \mathbb{N} \cap(j, \infty): B\left(\xi_{j}, \frac{3}{4} \rho_{j}\right) \cap B\left(\xi_{\nu}, \frac{3}{4} \rho_{\nu}\right) \neq \emptyset\right\}
$$

Then $\sharp \mathcal{J}_{j} \leq 300^{n}$ and $7^{-1} \rho_{\nu} \leq \rho_{j} \leq 7 \rho_{\nu}$ for all $\nu \in \mathcal{J}_{j}$.

Proof. This is essentially contained in [?]. However, the number 300 did not appear in [?]. For the sake of convenience, we clarify why this number appears. Notice that

$$
\sum_{\nu \in \mathcal{J}_{j}} \chi_{B\left(\xi_{\nu}, \frac{\rho_{j}}{35}\right)} \leq \sum_{\nu \in \mathcal{J}_{j}} \chi_{B\left(\xi_{\nu}, \frac{\rho_{\nu}}{5}\right)} \leq \chi_{B\left(\xi_{j}, \frac{37}{5} \rho_{j}\right)}
$$

since

$$
\frac{3}{4} \rho_{j}+\frac{3}{4} \rho_{\nu}+\frac{1}{5} \rho_{\nu} \leq 6 \rho_{j}+\frac{7}{5} \rho_{j}=\frac{37}{5} \rho_{j} .
$$

Thus,

$$
\sharp \mathcal{J}_{j} \times \frac{1}{35^{n}} \leq \frac{37^{n}}{5^{n}}
$$

implying $\sharp \mathcal{J}_{j} \leq 259^{n} \leq 300^{n}$.

3. Proof of Theorem ??

We transform Theorem ?? to the following equivalent form:
Proposition 3.1. Let $0<p \leq 1$. Let $f \in H^{p}\left(\mathbb{R}^{n}\right)$ and $L \in \mathbb{Z} \cap\left[\left[\sigma_{p}\right], \infty\right)$. Then there exists a countable collection $\left\{F_{j, r}\right\}_{j \in \mathbb{N}, r \in \mathbb{Z}}$ of L_{c}^{∞}-functions having moment of order L with the following properties:
(1) In $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
f=\sum_{(j, r) \in \mathbb{N} \times \mathbb{Z}} F_{j, r} \tag{3.1}
\end{equation*}
$$

(2) For all $j \in \mathbb{N}$ and $r \in \mathbb{Z}$, there exist $\xi_{j, r} \in \mathbb{R}^{n}$ and $\rho_{j, r}>0$ such that

$$
\begin{equation*}
\operatorname{supp}\left(F_{j, r}\right) \subset B\left(\xi_{j, r}, 5 \rho_{j, r}\right) \tag{3.2}
\end{equation*}
$$

(3) For all $0<u<\infty$,

$$
\begin{equation*}
\left(\sum_{(j, r) \in \mathbb{N} \times \mathbb{Z}}\left(\left\|F_{j, r}\right\|_{L^{\infty}} \chi_{B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right)}\right)^{u}\right)^{\frac{1}{u}} \lesssim \mathcal{M}_{N} f \tag{3.3}
\end{equation*}
$$

where the implicit constant depends on u, N and n.
Section ?? is devoted to the proof of Proposition ?? assuming that $f \neq 0$.
For each $k, r \in \mathbb{Z}$, we set

$$
\Omega_{r} \equiv\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{N} f(x)>2^{r}\right\}
$$

and

$$
V_{k, r} \equiv\left\{x \in \mathbb{R}^{n}: B\left(x, 2^{-k+1}\right) \subset \Omega_{r}\right\}
$$

Notice that each Ω_{r} is an open set and hence

$$
\Omega_{r}=\bigcup_{k=-\infty}^{\infty} V_{k, r}
$$

If $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \backslash\{0\}$, then

$$
\bigcup_{r=-\infty}^{\infty} \Omega_{r}=\mathbb{R}^{n}
$$

Here is a geometric observation we need.
Lemma 3.2. Let $l_{0}, l_{1}, k, r \in \mathbb{Z}$ and $x \in\left(V_{l_{0}+1, r} \backslash V_{l_{0}, r}\right) \cap\left(V_{l_{1}+1, r+1} \backslash V_{l_{1}, r+1}\right)$.
(1) $l_{0} \leq l_{1}$.
(2) If $B\left(x, 2^{-k}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right) \neq \emptyset$, then $l_{0} \leq k \leq l_{1}+1$.
(3) If $l_{0}+2 \leq k \leq l_{1}-1$, then $B\left(x, 2^{-k}\right) \subset V_{k, r} \backslash V_{k, r+1}$.

Proof. We remark that $x \in\left(V_{l_{0}+1, r} \backslash V_{l_{0}, r}\right) \cap\left(V_{l_{1}+1, r+1} \backslash V_{l_{1}, r+1}\right)$ if and only if $2^{-l_{0}} \leq \operatorname{dist}\left(x, \partial \Omega_{r}\right)<2^{-l_{0}+1}$ and $2^{-l_{1}} \leq \operatorname{dist}\left(x, \partial \Omega_{r+1}\right)<2^{-l_{1}+1}$.
(1) Since $\Omega_{r} \supset \Omega_{r+1}, \operatorname{dist}\left(x, \partial \Omega_{r+1}\right) \leq \operatorname{dist}\left(x, \partial \Omega_{r}\right)$. Thus, in view of the above observation, the result follows immediately.
(2) Let $y \in B\left(x, 2^{-k}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right)$. Since $y \in V_{k, r}$, $2^{-l_{0}+1}>\operatorname{dist}\left(x, \partial \Omega_{r}\right) \geq \operatorname{dist}\left(y, \partial \Omega_{r}\right)-|x-y| \geq 2^{1-k}-2^{-k}=2^{-k}$, implying $k \geq l_{0}$. Likewise, since $y \notin V_{k, r+1}$,
$2^{-l_{1}} \leq \operatorname{dist}\left(x, \partial \Omega_{r+1}\right) \leq \operatorname{dist}\left(y, \partial \Omega_{r+1}\right)+|x-y| \leq 2^{1-k}+2^{-k}<2^{2-k}$.
implying $k \leq l_{1}+1$.
(3) Let $z \in B\left(x, 2^{-k}\right)$. Then since $x \in V_{l_{0}+1, r}$ and $k \geq l_{0}+2$,

$$
\operatorname{dist}\left(z, \partial \Omega_{r}\right) \geq \operatorname{dist}\left(x, \partial \Omega_{r}\right)-|x-z| \geq 2^{-l_{0}}-2^{-k} \geq 2^{1-k}
$$

Hence $B\left(x, 2^{-k}\right) \subset V_{k, r}$. Likewise, since $x \notin V_{l_{1}, r+1}$,
$\operatorname{dist}\left(z, \partial \Omega_{r+1}\right) \leq \operatorname{dist}\left(x, \partial \Omega_{r+1}\right)+|x-z|<2^{1-l_{1}}+2^{-k} \leq 2^{1-k}$.
Hence $B\left(x, 2^{-k}\right) \cap V_{k, r+1}=\emptyset$.

Fix an integer $L>\frac{n}{2 p}$ here and below. Let $\Phi, \Psi, \Theta \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ be even functions supported in the unit ball and satisfy

$$
\begin{equation*}
\Psi=\Phi^{1}-\Phi=\Delta^{L} \Theta, \quad \int_{\mathbb{R}^{n}} \Phi(x) \mathrm{d} x=1 \tag{3.4}
\end{equation*}
$$

The pair (Φ, Ψ, Θ) is known to exist [?]. Write $\tilde{\Psi} \equiv \Phi^{1}+\Phi$.
Let $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \backslash\{0\}$ be a distribution vanishing weakly at infinity. Also let $k, r \in \mathbb{Z}$. We set

$$
f_{k, r} \equiv \Psi^{k} *\left(\chi_{V_{k, r} \backslash V_{k, r+1}} \cdot \tilde{\Psi}^{k} * f\right)
$$

A geometric observation shows that $f_{k, r}$ is supported on Ω_{r}. We also need the L^{∞}-bound for the function of this type.

Lemma 3.3. Let $\Gamma, \tilde{\Gamma} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp}(\Gamma), \operatorname{supp}(\tilde{\Gamma}) \subset B(1)$. Also let $E \subset$ \mathbb{R}^{n} be a measurable set. Then

$$
\left|\Gamma^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap E} \cdot \tilde{\Gamma}^{k} * f\right)(x)\right| \lesssim 2^{r}
$$

for all $x \in \mathbb{R}^{n}$.
Proof. Since

$$
\begin{aligned}
& \left|\Gamma^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap E} \cdot \tilde{\Gamma}^{k} * f\right)(x)\right| \\
& \leq \int_{V_{k, r} \backslash V_{k, r+1}}\left|\Gamma^{k}(x-y) \tilde{\Gamma}^{k} * f(y)\right| \mathrm{d} y \\
& \leq A \int_{V_{k, r} \backslash V_{k, r+1}}\left|\Gamma^{k}(x-y)\right|\left(\inf _{z \in B\left(y, 2^{2-k}\right)}\left|\tilde{\Gamma}^{k} * f(z)\right|\right) \mathrm{d} y
\end{aligned}
$$

thanks to Lemma ??, we have

$$
\left|\Gamma^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap E} \cdot \tilde{\Gamma}^{k} * f\right)(x)\right| \lesssim 2^{r} \int_{V_{k, r} \backslash V_{k, r+1}}\left|\Gamma^{k}(x-y)\right| \mathrm{d} y \lesssim 2^{r}
$$

by the definition of $\mathcal{M}_{N} f, V_{k, r+1}$ and Ω_{r}.
We decompose

$$
\begin{equation*}
f=\sum_{k=-\infty}^{\infty} \Psi^{k} * \tilde{\Psi}^{k} * f=\sum_{k=-\infty}^{\infty}\left(\sum_{r=-\infty}^{\infty} f_{k, r}\right) . \tag{3.5}
\end{equation*}
$$

We need to pay attention to the order of the summation in (??). However, if f is good enough, then we can interchange the order of the summation.

Lemma 3.4. Assume that $f \in H^{p}\left(\mathbb{R}^{n}\right)$ with $0<p \leq 1$ and that the integer L in (??) satisfies $L \in \mathbb{Z} \cap\left(\frac{n}{2 p}, \infty\right)$. Then

$$
f=\sum_{k, r \in \mathbb{Z}} f_{k, r}
$$

in the sense of absolute convergence in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Namely,

$$
\sum_{k, r \in \mathbb{Z}}\left|\left\langle f_{k, r}, \varphi\right\rangle\right|<\infty
$$

for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
Proof. Fix $k, r \in \mathbb{Z}$. Recall that Ψ is an even function. We calculate

$$
\left\langle f_{k, r}, \varphi\right\rangle=\int_{V_{k, r} \backslash V_{k, r+1}} \Psi^{k} * \varphi(y) \tilde{\Psi}^{k} * f(y) \mathrm{d} y
$$

Thanks to (??), by using integration by parts, we have

$$
\left|\Psi^{k} * \varphi(y)\right|=\left|\left(\Delta^{L} \Theta\right)^{k} * \varphi(y)\right| \lesssim 2^{-\max (0,2 k L)}\langle y\rangle^{-2 n-1} \quad\left(y \in \mathbb{R}^{n}\right)
$$

if $k \in \mathbb{Z}$. Meanwhile, if $y \in V_{k, r} \backslash V_{k, r+1}$, we have

$$
\begin{equation*}
\left|\tilde{\Psi}^{k} * f(y)\right| \leq A p_{N}(\tilde{\Psi}) \inf _{z \in B\left(y, 2^{-k}\right)} \mathcal{M}_{N} f(z) \lesssim 2^{\frac{k n}{p}}\left\|\mathcal{M}_{N} f\right\|_{L^{p}}=2^{\frac{k n}{p}}\|f\|_{H^{p}} \tag{3.6}
\end{equation*}
$$

thanks to Lemma ??. As a consequence,

$$
\left|\left\langle f_{k, r}, \varphi\right\rangle\right| \lesssim 2^{\frac{k n}{p}-\max (0,2 k L)}\|f\|_{H^{p}} \int_{V_{k, r} \backslash V_{k, r+1}} \frac{\mathrm{~d} y}{\langle y\rangle^{2 n+1}}
$$

If we add this inequality over $r \in \mathbb{Z}$, then we obtain

$$
\begin{align*}
\sum_{r \in \mathbb{Z}}\left|\left\langle f_{k, r}, \varphi\right\rangle\right| & \lesssim 2^{\frac{k n}{p}-\max (0,2 k L)}\|f\|_{H^{p}} \int_{\mathbb{R}^{n}} \frac{\mathrm{~d} y}{\langle y\rangle^{2 n+1}} \tag{3.7}\\
& \sim 2^{\frac{k n}{p}-\max (0,2 k L)}\|f\|_{H^{p}}
\end{align*}
$$

If $L>\frac{n}{2 p}$, then this estimate is summable over $k \in \mathbb{Z}$.
Once we can prove that the series converges absolutely, we see that the series converges back to f thanks to (??).

Remark that the power $2 n+1$ in the above proof (see (??) for example) seems superfluous: This number will turn out important in Section ??.

From Lemma ??,

$$
\begin{equation*}
f=\sum_{r=-\infty}^{\infty}\left(\sum_{k=-\infty}^{\infty} f_{k, r}\right) \tag{3.8}
\end{equation*}
$$

in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. We analyze the summand with r fixed.
Lemma 3.5. Let $r \in \mathbb{Z}$. Then

$$
\left|\sum_{k=-\infty}^{\infty} f_{k, r}(x)\right| \lesssim 2^{r}
$$

for all $x \in \mathbb{R}^{n}$.
Proof. Since each $f_{k, r}$ is supported on Ω_{r}, we may assume that $x \in \Omega_{r}$. We distinguish two cases:

- Let $x \in \Omega_{r+1}$. Choose $l_{0}, l_{1} \in \mathbb{Z}$ so that $x \in\left(V_{l_{0}+1, r} \backslash V_{l_{0}, r}\right) \cap\left(V_{l_{1}+1, r+1} \backslash\right.$ $\left.V_{l_{1}, r+1}\right)$. Thanks to Lemma ??(1), $l_{0} \leq l_{1}$. We further assume that $l_{0}+3 \leq l_{1}$; otherwise we may simply use Lemma ??

Fix $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$ so that $f_{k, r}(x) \neq 0$. Then $B\left(x, 2^{-k}\right) \cap\left(V_{k, r} \backslash\right.$ $\left.V_{k, r+1}\right) \neq \emptyset$. Thus $l_{0} \leq k \leq l_{1}+1$ according to Lemma ? ? (2).

Due to Lemma ?? $(3), f_{k, r}(x)=\Psi^{k} * \tilde{\Psi}^{k} * f(x)=\Phi^{k+1} * \Phi^{k+1} * f(x)-$ $\Phi^{k} * \Phi^{k} * f(x)$ if $l_{0}+2 \leq k \leq l_{1}-1$. Hence thanks to Lemma ??
$\sum_{k=l_{0}+2}^{l_{1}-1} f_{k, r}(x)=\Phi^{l_{1}} * \Phi^{l_{1}} * f(x)-\Phi^{l_{0}+2} * \Phi^{l_{0}+2} * f(x)=\mathrm{O}\left(2^{r}\right)$.
We do not have to take into account the terms for $k \geq l_{1}+2$ or $k \leq l_{0}-1$ since they vanish according to Lemma ??(2). If we handle the terms for $l_{0} \leq k \leq l_{0}+1$ and $l_{1} \leq k \leq l_{1}+1$ using Lemma ?? again, then we obtain the desired result.

- Let $x \in \Omega_{r} \backslash \Omega_{r+1}$. Then let $l_{1}=\infty$ and $x \in V_{l_{0}+1, r} \backslash V_{l_{0}, r}$ with $l_{0} \in \mathbb{Z}$ in the above and go through the same argument.

We can generalize Lemma ??, whose proof we omit.
Lemma 3.6. Let $l_{0}, l_{1}, r \in \mathbb{Z}$ satisfy $l_{0}<l_{1}$. Then

$$
\left|\sum_{k=l_{0}}^{l_{1}} f_{k, r}(x)\right| \lesssim 2^{r}
$$

for all $x \in \mathbb{R}^{n}$, where the implicit constant does not depend on l_{0} and l_{1}.
For an arbitrary set S, define an open set S_{k} by $S_{k} \equiv\left\{y \in \mathbb{R}^{n}: \operatorname{dist}(y, S)<\right.$ $\left.2^{1-k}\right\}$.

Lemma 3.7. Let $l \in \mathbb{Z}$ and $x \in S_{l} \backslash S_{l+1}$.
(1) Whenever $k<l, B\left(x, 2^{-k}\right) \subset S_{k}$.
(2) Whenever $k \geq l+2, B\left(x, 2^{-k}\right) \cap S_{k}=\emptyset$.

Proof. Since $x \in S_{l} \backslash S_{l+1}, 2^{-l} \leq \operatorname{dist}(x, S)<2^{1-l}$. Let $y \in B\left(x, 2^{-k}\right)$.
(1) Using the triangle inequality, we obtain

$$
\operatorname{dist}(y, S) \leq|x-y|+\operatorname{dist}(x, S) \leq 2^{-k}+2^{1-l} \leq 2^{1-k}
$$ implying $y \in S_{k}$.

(2) Using the triangle inequality again, we obtain

$$
\operatorname{dist}(y, S) \geq-|x-y|+\operatorname{dist}(x, S)>-2^{-k}+2^{1-l} \geq 2^{1-k}
$$ implying $y \notin S_{k}$.

Let S be a set. Set

$$
F_{S}(x) \equiv \sum_{k=-\infty}^{\infty} \Psi^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap S_{k}} \cdot \tilde{\Psi}^{k} * f\right)(x) \quad\left(x \in \mathbb{R}^{n}\right)
$$

If S is bounded, then by the Fubini theorem, we see that F_{S} satisfies the same moment condition as Ψ^{k}.

Lemma 3.8. For any set S and $r \in \mathbb{Z},\left\|F_{S}\right\|_{L^{\infty}} \lesssim 2^{r}$.
Proof. Let $x \in S$ and $k \in \mathbb{Z}$. Then $B\left(x, 2^{-k}\right) \subset S_{k}$ and hence

$$
\left(V_{k, r} \backslash V_{k, r+1}\right) \cap S_{k} \cap B\left(x, 2^{-k}\right)=\left(V_{k, r} \backslash V_{k, r+1}\right) \cap B\left(x, 2^{-k}\right)
$$

Thus

$$
F_{S}(x)=\sum_{k=-\infty}^{\infty} \Psi^{k} *\left(\chi_{V_{k, r} \backslash V_{k, r+1}} \cdot \tilde{\Psi}^{k} * f\right)(x)=\mathrm{O}\left(2^{r}\right)
$$

Suppose $x \in S_{l} \backslash S_{l+1}$ for some $l \in \mathbb{Z}$. Then thanks to Lemmas ??, ?? and ??,

$$
\begin{aligned}
F_{S}(x)= & \sum_{k=-\infty}^{l-1} \Psi^{k} *\left(\chi_{V_{k, r} \backslash V_{k, r+1}} \cdot \tilde{\Psi}^{k} * f\right)(x) \\
& +\sum_{k=l}^{l+1} \Psi^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap S_{k}} \cdot \tilde{\Psi}^{k} * f\right)(x) \\
= & \mathrm{O}\left(2^{r}\right) .
\end{aligned}
$$

We slightly generalize Lemma ??
Let S be a set and $\kappa \in \mathbb{R}$. Set

$$
F_{S, \kappa}(x) \equiv \sum_{k=-\infty}^{\infty} \chi_{(\kappa, \infty)}(k) \Psi^{k} *\left(\chi_{\left(V_{k, r} \backslash V_{k, r+1}\right) \cap S_{k}} \cdot \tilde{\Psi}^{k} * f\right)(x) \quad\left(x \in \mathbb{R}^{n}\right)
$$

Lemma 3.9. For any set $S, \kappa \in \mathbb{R}$ and $r \in \mathbb{Z},\left\|F_{S, \kappa}\right\|_{L^{\infty}} \lesssim 2^{r}$.
We do not prove Lemma ?? since it is similar to Lemma ??.
Form the Whitney decomposition of $\Omega_{r}=\left\{x \in \mathbb{R}^{n}: \mathcal{M}_{N} f(x)>2^{r}\right\}$ for each $r \in \mathbb{Z}$. For $x \in \mathbb{R}^{n}$ and $r \in \mathbb{Z}$, we let $\rho_{r}(x) \equiv \operatorname{dist}\left(x, \partial \Omega_{r}\right)$. We let $\left\{B\left(\xi_{j, r}, \frac{\rho_{j, r}}{5}\right)\right\}_{j=1}^{\infty}$ be a maximal disjoint family, where $\rho_{j, r} \equiv \rho_{r}\left(\xi_{j, r}\right)$ for $j \in \mathbb{N}$ and $r \in \mathbb{Z}$. Then we have the following properties:
(1) $\Omega_{r}=\bigcup_{j=1}^{\infty} B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right)$.
(2) Let $j \in \mathbb{N}$ and $r \in \mathbb{Z}$. Set

$$
\mathcal{J}_{j, r} \equiv\left\{\nu \in \mathbb{N} \cap(j, \infty): B\left(\xi_{j, r}, \frac{3}{4} \rho_{j, r}\right) \cap B\left(\xi_{\nu, r}, \frac{3}{4} \rho_{\nu, r}\right) \neq \emptyset\right\}
$$

Then $\sharp \mathcal{J}_{j, r} \leq 300^{n}$ and $7^{-1} \rho_{\nu, r} \leq \rho_{j, r} \leq 7 \rho_{\nu, r}$ for each $\nu \in \mathcal{J}_{j, r}$.
Let $j \in \mathbb{N}$ and $k, r \in \mathbb{Z}$. We define $E_{j, k, r} \equiv B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}+2^{1-k}\right) \cap\left(V_{k, r} \backslash\right.$ $\left.V_{k, r+1}\right)$ if $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right) \neq \emptyset$. If $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right)=$ \emptyset, then define $E_{j, k, r} \equiv \emptyset$. We have

$$
\bigcup_{j=1}^{\infty} E_{j, k, r}=V_{k, r} \backslash V_{k, r+1} \quad(k, r \in \mathbb{Z})
$$

We set

$$
R_{j, k, r} \equiv E_{j, k, r} \backslash \bigcup_{\nu=j+1}^{\infty} E_{\nu, k, r} \quad(j \in \mathbb{N}, k, r \in \mathbb{Z})
$$

We write

$$
F_{j, k, r} \equiv \Psi^{k} *\left(\chi_{R_{j, k, r}} \cdot \tilde{\Psi}^{k} * f\right)
$$

and

$$
F_{j, r} \equiv \sum_{l=-\infty}^{\infty} F_{j, l, r}
$$

for $j \in \mathbb{N}$ and $k, r \in \mathbb{Z}$. As before, we can check that the sum defining $F_{j, r}$ converges absolutely in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. The next lemma shows that the limit belongs to $L^{\infty}\left(\mathbb{R}^{n}\right)$. Also observe that

$$
f=\sum_{(k, r) \in \mathbb{Z}^{2}} f_{k, r}=\sum_{(j, k, r) \in \mathbb{N} \times \mathbb{Z}^{2}} F_{j, k, r}=\sum_{(j, r) \in \mathbb{N} \times \mathbb{Z}} F_{j, r} .
$$

Lemma 3.10. For all $j \in \mathbb{N}$ and $r \in \mathbb{Z},\left|F_{j, r}\right| \lesssim 2^{r} \chi_{B\left(\xi_{j, r}, 8 \rho_{j, r}\right)}$.
Proof. The proof consists of two steps.

- Let us verify that $F_{j, r}$ vanishes outside $B\left(\xi_{j, r}, 5 \rho_{j, r}\right)$. Let $k \in \mathbb{Z}$ satisfy $R_{j, k, r} \neq \emptyset$. Then $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right) \neq \emptyset$. Let $z \in$ $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right)$. Then

$$
\frac{3}{2} \rho_{j, r} \geq\left|\xi_{j, r}-z\right|+\operatorname{dist}\left(\xi_{j, r}, \partial \Omega_{r}\right) \geq \operatorname{dist}\left(z, \partial \Omega_{r}\right) \geq 2^{1-k}
$$

so that $\rho_{j, r} \geq \frac{4}{3} \cdot 2^{-k}$. Thus, $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}+2^{1-k}\right) \subset B\left(\xi_{j, r}, 2 \rho_{j, r}\right)$. Since

$$
\operatorname{supp}\left(F_{j, k, r}\right) \subset B\left(\xi_{j, r}, \frac{7}{2} \rho_{j, r}+2^{1-k}+2^{-k}\right) \subset B\left(\xi_{j, r}, 5 \rho_{j, r}\right)
$$

we obtain the desired result.

- Let us obtain the L^{∞}-bound of $F_{j, r}$. If $k \in \mathbb{Z}$ satisfies $2^{-k} \geq 2 \rho_{j, r}$, then from the definition of $\rho_{j, r}$,

$$
\sup _{z \in B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right)} \operatorname{dist}\left(z, \partial \Omega_{r}\right)=\frac{3}{2} \rho_{j, r} \leq 2^{-k}
$$

and hence $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right)=\emptyset$. Namely, if $k \leq-\log _{2} \rho_{j, r}-$ 1, then $B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) \cap\left(V_{k, r} \backslash V_{k, r+1}\right)=\emptyset$. From the definition of $\mathcal{J}_{j, r}$,

$$
B\left(\xi_{\nu, r}, 2^{-1} \rho_{\nu, r}+2^{1-k}\right) \subset B\left(\xi_{\nu, r}, \frac{3}{4} \rho_{\nu, r}\right)
$$

$$
\begin{aligned}
& \text { for all } k \geq 10-\log _{2} \rho_{j, r} \text { and } \nu \in \mathcal{J}_{j, r} \text {. Let } \\
& \qquad S \equiv \bigcup_{\nu \in \mathcal{J}_{j, r}} B\left(\xi_{\nu, r}, 2^{-1} \rho_{\nu, r}\right), \quad \tilde{S} \equiv S \cup B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right) .
\end{aligned}
$$

Then we have

$$
S_{k} \equiv \bigcup_{\nu \in \mathcal{J}_{j, r}} B\left(\xi_{\nu, r}, 2^{-1} \rho_{\nu, r}+2^{1-k}\right), \quad(\tilde{S})_{k} \equiv S_{k} \cup B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}+2^{1-k}\right)
$$

and

$$
R_{j, k, r}=\left\{(\tilde{S})_{k} \cap\left(V_{k, r} \backslash V_{k, r+1}\right)\right\} \backslash\left\{S_{k} \cap\left(V_{k, r} \backslash V_{k, r+1}\right)\right\}
$$

Thus

$$
F_{j, r}=F_{\tilde{S}, 10-\log _{2} \rho_{j, r}}-F_{S, 10-\log _{2} \rho_{j, r}}+\sum_{-\log _{2} \rho_{j, r} \leq k \leq-\log _{2} \rho_{j, r}+10} F_{j, k, r}
$$

It remains to use Lemma ??.

We conclude the proof of Proposition ??. Equality (??) is a consequence of Lemma ??. Thanks to Lemma ??, $f_{k, r}$ satisfies (??). It remains to prove (??). Using Lemma ?? again and the definition of Ω_{r}, we estimate

$$
\begin{aligned}
\sum_{(j, r) \in \mathbb{N} \times \mathbb{Z}}\left(\left\|F_{j, r}\right\|_{L^{\infty}} \chi_{B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right)}\right)^{u} & \lesssim \sum_{(j, r) \in \mathbb{N} \times \mathbb{Z}} 2^{u r} \chi_{B\left(\xi_{j, r}, 2^{-1} \rho_{j, r}\right)} \\
& \lesssim \sum_{r=-\infty}^{\infty} 2^{u r} \chi_{\Omega_{r}} \\
& =\sum_{r=-\infty}^{\infty} 2^{u r} \chi_{\left(2^{r}, \infty\right]}\left(\mathcal{M}_{N} f\right) \\
& \lesssim\left(\mathcal{M}_{N} f\right)^{u}
\end{aligned}
$$

as required.

4. Applications to Hardy spaces based on other ball Banach spaces

Here we modify the proof especially (??) to obtain the decomposition results for distributions in Hardy spaces based on other ball Banach spaces. As we saw in Section ??, it matters that the distribution vanishes weakly at infinity and that the distribution satisfies (??). Section ?? considers the weighted Hardy space $H^{p}(w)$ with $0<p<\infty$ and $w \in A_{1}$. As an application of Section ??, we consider Hardy spaces based on ball Banach function spaces. We can locate Sections ??, ?? and ?? as further examples of Section ??. Hardy spaces with weight in A_{∞}, variable Hardy spaces and Hardy-Morrey spaces are considered in Sections ??, ?? and ??, respectively. We will give a precise condition on L in Sections ??, ?? and ??. We need to define the above spaces by way of \mathcal{M}_{N}. It is known in [?] that the function spaces we are going to handle in this section do not depend on the choice of N as long as $N \gg 1$. This condition L is used to obtain the boundedness of operators. However, as we mentioned, the condition on L can be tightened since we are considering the decompositions of distributions. So, although we present some concrete conditions on L in Sections ??, ?? and ??, we still may assume that L is large enough.

We will make use of the Hardy-Littlewood maximal operator M. The space $L^{0}\left(\mathbb{R}^{n}\right)$ denotes the set of all complex $/[0, \infty]$-valued measurable functions considered modulo the difference on the set of measure zero. For $f \in L^{0}\left(\mathbb{R}^{n}\right)$, define a function $M f$ by

$$
\begin{equation*}
M f(x) \equiv \sup _{B \in \mathcal{B}} \chi_{B}(x) m_{B}(|f|) \quad\left(x \in \mathbb{R}^{n}\right) \tag{4.1}
\end{equation*}
$$

Here $m_{B}(f)$ stands for the average of a locally integrable or non-negative function f over B. The mapping $M: f \mapsto M f$ is called the Hardy-Littlewood maximal operator. We also use the powered Hardy-Littlewood maximal operator $M^{(\eta)}$ defined by

$$
M^{(\eta)} f(x) \equiv \sup _{B \in \mathcal{B}}\left(\chi_{B}(x) m_{B}\left(|f|^{\eta}\right)\right)^{\frac{1}{\eta}}
$$

where $0<\eta<\infty$ and $f \in L^{0}\left(\mathbb{R}^{n}\right)$. Together with the Hardy-Littlewood maximal operator, we need to recall the notion of weights as well as their fundamental properties, which will be done in Sections ?? and ??. See [?] for more details on weights.

We remark that the same idea can be used for Hardy spaces based on other function spaces such as the ones considered in $[?, ?, ?, ?, ?]$.
4.1. Weighted Hardy space $H^{p}(w)$ with $w \in A_{1}$. As the starting point, we seek to change $L^{p}\left(\mathbb{R}^{n}\right)$ by $L^{p}(w)$ for some good class of weights. Although we work in a rather special setting, this setting will be a core of our argument. By a weight we mean a function $w \in L^{0}\left(\mathbb{R}^{n}\right)$ which satisfies $0<w(x)<\infty$ for almost all $x \in \mathbb{R}^{n}$. We write $w(A) \equiv \int_{A} w(x) \mathrm{d} x$ if A is a measurable set of \mathbb{R}^{n}. The space $L^{p}(w)$ is the set of all $f \in L^{0}\left(\mathbb{R}^{n}\right)$ for which $\|f\|_{L^{p}(w)} \equiv \|$ ff $w^{\frac{1}{p}} \|_{L^{p}}<\infty$ (cf. [?]).

To proceed further, we compare the weights w and 1 . Here we introduce a general definition following the book [?, p. 402]. A weight w_{1} is comparable to a weight w_{2} if there exist $\alpha, \beta<1$ such that $w_{1}(A) \leq \beta w_{1}(B)$ for any measurable set A and any $B \in \mathcal{B}$ satisfying $A \subset B$ and $w_{2}(A) \leq \alpha w_{2}(B)$. It is important that comparability is symmetric; w_{1} is comparable to w_{2} if and only if w_{2} is comparable to w_{1}. In this case there exists $\delta>0$ such that

$$
\begin{equation*}
\frac{w_{1}(A)}{w_{1}(B)} \lesssim\left(\frac{w_{2}(A)}{w_{2}(B)}\right)^{\delta} \tag{4.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\frac{w_{2}(A)}{w_{2}(B)} \lesssim\left(\frac{w_{1}(A)}{w_{1}(B)}\right)^{\delta} \tag{4.3}
\end{equation*}
$$

for any measurable set A and any $B \in \mathcal{B}$ satisfying $A \subset B$.
Let $0<p<\infty, w$ be a weight and $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Define

$$
\|f\|_{H^{p}(w)} \equiv\left\|\mathcal{M}_{N} f\right\|_{L^{p}(w)}
$$

The weighted Hardy space $H^{p}(w)$ is the set of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which the quantity $\|f\|_{H^{p}(w)}$ is finite. In the present paper, as long as $N \gg 1$, the definition of $H^{p}(w)$ does not depend on the choice of N.

As a preliminary and important step, we consider A_{1}-weights among other classes of weights. Recall that a locally integrable weight w is said be an A_{1}-weight, if there exists $C_{0}>0$ such that

$$
\begin{equation*}
M w(x) \leq C_{0} w(x) \tag{4.4}
\end{equation*}
$$

for a.e. $x \in \mathbb{R}^{n}$. The infimum of C_{0} satisfying (??) is called the A_{1}-norm.
Let $\Gamma \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $k \in \mathbb{Z}$. We estimate

$$
\left|\Gamma^{k} * f(x)\right| \leq A \inf _{y \in B\left(x, 2^{-k}\right)}\left|\Gamma^{k} * f(y)\right| \leq \frac{A p_{N}(\Gamma)}{w\left(B\left(x, 2^{-k}\right)\right)^{\frac{1}{p}}}\|f\|_{H^{p}(w)}
$$

using Lemma ??. It follows from (??) and (??) that

$$
\frac{w(B(x, 1))}{w\left(B\left(x, 2^{-k}\right)\right)} \lesssim\left(\frac{|B(x, 1)|}{\left|B\left(x, 2^{-k}\right)\right|}\right)^{\delta}=2^{k n \delta}
$$

for all $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z} \backslash \mathbb{N}$ and that

$$
\frac{w\left(B\left(x, 2^{-k}\right)\right)}{w(B(x, 1))} \gtrsim\left(\frac{\left|B\left(x, 2^{-k}\right)\right|}{|B(x, 1)|}\right)^{\delta}=2^{-k n \delta}
$$

for all $x \in \mathbb{R}^{n}$ and $k \in \mathbb{N}$. Also, it follows from (??) that

$$
\langle x\rangle^{-n} w(B(1)) \lesssim w(B(x, 1)) \lesssim\langle x\rangle^{n} w(B(1))
$$

Therefore,

$$
\begin{equation*}
\left|\Gamma^{k} * f(x)\right| \lesssim \frac{2^{\frac{k n \delta}{p}}}{w(B(x, 1))^{\frac{1}{p}}}\|f\|_{H^{p}(w)} \lesssim 2^{\frac{k n \delta}{p}}\langle x\rangle^{\frac{n}{p}}\|f\|_{H^{p}(w)} \tag{4.5}
\end{equation*}
$$

Recall that $\Gamma \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ is arbitrary. By letting $\Gamma=\tilde{\Psi}$, we learn that a counterpart to (??) still holds. Estimate (??) also shows that f vanishes weakly at infinity. As in [?], $A_{1} \cap L^{1}\left(\mathbb{R}^{n}\right)=\emptyset$. Thus, Ω_{r}, the level set of $\mathcal{M}_{N} f$ at 2^{r}, can not coincide with \mathbb{R}^{n}, allowing us to use Lemma ??. Therefore, the same conclusion with $L \gg 1$ as Theorem ?? holds.

Theorem 4.1. Let $0<p<\infty, f \in H^{p}(w)$ with $w \in A_{1}$ and let $L \gg 1$. Then there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).
4.2. Hardy spaces based on ball Banach function spaces. Based on Section ??, we establish a general theory of the decomposition of distributions in Hardy spaces based on ball Banach function spaces.

Definition 4.2 (Ball Banach function space). A mapping $\|\cdot\|_{Y} \rightarrow[0, \infty]$ is said to be a ball Banach function norm and the couple $\left(Y\left(\mathbb{R}^{n}\right),\|\cdot\|_{Y}\right)$ is said to be a ball Banach function space if $\left(Y\left(\mathbb{R}^{n}\right),\|\cdot\|_{Y}\right)$ satisfies (1)-(7) for all $f, g, f_{j} \subset L^{0}\left(\mathbb{R}^{n}\right)$, $j \in \mathbb{N}$, and $\lambda \in \mathbb{C}$.
(1) $\left(Y\left(\mathbb{R}^{n}\right),\|\cdot\|_{Y}\right)$ is a Banach space with the following property: $f \in Y\left(\mathbb{R}^{n}\right)$ if and only if $\|f\|_{Y}<\infty$.
(2) (Norm property):
(A1) (Positivity): $\|f\|_{Y} \geq 0$.
(A2) (Strict positivity) $\|f\|_{Y}=0$ if and only if $f=0$ a.e..
(B) (Homogeneity): $\|\lambda f\|_{Y}=|\lambda| \cdot\|f\|_{Y}$.
(C) (Triangle inequality): $\|f+g\|_{Y} \leq\|f\|_{Y}+\|g\|_{Y}$.
(3) (Symmetry): $\|f\|_{Y}=\||f|\|_{Y}$.
(4) (Lattice property): If $0 \leq g \leq f$ a.e., then $\|g\|_{Y} \leq\|f\|_{Y}$.
(5) (Fatou property): If $0 \leq f_{1} \leq f_{2} \leq \cdots$ and $\lim _{j \rightarrow \infty} f_{j}=f$, then $\lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{Y}=$ $\|f\|_{Y}$.
(6) For $B \in \mathcal{B}, \chi_{B} \in Y\left(\mathbb{R}^{n}\right)$.
(7) If $B \in \mathcal{B}$ and $f \in Y\left(\mathbb{R}^{n}\right)$, then $\chi_{B} f \in L^{1}\left(\mathbb{R}^{n}\right)$.

For a ball Banach function space $Y\left(\mathbb{R}^{n}\right)$, we let

$$
Y^{\prime}\left(\mathbb{R}^{n}\right) \equiv\left\{f \in L^{0}\left(\mathbb{R}^{n}\right):\|f\|_{Y^{\prime}} \equiv \sup _{g \in Y,\|g\|_{Y}=1}\|f \cdot g\|_{L^{1}}<\infty\right\}
$$

The space $Y^{\prime}\left(\mathbb{R}^{n}\right)$ is called the Köthe dual of $Y\left(\mathbb{R}^{n}\right)$ and it is known that $Y^{\prime}\left(\mathbb{R}^{n}\right)$ is a ball Banach space if $Y\left(\mathbb{R}^{n}\right)$ is a ball Banach space; see [?, Proposition 2.3]. Assume that $Y\left(\mathbb{R}^{n}\right)$ is a ball Banach function space such that M is bounded on $Y\left(\mathbb{R}^{n}\right)$ and $Y^{\prime}\left(\mathbb{R}^{n}\right)$. Then there exists $\eta>1$ such that $M^{(\eta)}$ is also bounded on $Y^{\prime}\left(\mathbb{R}^{n}\right)$ according to [?, Corollary 6.1]. Thus, for all $f \in Y\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\|f\|_{L^{1}\left(M^{(\eta)}\right.} \chi_{B(1)} \leq\|f\|_{Y}\left\|M^{(\eta)} \chi_{B(1)}\right\|_{Y^{\prime}} \lesssim\|f\|_{Y}\left\|_{B(1)}\right\|_{Y^{\prime}} \sim\|f\|_{Y} \tag{4.6}
\end{equation*}
$$

We can develop the theory of the decomposition of Hardy spaces based on $Y\left(\mathbb{R}^{n}\right)$. But we can extend the class of linear spaces to some extent. Consider the power of $Y\left(\mathbb{R}^{n}\right)$: For $0<p<\infty$, we define

$$
\|f\|_{Y^{(p)}} \equiv\left(\left\||f|^{p}\right\|_{Y}\right)^{\frac{1}{p}}
$$

for all $f \in L^{0}\left(\mathbb{R}^{n}\right)$. The p-convexification $Y^{(p)}\left(\mathbb{R}^{n}\right)$ of $Y\left(\mathbb{R}^{n}\right)$ is the set of all $f \in L^{0}\left(\mathbb{R}^{n}\right)$ for which $\|f\|_{Y^{(p)}}<\infty$. For example, $\left(L^{p}\right)^{(u)}\left(\mathbb{R}^{n}\right)=L^{p u}\left(\mathbb{R}^{n}\right)$ for all $0<u<\infty$ and $1 \leq p \leq \infty$.

Let $Y\left(\mathbb{R}^{n}\right)$ be as above and let $X\left(\mathbb{R}^{n}\right) \equiv Y^{(p)}\left(\mathbb{R}^{n}\right)$ for some $0<p<\infty$. The X based Hardy space $H X\left(\mathbb{R}^{n}\right)$ collects all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which $\|f\|_{H X} \equiv\left\|\mathcal{M}_{N} f\right\|_{X}$ is finite. The number N will do as long as $N \gg 1$. As is seen from (??), $H X\left(\mathbb{R}^{n}\right)$ is embedded into $H^{p}(w)$ for some $w \in A_{1}$. Therefore, the space $H X\left(\mathbb{R}^{n}\right)$ falls within the scope of Theorem ??.

Theorem 4.3. Let $Y\left(\mathbb{R}^{n}\right)$ be a ball Banach function space such that M is bounded on $Y\left(\mathbb{R}^{n}\right)$ and $Y^{\prime}\left(\mathbb{R}^{n}\right)$. Let $0<p<\infty$ and define $X\left(\mathbb{R}^{n}\right) \equiv Y^{(p)}\left(\mathbb{R}^{n}\right)$. Then for any $f \in H X\left(\mathbb{R}^{n}\right)$ and $L \gg 1$, there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).
4.3. A_{∞}-Weighted Hardy spaces. We expand Section ?? using Section ??. A locally integrable weight w is said to be an A_{∞}-weight, if

$$
[w]_{A_{\infty}} \equiv \sup _{B \in \mathcal{B}} m_{B}(w) \exp \left(-m_{B}(\log w)\right)<\infty .
$$

The quantity $[w]_{A_{\infty}}$ is referred to as the A_{∞}-constant.
An important property of the class A_{∞} is that any weight in A_{∞} belongs to A_{p} for some $1<p<\infty$. Let $1<p<\infty$. A locally integrable weight w is an A_{p}-weight, if

$$
[w]_{A_{p}} \equiv \sup _{B \in \mathcal{B}} m_{B}(w)\left(m_{B}\left(w^{-\frac{1}{p-1}}\right)\right)^{p-1}<\infty .
$$

It is remarkable that $w \in A_{p}$ if and only if M is bounded on $L^{p}(w)$. A direct consequence of the definition is that $w \in A_{p}$ if and only if $\sigma \in A_{p^{\prime}}$, where $\sigma \equiv$ $w^{-\frac{1}{p-1}}$. Remark also that $\left\{A_{p}\right\}_{p \in[1, \infty]}$ is nested: $A_{1} \subset A_{p} \subset A_{q} \subset A_{\infty}$ if $1 \leq p \leq$ $q \leq \infty$.

Let $w \in A_{\infty}$ and $0<p<\infty$. Based on Section ??, we consider $H^{p}(w)$. Let $w \in A_{\infty}$, so that $w \in A_{u}$ for some $1<u<\infty$. Then as we saw, M is
bounded on $Y\left(\mathbb{R}^{n}\right) \equiv L^{u}(w)$ and on $Y^{\prime}\left(\mathbb{R}^{n}\right)=L^{u^{\prime}}(\sigma)$, where $\sigma \equiv w^{-\frac{1}{u-1}}$. Since $Y^{(p)}\left(\mathbb{R}^{n}\right)=L^{p u}(w)$ for all $0<p<\infty$, the space $L^{p}(w)$ with $0<p<\infty$ and $w \in A_{\infty}$ falls within the scope of Theorem ??. In particular, Theorem ?? below can be used for another proof of the decomposition result in [?].

Theorem 4.4. The same conclusion as Theorem ?? holds if we assume merely $w \in A_{\infty}$ in Theorem ??
4.4. Variable Hardy spaces. For a measurable function $p(\cdot): \mathbb{R}^{n} \rightarrow(0, \infty)$, the variable Lebesgue space $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ with variable exponent $p(\cdot)$ is defined by

$$
L^{p(\cdot)}\left(\mathbb{R}^{n}\right) \equiv \bigcup_{\lambda>0}\left\{f \in L^{0}\left(\mathbb{R}^{n}\right): \rho_{p}\left(\lambda^{-1} f\right)<\infty\right\}
$$

where

$$
\rho_{p}(f) \equiv\left\||f|^{p(\cdot)}\right\|_{L^{1}}
$$

Moreover, for $f \in L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ we define the variable Lebesgue norm $\|\cdot\|_{L^{p(\cdot)}}$ by

$$
\|f\|_{L^{p(\cdot)}} \equiv \inf \left(\left\{\lambda>0: \rho_{p}\left(\lambda^{-1} f\right) \leq 1\right\} \cup\{\infty\}\right)
$$

Here we postulate the following conditions with some positive constants c_{*}, c^{*} and p_{∞} independent of x and y :

- Local log-Hölder continuity condition:

$$
\begin{equation*}
|p(x)-p(y)| \leq \frac{c_{*}}{\log \left(|x-y|^{-1}\right)} \text { for } x, y \in \mathbb{R}^{n} \text { satisfying }|x-y| \leq \frac{1}{2} \tag{4.7}
\end{equation*}
$$

- log-Hölder-type decay condition at infinity:

$$
\begin{equation*}
\left|p(x)-p_{\infty}\right| \leq \frac{c^{*}}{\log (e+|x|)} \text { for } x \in \mathbb{R}^{n} \tag{4.8}
\end{equation*}
$$

Assuming (??) and (??) as well as $0<p_{-} \equiv \inf p(\cdot) \leq p_{+} \equiv \sup p(\cdot)<\infty$, we can define variable Hardy space $H^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ as the set of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which $\mathcal{M}_{N} f \in L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$. The number N will do as long as $N \gg 1$. Theorem ?? did not use the structure of the underlying space $L^{p}\left(\mathbb{R}^{n}\right)$ heavily except in (??) and in the proof of the fact that the distribution vanishes weakly at infinity. Modify slightly the proof of Theorem ??, in particular (??), to have the following short proof of the key estimates of the decomposition theorems in [?, ?].

THEOREM 4.5. Assume that the exponent $p(\cdot)$ satisfies the above conditions. Let $f \in H^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ and $L \in \mathbb{Z} \cap\left[\left[\sigma_{p_{-}}\right], \infty\right)$. Then there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).

We may use Theorem ?? for another proof of Theorem ??, since M is bounded on $L^{p(\cdot)}\left(\mathbb{R}^{n}\right)$ and on $L^{p^{\prime}(\cdot)}\left(\mathbb{R}^{n}\right)$ as long as $p(\cdot)$ satisfies (??) and (??) as well as $1<p_{-} \leq p_{+}<\infty$. Here $p^{\prime}(\cdot)=\frac{p(\cdot)}{p(\cdot)-1}$ stands for the dual exponent.
4.5. Hardy-Morrey spaces. First of all, let us recall the Morrey space $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ with $0<q \leq p<\infty$. Define the Morrey norm $\|\cdot\|_{\mathcal{M}_{q}^{p}}$ by

$$
\|f\|_{\mathcal{M}_{q}^{p}} \equiv \sup \left\{|B|^{\frac{1}{p}-\frac{1}{q}}\|f\|_{L^{q}(B)}: B \in \mathcal{B}\right\}
$$

for $f \in L^{0}\left(\mathbb{R}^{n}\right)$. See [?] for example. The Morrey space $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ is the set of all $f \in L^{0}\left(\mathbb{R}^{n}\right)$ for which $\|f\|_{\mathcal{M}_{q}^{p}}$ is finite. The Hardy-Morrey space $H \mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ is the
set of all $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for which $\|f\|_{H \mathcal{M}_{q}^{p}} \equiv\left\|\mathcal{M}_{N} f\right\|_{\mathcal{M}_{q}^{p}}$ is finite. The number N will do as long as $N \gg 1$.

We recall the following facts:
(1) Thanks to [?], M is bounded on $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ if $1<q \leq p<\infty$.
(2) In [?], the Köthe dual of $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ is specified if $1<q \leq p<\infty$.
(3) Thanks to [?], M is bounded on the Köthe dual of $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ if $1<q \leq$ $p<\infty$.
Let $0<q \leq p<\infty$ again. Then from the above observation the space $\mathcal{M}_{q}^{p}\left(\mathbb{R}^{n}\right)$ falls under the scope of Theorem ??.

THEOREM 4.6. Let $0<q \leq p<\infty$. Let $f \in \operatorname{HM}_{q}^{p}\left(\mathbb{R}^{n}\right)$ and $L \in \mathbb{Z} \cap\left[\left[\sigma_{q}\right], \infty\right)$. Then there exist a countable collection $\left\{f_{j}\right\}_{j=1}^{\infty}$ of L_{c}^{∞}-functions having moment of order L and a countable collection $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ satisfying (??), (??) and (??).

Theorem ?? recovers the results in $[?, ?, ?]$. It is noteworthy that in the present paper we did not depend on the diagonal argument in [?, ?]. As we did for variable Hardy spaces, we may also reexamine the proof of Theorem ?? to prove Theorem ??.

References

[1] D.R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc. 279 (1986), no. 1, 73-94.
[2] A. Akbulut, V.S. Guliyev, T. Noi and Y. Sawano, Generalized Hardy-Morrey spaces, Z. Anal. Anwend., 36 (2017), no. 2, 129-149.
[3] D. Cruz-Uribe and D.L. Wang, Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), no. 2, 447-493.
[4] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7 (1987), 273-279.
[5] S. Dekel, G. Kerkyacharian, G. Kyriazis and P. Petrushev, A New Proof of the Atomic Decomposition of Hardy Spaces, CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2016 (K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 59-73 Prof. Marin Drinov Academic Publishing House, Sofia, 2018.
[6] J. García-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud., 1161985.
[7] K.P. Ho, Atomic decompositions of weighted Hardy spaces with variable exponents, Tohoku Math. J. (2) 69 (2017), no. 3, 383-413.
[8] K.P. Ho, Atomic decompositions and Hardy's inequality on weak Hardy-Morrey spaces, Sci. China Math. 60 (2017), no. 3, 449-468.
[9] K.P. Ho, Y. Sawano, D. Yang, and S. Yang, Hardy spaces for ball quasi-Banach function spaces, Dissertationes Math. 525 (2017), 1-102.
[10] G. Di Fazio, D.I. Hakim and Y. Sawano, Morrey Spaces. Vol. I. Introduction and applications to integral operators and PDE's. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2020. 479 pp. ISBN: 978-1-4987-6551-0; 978-0-429-08592-5 46-02 (2020)
[11] T. Iida, Y. Sawano and H. Tanaka, Atomic decomposition for Morrey spaces, Z. Anal. Anwend., 33 (2014), no. 2, 149-170.
[12] H. Jia and H. Wang, Decomposition of Hardy-Morrey spaces, J. Math. Anal. Appl. 354 (2009), 99-110.
[13] A. Miyachi, Change of variables for weighted Hardy spaces on a domain, Hokkaido Math. J. 38(3): 519-555. DOI: 10.14492/hokmj/1258553975
[14] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), 3665-3748.
[15] Y. Sawano, Theory of Besov spaces, Developments in Mathematics, 56. Springer, Singapore, 2018. xxiii +945 pp.
[16] Y. Sawano and H. Tanaka, Predual spaces of Morrey spaces with non-doubling measures, Tokyo J. Math. 32 (2009), 471-486.
[17] Y. Sawano and H. Tanaka. The Fatou property of block spaces, J. Math. Sci. Univ. Tokyo. 22 (2015), 663-683.
[18] T. Schott, Function spaces with exponential weights I. Math. Nachr. 189 (1998), 221-242.
[19] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, 1993.
[20] J.O. Strömberg and A. Torchinsky, Weighted Hardy spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)
[21] J.S. Sun,D. Yang and W. Yuan, Weak Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: decompositions, real interpolation, and Calderón-Zygmund operators, J. Geom. Anal. 32 (2022), no. 7, Paper No. 191, 85 pp.
[22] Y.Y. Zhang, D. Yang and W. Yuan, Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions, Commun. Contemp. Math. 24 (2022), no. 6, Paper No. 2150004, 35 pp.
[23] Y.Y. Zhang, D. Yang, W. Yuan and S.B. Wang, Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math. 64 (2021), no. 9, 2007-2064.

Department of Mathematics, Chuo University, 1-13-27, Kasuga, 112-8551, Tokyo, Japan

Email address: yoshihiro-sawano@celery.ocn.ne.jp
Department of Mathematics, Chuo University, 1-13-27, Kasuga, 112-8551, Tokyo, Japan

Email address: a19.dad7@g.chuo-u.ac.jp

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊行年月
No． 11988 ON THE DEFORMATIONS OF WITT GROUPS TO TORI II
No． 21988 On minimal Einstein submanifold with codimension two
No． 31988 Minimal Einstein submanifolds
No． 41988 Submanifolds with parallel Ricci tensor
No． 51988 A CASE OF EXTENSIONS OF GROUP SCHEMES OVER
A DISCRETE VALUATION RING
No． 61989 ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES

No． 71989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON NONSMOOTH DOMAINS

No． 81989 SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER
A DI SCRETE VALUATION RING I
No． 91989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR
SECOND－ORDER ELLIPTIC PDE＇S ON DOMAINS WITH CORNERS
No． 101989 MILNOR＇S INEQUALITY FOR 2－DIMENSIONAL ASYMPTOTIC CYCLES

No． 111989 ON THE SELF－INTERSECTIONS OF FOLIATION CYCLES
No． 121989 On curvature pinching of minimal submanifolds
No． 131990 The Intersection Product of Transverse Invariant Measures

No． 141990 The Transverse Euler Class for Amenable Foliations

No． 141989 The Maximum Principle for Semicontinuous Functions
No． 151989 Fully Nonliear Oblique DerivativeProblems for Nonlinear Second－Order Elliptic PDE＇s．
No． 151990 On Bundle Structure Theorem for Topological Semigroups．

No． 161990 On Linear Orthogonal Semigroup \mathfrak{O}_{n}
－Sphere bundle structure，homotopy type and Lie algebra－

No． 171990 On a hypersurface with birecurrent second fundametal tensor．
No． 181990 User＇s guide to viscosity solutions of second order partial differential equationd．
No． 191991 Viscosity solutions for a class of Hamilton－Jacobi equations in Hilbert spaces．
No． 201991 Perron＇s methods for monotone systems of second－order elliptic PDEs．
No． 211991 Viscosity solutions for monotone systems of second－order elliptic PDEs．
No． 221991 Viscosity solutions of nonlinear second－order partial differential equations in Hilbert spaces．
No． 23
No． 241992 On some pinching of minimal submanifolds．
No． 251992 Transverse Euler Class of Foliations on Almost Compact Foliation Cycles．

No． 261992 Local Homeo－and Diffeomorphisms：Invertibility and Convex Image．

著者

Tsutomu SEKIGUCHI
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Tsutomu SEKIGUCHI and Noriyuki SUWA

S．HURDER and Y．MITSUMATSU
Paul DUPUIS and Hitoshi ISHII

Tsutomu SEKIGUCHI and Noriyuki SUWA

Paul DUPUIS
and Hitoshi ISHII
Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Yoshio MATSUYAMA
S．HURDER
and Y．MITSUMATSU
S．HURDER and Y．MITSUMATSU
M．G．Crandall and H．ISHII
Hitoshi ISHII

Yoichi NADUMO， Masamichi TOKIZAWA and Shun SATO

Masamichi TOKIZAWA and Shun SATO Yoshio MATSUYAMA

M．G．CRANDALL，H．ISHII and P．L．LIONS

H．ISHII

H．ISHII
H．ISHII and S．KOIKE
H．ISHII

Y．MATSUYAMA

S．HURDER
and Y．MITSUMATSU
G．ZAMPIERI and G．GORNI

No. 271992 Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space. G. ZAMPIERI and G. GORNI
No. 281992 Uniqueness of solutions to the Cauchy problems for $u_{t}-\Delta u+r|\nabla u|^{2}=0$ I. FUKUDA, H. ISHII and M. TSUTSUMI

No. 291992 Viscosity solutions of functional differential equations.
No. 301993 On submanifolds of sphere with bounded second fundamental form
No. 311993 On the equivalence of two notions of weak solutions, viscosty solutions and distributional solutions.
No. 321993 On curvature pinching for totally real submanifolds of $C P^{n}(c)$
No. 331993 On curvature pinching for totally real submanifolds of $H P^{n}(c)$
No. 341993 On curvature pinching for totally complex submanifolds of $H P^{n}(c)$
No. 351993 A new formulation of state constracts problems for first-order PDEs.
No. 361993 On Multipotent Invertible Semigroups.
No. 371993 On the uniquess and existence of sulutions of fully nonlinear parabolic PDEs underthe Osgood type condition
No. 381993 Curvatura pinching for totally real submanifolds of $C P^{n}(c)$
No. 391993 Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygones

No. 401993 Generalized motion of noncompact hypersurfaces with velocity having arbitray growth on the curvature tensor.
No. 411994 On the unified Kummer-Artin-Schreier-Witt theory
No. 421995 Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients.
No. 431995 A genaralization of Bence, Merriman and Osher algorithm for motion by mean curvature.
No. 441995 Degenerate parabolic PDEs with discontinuities and generalized

No. 451995 Normal forms of pseudodifferential operators on tori and diophantine phenomena.
No. 461996 On the dustributions of likelihood ratio criterion for equality of characteristic vectors in two populations.
No. 471996 On a quantization phenomenon for totally real submanifolds of $C P^{n}(c)$
No. 481996 A charactarization of real hypersurfaces of complex projective space.
No. 491999 A Note on Extensions of Algebraic and Formal Groups, IV.
No. 501999 On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_{a}$ over a $\mathbb{Z}_{(p)}$-algebra
No. 512003 On the descriptions of $\mathbb{Z} / p^{n} \mathbb{Z}$-torsors by the Kummer-Artin-Schreier-Witt theory
No. 522003 ON THE RELATION WITH THE UNIT GROUP SCHEME $U\left(\mathbb{Z} / p^{n}\right)$ AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME
No. 542004 ON NON-COMMUTATIVE EXTENTIONS OF $\mathbb{G}_{a, A}$ BY $\mathbb{G}_{m, A}$ OVER AN \mathbb{F}_{p}-ALGEBRA
No. 552004 ON THE EXTENSIONS OF \widehat{W}_{n} BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$-ALGEBRA
No. 562005 On inverse multichannel scattering

No. 572005 On Thurston's inequality for spinnable foliations
H. ISHII and S. KOIKE
Y. MATSUYAMA
H. ISHII
Y. MATSUYAMA
Y. MATSUYAMA
Y. MATSUYAMA
H. ISHII and S. KOIKE
M. TOKIZAWA
H. ISHII and K. KOBAYASHI
Y. MATSUYAMA
T. GRAMCHEV
P.POPIVANOV
and M.YOSHINO
H. ISHII
and P. E.SOUGANIDIS
T. SEKIGUCHI and N. SUWA

Hitoshi ISHII
and Mythily RAMASWARY

Todor GRAMCHEV
and Masafumi YOSHINO
Todor GRAMCHEV
and Masafumi YOSHINO
Shin-ichi TSUKADA
and Takakazu SUGIYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
T. SEKIGUCHI and N. SUWA

Mitsuaki YATO

Kazuyoshi TSUCHIYA

Noritsugu ENDO

Yuki HARAGUCHI

Yasuhiro NIITSUMA
V.MARCHENKO
K.MOCHIZUKI
and I.TROOSHIN
H.KODAMA, Y.MITSUMATSU
S.MIYOSHI and A.MORI

No． 582006 Tables of Percentage Points for Multiple Comparison Procedures

No． 592006 COUTING POINTS OF THE CURVE $y^{4}=x^{3}+a$ OVER A FINITE FIELD

No． 602006 TWISTED KUMMER AND KUMMER－ARTIN－SCHREIER THEORIES Noriyuki SUWA
No． 612006 Embedding a Gaussian discrete－time ARMA（3，2）process in a Gaussian continuous－time $\operatorname{ARMA}(3,2)$ process
No． 622006 Statistical test of randomness for cryptographic applications

No． 632006 ON NON－COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_{a}$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_{p}－algebra
No． 642006 Asymptotic distribution of the contribution ratio in high dimensional principal component analysis
No． 652006 Convergence of Contact Structures to Foliations
No． 662006 多様体上の流体力学への幾何学的アプローチ
No． 672006 Linking Pairing，Foliated Cohomology，and Contact Structures
No． 682006 On scattering for wave equations with time dependent coefficients
No． 692006 On decay－nondecay and scattering for Schrödinger equations with time dependent complex potentials
No． 702006 Counting Points of the Curve $y^{2}=x^{12}+a$ over a Finite Field
No． 712006 Quasi－conformally flat manifolds satisfying certain condition on the Ricci tensor

No． 722006 Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three
No． 732007 Foliations and compact leaves on 4－manifolds I Realization and self－intersection of compact leaves
No． 742007 ON A TYPE OF GENERAL RELATIVISTIC SPACETIME WITH W_{2}－CURVATURE TENSOR

No． 752008 Remark on TVD schemes to nonstationary convection equation
No． 762008 THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS
No． 772008 Reeb components and Thurston＇s inequality
No． 782008 Permutation test for equality of individual eigenvalues from covariance matrix in high－dimension
No． 792008 Asymptotic Distribution of the Studentized Cumulative Contribution Ratio in High－Dimensional PrincipalComponent Analysis

No． 802008 Table for exact critical values of multisample Lepage type statistics when $k=3$
No． 812008 AROUND KUMMER THEORIES
No． 822008 DEFORMATIONS OF THE KUMMER SEQUENCE
No． 832008 ON BENNEQUIN＇S ISOTOPY LEMMA AND THURSTON＇S INEQUALITY
No． 842009 On solvability of Stokes problems in special Morrey space $L_{3, \text { unif }}$
No． 852009 On the Cartier Duality of Certain Finite Group Schemes of type（ p^{n}, p^{n} ）

Y．MAEDA，
T．SUGIYAMA
and Y．FUJIKOSHI
Eiji OZAKI
ri HUZII
Mituaki HUZII

Mituaki HUZII，Yuichi TAKEDA
Norio WATANABE
Toshinari KAMAKURA
and Takakazu SUGIYAMA
Yuki HARAGUCHI

Y．FUJIKOSHI

T．SATO and T．SUGIYAMA
Yoshihiko MITSUMATSU
三松 佳彦
Yoshihiko MITSUMATSU
Kiyoshi MOCHIZUKI
K．MOCHIZUKI and T．MOTAI

Yasuhiro NIITSUMA
U．C．De and Y．MATSUYAMA

T．SUZUKI and T．TAKAKURA

Y．MITSUMATSU and E．VOGT

A．A．SHAIKH
and Y．MATSUYAMA
Hirota NISHIYAMA
Masashi TAKAMURA

S．MIYOSHI and A．MORI
H．MURAKAMI，E．HINO and T．SUGIYAMA
M．HYODO，T．YAMADA and T．SUGIYAMA

Hidetoshi MURAKAMI

Noriyuki SUWA
Yuji TSUNO
Yoshihiko MITSUMATSU

N．KIKUCHI and G．A．SEREGIN
N．AKI and M．AMANO

No． 862010 Construction of solutions to the Stokes equations

No． 872010 RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A KENMOTSU MANIFOLD

No． 882010 On the group of extensions $\operatorname{Ext}^{1}\left(\mathcal{G}^{\left(\lambda_{0}\right)}, \mathcal{E}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\right)$ over a discrete valuation ring
No． 892010 Normal basis problem for torsors under a finite flat group scheme
No． 902010 On the homomorphism of certain type of models of algebraic tori
No． 912011 Leafwise Symplectic Structures on Lawson＇s Foliation
No． 922011 Symplectic volumes of double weight varieties associated with $S U(3) / T$
No． 932011 On vector partition functions with negative weights
No． 942011 Spectral representations and scattering for
Schrodinger operators on star graphs
No． 952011 Normally contracting Lie group actions

No． 962012 Homotopy invariance of higher K－theory for abelian categories
No． 972012 CYCLE CLASSES FOR p－ADIC ÉTALE TATE TWISTS AND THE IMAGE OF p－ADIC REGULATORS

No． 982012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

No． 992013 Global solutions for the Navier－Stokes equations in the ratational framework
No． 1002013 On the cyclotomic twisted torus and some torsors

No． 1012013 Helicity in differential topology and incompressible fluids on foliated 3－manifolds
No． 1022013 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD
この論文には改訂版（No．108）があります。そちらを参照してください。
No． 1032013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM
No． 1042013 Symplectic volumes of double weight varieties associated with $S U(3)$ ，II
No． 1052013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX PROJECTIVE SPACE
No． 1062014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No． 1072014 Thurston＇s h－principle for 2－dimensional Foliations of Codimension Greater than One
No． 1082015 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD

No． 1092015 KUMMER THEORIES FOR ALGEBRAIC TORI AND NORMAL BASIS PROBLEM
No． $1102015 L^{p}$－MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS IN OPEN SETS OF \mathbb{R}^{d}

No． 1112015 Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
No． 1122015 Global solvability of the Kirchhoff equation with Gevrey data

Norio KIKUCHI

U．C．De and Y．MATSUYAMA

Takashi KONDO

Yuji TSUNO
Nobuhiro AKI
Yoshihiko MITSUMATSU
Taro SUZUKI
Tatsuru TAKAKURA
K．MOCHIZUKI
and I．TOROOSHIN
T．INABA，S．MATSUMOTO
and Y．MITSUMATSU
S．MOCHIZUKI and A．SANNAI
Kanetomo SATO

YUKINO TOMIZAWA

Tsukasa Iwabuchi
and Ryo Takada
Tsutomu Sekiguchi
and Yohei Toda
Yoshihiko Mitsumatsu

SHIGEAKI MIYOSHI

NORIYUKI SUWA
Taro Suzuki
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA
YUKINO TOMIZAWA

Yoshihiko MITSUMATSU
and Elmar VOGT
SHIGEAKI MIYOSHI

NORIYUKI SUWA

TSUKASA IWABUCHI，
TOKIO MATSUYAMA
AND KOICHI TANIGUCHI
Yoshikazu Kobayashi，Naoki Tanaka
and Yukino Tomizawa
Tokio Matsuyama
and Michael Ruzhansky

No. 1132015 A small remark on flat functions

No. 1142015 Reeb components of leafwise complex foliations and their symmetries I

No. 1152015 Reeb components of leafwise complex foliations and their symmetries II No. 1162015 Reeb components of leafwise complex foliations and their symmetries III

No. 1172016 Besov spaces on open sets

No. 1182016 Decay estimates for wave equation with a potential on exterior domains

No. 1192016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A GENERAL TYPE OF DISSIPATIVITY CONDITIONS

No. 1202017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE
No. 1212017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

No. 1222018 Geometric aspects of Lucas sequences, I
No. 1232018 Derivatives of flat functions

No. 1242018 Geometry and dynamics of Engel structures
No. 1252018 Geometric aspects of Lucas sequences, II
No. 1262018 On volume functions of special flow polytopes

No. 1272019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY
No. 1282019 On syntomic complex with modulus for semi-stable reduction case
No. 1292019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES
No. 1302020 Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces
No. 1312020 Global well-posedness of the Kirchhoff equation
No. 1322021 Sparse non-smooth atomic decomposition of quasi-Banach lattices

No. 1332021 Integer values of generating functions for Lucas sequences
No. 1342022 Littlewood-Paley characterization of discrete Morrey spaces and its application to the discrete martingale transform

No. 1352023 A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces

Kazuo MASUDA
and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Vladimir Georgiev and Tokio Matsuyama YOSHIKAZU KOBAYASHI
AND NAOKI TANAKA
YOSHIO MATSUYAMA

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi

Noriyuki Suwa
Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU
Yoshihiko MITSUMATSU
Noriyuki Suwa
Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA

Noriyuki Suwa
Kento YAMAMOTO
Noriyuki Suwa
Kanetomo Sato

Tokio Matsuyama
Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano
Noriyuki Suwa
Yuto Abe, Yoshihiro Sawano

Yoshihiro Sawano
and Kazuki Kobayashi

[^0]: 2010 Mathematics Subject Classification. Primary 41A17, 42B35; Secondary 26A33.
 Key words and phrases. Hardy spaces, variable exponents, atomic decomposition.

