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Abstract. The purpose of the present note is to slightly shorten the proof

of the atomic decomposition based on the paper by Dekel et. al. The atomic
decomposition in the present paper is applicable to Hardy spaces based on the
convexification of ball Banach spaces. The decomposition is rather canonical

although it does not depend linearly on functions. Also, this decomposition is
applicable under a rather weak condition as we will see.

1. Introduction

The goal of the present paper is to consider the atomic decomposition of the
Hardy space Hp(Rn) for p ∈ (0,∞). Recall that the Hardy space Hp(Rn), 0 < p <
∞, collects all f ∈ S ′(Rn) for which∥∥∥∥sup

t>0
|et∆f |

∥∥∥∥
Lp

<∞,

where {et∆}t>0 stands for the heat semigroup.
We use the following notation in the present paper: Let N0 ≡ {0, 1, . . .}. A

function f ∈ L∞(Rn) with compact support is said to have moment of order L if∫
Rn

xαf(x)dx = 0

for all α ∈ N0
n with |α| ≤ L. Let A,B ≥ 0. Then A ≲ B means that there

exists a constant C > 0 such that A ≤ CB, where C depends only on the param-
eters of importance. The symbol A ∼ B means that A ≲ B and B ≲ A happen
simultaneously. The index σp is given by σp ≡ n

min(1,p) − n for 0 < p <∞.

The goal of the present note is to provide a short proof of a well-known theorem
based on the paper [?]. To this end, we set up some notation. Let x ∈ Rn and
r > 0. We denote by B(x, r) the ball centered at x of radius r. Namely, we write

B(x, r) ≡ {y ∈ Rn : |x− y| < r}.

If x = 0, then omit it to write B(r) instead of B(x, r). The set of all balls is denoted
by B.
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Theorem 1.1. Let 0 < p ≤ 1. Let f ∈ Hp(Rn) and L ∈ Z ∩ [[σp],∞). Then
there exist a countable collection {fj}∞j=1 of L∞

c -functions having moment of order
L and a countable collection {Bj}∞j=1 ⊂ B such that

f =

∞∑
j=1

fj (1.1)

in S ′(Rn), that
supp(fj) ⊂ 8Bj (1.2)

for all j ∈ N and that  ∞∑
j=1

‖fj‖L∞
p|Bj |

 1
p

≲ ‖f‖Hp . (1.3)

Here aBj stands for the a-times expansion of Bj for a > 0. As in [?], the
proof of Theorem ?? uses some Hilbert spaces and estimates as in Lemma ?? to
control the grand maximal function. Recently Dekel, Kerkyacharian, Kyriazis and
Petrushev significantly reduced this argument [?]. The goal of the present paper is
to reexamine their proof and expand it to other Hardy spaces based on ball Banach
function spaces.

In order to extend Theorem ?? to other Hardy spaces such as the one based on
variable Lebesgue spaces, we slightly generalize Theorem ??. To this end, we recall
an equivalent definition of Hp(Rn). We will use the notation 〈x〉 ≡

√
1 + |x|2 for

x ∈ Rn. To simplify the notation, for N ∈ N0, we define

pN (ϕ) ≡
∑

α∈N0
n

|α|≤N

(
sup
x∈Rn

〈x〉N |∂αϕ(x)|
)
, ϕ ∈ S(Rn). (1.4)

We define the unit ball FN with respect to pN by

FN ≡ {ϕ ∈ S(Rn) : pN (ϕ) ≤ 1}. (1.5)

For j ∈ Z and ϕ ∈ S(Rn), we write

ϕj ≡ 2jnϕ(2j ·). (1.6)

Let f ∈ S ′(Rn). We define the grand maximal operator MNf by

MNf(x) ≡ sup
k∈Z,ϕ∈FN

∣∣ϕk ∗ f(x)
∣∣ (x ∈ Rn).

Let 0 < p ≤ 1. We can say that the Hardy space Hp(Rn) is the set of all f ∈ S ′(Rn)
for which the quantity ‖f‖Hp ≡ ‖MNf‖Lp is finite; this definition coincides with
the one above as long as N � 1 [?, p. 91].

Denote by χE the indicator function of a set E. We refine Theorem ?? based
on the spirit of Miyachi [?].

Theorem 1.2. Let 0 < p ≤ 1. Let f ∈ Hp(Rn) and L ∈ Z ∩ [[σp],∞). Then
there exist a countable collection {fj}∞j=1 of L∞

c -functions having moment of order
L and a countable collection {Bj}∞j=1 ⊂ B satisfying (??), (??) and ∞∑

j=1

(‖fj‖L∞χ 1
2Bj

)u

 1
u

≲ MNf (1.7)



ATOMIC DECOMPOSITION IN HARDY SPACES 3

for all 0 < u <∞ with the implicit constant depends only on n, N and u.

Once Theorem ?? is proved, we can prove Theorem ?? with ease. In fact, letting
r = p ∈ (0, 1], we integrate (??) to have (??). So, we concentrate on (re)proving
Theorem ?? in the present note after stating some preliminary facts in Section ??.
The proof of Theorem ?? is quite akin to the one in [?]. Since the conclusion gets
tighter as L is larger, we may assume that L� 1. However, we start the proof from
scratch to clarify what is actually needed for the decomposition. We prove Theorem
?? with the spirit of [?]. We actually prove Theorem ?? in Section ??. Section ??
expands what we proved in Section ??. As the starting point, we consider weighted
Hardy spaces with weights in A1. After that, we investigate other function spaces
based on weighted Hardy spaces with weights in A1.

2. Preliminaries

A distribution f ∈ S ′(Rn) is said to vanish weakly at infinity if ψj ∗ f → 0 in
S ′(Rn) as j → −∞ for all ψ ∈ S(Rn). Since

‖ψj ∗ f‖L∞ = O(2
jn
p ‖f‖Hp)

for all f ∈ Hp(Rn), as j → −∞, any element in Hp(Rn) vanishes weakly at infinity.
By taking advantage of the class FN , we use the following observation:

Lemma 2.1. There exists A > 1 such that

sup
ϕ∈FN

∣∣ϕk ∗ f(x)
∣∣ ≤ A sup

ϕ∈FN

∣∣ϕk ∗ f(y)
∣∣ (2.1)

for all f ∈ S ′(Rn) and k ∈ Z if x, y ∈ Rn satisfy |x− y| ≤ 22−k.

Proof. Let ϕ ∈ FN . We calculate

ϕk ∗ f(x) =
〈
f, ϕk(x− ·)

〉
=
〈
f, ϕk ((x− y) + (y − ·))

〉
.

Let A > 1 be the constant in Lemma ??. Set

ϕk,x,y(z) ≡ ϕ
(
2k(x− y) + z

)
(z ∈ Rn).

Then we have pN (ϕk,x,y) ≤ ApN (ϕ) with the constant A > 1 depending on N .
Thus,

sup
ϕ∈FN

∣∣ϕk ∗ f(x)
∣∣ = A sup

ϕ∈FN

∣∣A−1(ϕk,x,y)
k ∗ f(y)

∣∣ ≤ A sup
ϕ∈FN

∣∣ϕk ∗ f(y)
∣∣ ,

proving (??). □

We also need the well-known Whitney covering lemma.

Lemma 2.2. Let Ω be a proper open set in Rn. Write ρ(x) ≡ dist(x, ∂Ω) for

x ∈ Rn. We let
{
B
(
ξj ,

ρj

5

)}∞
j=1

be a maximal disjoint family, where ρj ≡ ρ(ξj) for

j ∈ N.

(1) Ω =
∞⋃
j=1

B
(
ξj ,

ρj

2

)
.

(2) For each j ∈ N, let

Jj ≡
{
ν ∈ N ∩ (j,∞) : B

(
ξj ,

3

4
ρj

)
∩B

(
ξν ,

3

4
ρν

)
6= ∅
}
.

Then ♯Jj ≤ 300n and 7−1ρν ≤ ρj ≤ 7ρν for all ν ∈ Jj.
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Proof. This is essentially contained in [?]. However, the number 300 did not
appear in [?]. For the sake of convenience, we clarify why this number appears.
Notice that ∑

ν∈Jj

χ
B(ξν ,

ρj
35 )

≤
∑
ν∈Jj

χB(ξν , ρν5 ) ≤ χB(ξj , 375 ρj),

since
3

4
ρj +

3

4
ρν +

1

5
ρν ≤ 6ρj +

7

5
ρj =

37

5
ρj .

Thus,

♯Jj ×
1

35n
≤ 37n

5n
,

implying ♯Jj ≤ 259n ≤ 300n. □

3. Proof of Theorem ??

We transform Theorem ?? to the following equivalent form:

Proposition 3.1. Let 0 < p ≤ 1. Let f ∈ Hp(Rn) and L ∈ Z∩ [[σp],∞). Then
there exists a countable collection {Fj,r}j∈N,r∈Z of L∞

c -functions having moment of
order L with the following properties:

(1) In S ′(Rn),

f =
∑

(j,r)∈N×Z

Fj,r. (3.1)

(2) For all j ∈ N and r ∈ Z, there exist ξj,r ∈ Rn and ρj,r > 0 such that

supp(Fj,r) ⊂ B(ξj,r, 5ρj,r). (3.2)

(3) For all 0 < u <∞, ∑
(j,r)∈N×Z

(‖Fj,r‖L∞χB(ξj,r,2−1ρj,r))
u

 1
u

≲ MNf, (3.3)

where the implicit constant depends on u, N and n.

Section ?? is devoted to the proof of Proposition ?? assuming that f 6= 0.
For each k, r ∈ Z, we set

Ωr ≡ {x ∈ Rn : MNf(x) > 2r}
and

Vk,r ≡ {x ∈ Rn : B(x, 2−k+1) ⊂ Ωr}.
Notice that each Ωr is an open set and hence

Ωr =

∞⋃
k=−∞

Vk,r.

If f ∈ S ′(Rn) \ {0}, then
∞⋃

r=−∞
Ωr = Rn.

Here is a geometric observation we need.

Lemma 3.2. Let l0, l1, k, r ∈ Z and x ∈ (Vl0+1,r \ Vl0,r) ∩ (Vl1+1,r+1 \ Vl1,r+1).

(1) l0 ≤ l1.
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(2) If B(x, 2−k) ∩ (Vk,r \ Vk,r+1) 6= ∅, then l0 ≤ k ≤ l1 + 1.
(3) If l0 + 2 ≤ k ≤ l1 − 1, then B(x, 2−k) ⊂ Vk,r \ Vk,r+1.

Proof. We remark that x ∈ (Vl0+1,r \ Vl0,r) ∩ (Vl1+1,r+1 \ Vl1,r+1) if and only
if 2−l0 ≤ dist(x, ∂Ωr) < 2−l0+1 and 2−l1 ≤ dist(x, ∂Ωr+1) < 2−l1+1.

(1) Since Ωr ⊃ Ωr+1, dist(x, ∂Ωr+1) ≤ dist(x, ∂Ωr). Thus, in view of the
above observation, the result follows immediately.

(2) Let y ∈ B(x, 2−k) ∩ (Vk,r \ Vk,r+1). Since y ∈ Vk,r,

2−l0+1 > dist(x, ∂Ωr) ≥ dist(y, ∂Ωr)− |x− y| ≥ 21−k − 2−k = 2−k,

implying k ≥ l0. Likewise, since y /∈ Vk,r+1,

2−l1 ≤ dist(x, ∂Ωr+1) ≤ dist(y, ∂Ωr+1) + |x− y| ≤ 21−k + 2−k < 22−k.

implying k ≤ l1 + 1.
(3) Let z ∈ B(x, 2−k). Then since x ∈ Vl0+1,r and k ≥ l0 + 2,

dist(z, ∂Ωr) ≥ dist(x, ∂Ωr)− |x− z| ≥ 2−l0 − 2−k ≥ 21−k.

Hence B(x, 2−k) ⊂ Vk,r. Likewise, since x /∈ Vl1,r+1,

dist(z, ∂Ωr+1) ≤ dist(x, ∂Ωr+1) + |x− z| < 21−l1 + 2−k ≤ 21−k.

Hence B(x, 2−k) ∩ Vk,r+1 = ∅.
□

Fix an integer L > n
2p here and below. Let Φ,Ψ,Θ ∈ C∞

c (Rn) be even functions

supported in the unit ball and satisfy

Ψ = Φ1 − Φ = ∆LΘ,

∫
Rn

Φ(x)dx = 1. (3.4)

The pair (Φ,Ψ,Θ) is known to exist [?]. Write Ψ̃ ≡ Φ1 +Φ.
Let f ∈ S ′(Rn) \ {0} be a distribution vanishing weakly at infinity. Also let

k, r ∈ Z. We set

fk,r ≡ Ψk ∗ (χVk,r\Vk,r+1
· Ψ̃k ∗ f).

A geometric observation shows that fk,r is supported on Ωr. We also need the
L∞-bound for the function of this type.

Lemma 3.3. Let Γ, Γ̃ ∈ C∞
c (Rn) with supp(Γ), supp(Γ̃) ⊂ B(1). Also let E ⊂

Rn be a measurable set. Then

|Γk ∗ (χ(Vk,r\Vk,r+1)∩E · Γ̃k ∗ f)(x)| ≲ 2r

for all x ∈ Rn.

Proof. Since

|Γk ∗ (χ(Vk,r\Vk,r+1)∩E · Γ̃k ∗ f)(x)|

≤
∫
Vk,r\Vk,r+1

|Γk(x− y)Γ̃k ∗ f(y)|dy

≤ A

∫
Vk,r\Vk,r+1

|Γk(x− y)|
(

inf
z∈B(y,22−k)

|Γ̃k ∗ f(z)|
)
dy
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thanks to Lemma ??, we have

|Γk ∗ (χ(Vk,r\Vk,r+1)∩E · Γ̃k ∗ f)(x)| ≲ 2r
∫
Vk,r\Vk,r+1

|Γk(x− y)|dy ≲ 2r

by the definition of MNf , Vk,r+1 and Ωr. □

We decompose

f =

∞∑
k=−∞

Ψk ∗ Ψ̃k ∗ f =

∞∑
k=−∞

( ∞∑
r=−∞

fk,r

)
. (3.5)

We need to pay attention to the order of the summation in (??). However, if
f is good enough, then we can interchange the order of the summation.

Lemma 3.4. Assume that f ∈ Hp(Rn) with 0 < p ≤ 1 and that the integer L

in (??) satisfies L ∈ Z ∩
(

n
2p ,∞

)
. Then

f =
∑
k,r∈Z

fk,r

in the sense of absolute convergence in S ′(Rn). Namely,∑
k,r∈Z

|〈fk,r, φ〉| <∞

for all φ ∈ S(Rn).

Proof. Fix k, r ∈ Z. Recall that Ψ is an even function. We calculate

〈fk,r, φ〉 =
∫
Vk,r\Vk,r+1

Ψk ∗ φ(y)Ψ̃k ∗ f(y)dy.

Thanks to (??), by using integration by parts, we have∣∣Ψk ∗ φ(y)
∣∣ = ∣∣(∆LΘ)k ∗ φ(y)

∣∣ ≲ 2−max(0,2kL)〈y〉−2n−1 (y ∈ Rn),

if k ∈ Z. Meanwhile, if y ∈ Vk,r \ Vk,r+1, we have

|Ψ̃k ∗ f(y)| ≤ ApN (Ψ̃) inf
z∈B(y,2−k)

MNf(z) ≲ 2
kn
p ‖MNf‖Lp = 2

kn
p ‖f‖Hp (3.6)

thanks to Lemma ??. As a consequence,

|〈fk,r, φ〉| ≲ 2
kn
p −max(0,2kL)‖f‖Hp

∫
Vk,r\Vk,r+1

dy

〈y〉2n+1
.

If we add this inequality over r ∈ Z, then we obtain∑
r∈Z

|〈fk,r, φ〉| ≲ 2
kn
p −max(0,2kL)‖f‖Hp

∫
Rn

dy

〈y〉2n+1
(3.7)

∼ 2
kn
p −max(0,2kL)‖f‖Hp .

If L > n
2p , then this estimate is summable over k ∈ Z.

Once we can prove that the series converges absolutely, we see that the series
converges back to f thanks to (??). □
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Remark that the power 2n+1 in the above proof (see (??) for example) seems
superfluous: This number will turn out important in Section ??.

From Lemma ??,

f =

∞∑
r=−∞

( ∞∑
k=−∞

fk,r

)
(3.8)

in S ′(Rn). We analyze the summand with r fixed.

Lemma 3.5. Let r ∈ Z. Then∣∣∣∣∣
∞∑

k=−∞

fk,r(x)

∣∣∣∣∣ ≲ 2r

for all x ∈ Rn.

Proof. Since each fk,r is supported on Ωr, we may assume that x ∈ Ωr. We
distinguish two cases:

• Let x ∈ Ωr+1. Choose l0, l1 ∈ Z so that x ∈ (Vl0+1,r \ Vl0,r) ∩ (Vl1+1,r+1 \
Vl1,r+1). Thanks to Lemma ??(1), l0 ≤ l1. We further assume that
l0 + 3 ≤ l1; otherwise we may simply use Lemma ??

Fix x ∈ Rn and k ∈ Z so that fk,r(x) 6= 0. Then B(x, 2−k) ∩ (Vk,r \
Vk,r+1) 6= ∅. Thus l0 ≤ k ≤ l1 + 1 according to Lemma ??(2).

Due to Lemma ??(3), fk,r(x) = Ψk ∗ Ψ̃k ∗f(x) = Φk+1 ∗Φk+1 ∗f(x)−
Φk ∗ Φk ∗ f(x) if l0 + 2 ≤ k ≤ l1 − 1. Hence thanks to Lemma ??

l1−1∑
k=l0+2

fk,r(x) = Φl1 ∗ Φl1 ∗ f(x)− Φl0+2 ∗ Φl0+2 ∗ f(x) = O(2r).

We do not have to take into account the terms for k ≥ l1+2 or k ≤ l0− 1
since they vanish according to Lemma ??(2). If we handle the terms for
l0 ≤ k ≤ l0+1 and l1 ≤ k ≤ l1+1 using Lemma ?? again, then we obtain
the desired result.

• Let x ∈ Ωr \Ωr+1. Then let l1 = ∞ and x ∈ Vl0+1,r \ Vl0,r with l0 ∈ Z in
the above and go through the same argument.

□

We can generalize Lemma ??, whose proof we omit.

Lemma 3.6. Let l0, l1, r ∈ Z satisfy l0 < l1. Then∣∣∣∣∣
l1∑

k=l0

fk,r(x)

∣∣∣∣∣ ≲ 2r

for all x ∈ Rn, where the implicit constant does not depend on l0 and l1.

For an arbitrary set S, define an open set Sk by Sk ≡ {y ∈ Rn : dist(y, S) <
21−k}.

Lemma 3.7. Let l ∈ Z and x ∈ Sl \ Sl+1.

(1) Whenever k < l, B(x, 2−k) ⊂ Sk.
(2) Whenever k ≥ l + 2, B(x, 2−k) ∩ Sk = ∅.

Proof. Since x ∈ Sl \ Sl+1, 2
−l≤dist(x, S)<21−l. Let y ∈ B(x, 2−k).
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(1) Using the triangle inequality, we obtain

dist(y, S) ≤ |x− y|+ dist(x, S) ≤ 2−k + 21−l ≤ 21−k,

implying y ∈ Sk.
(2) Using the triangle inequality again, we obtain

dist(y, S) ≥ −|x− y|+ dist(x, S) > −2−k + 21−l ≥ 21−k,

implying y /∈ Sk.

□

Let S be a set. Set

FS(x) ≡
∞∑

k=−∞

Ψk ∗ (χ(Vk,r\Vk,r+1)∩Sk
· Ψ̃k ∗ f)(x) (x ∈ Rn).

If S is bounded, then by the Fubini theorem, we see that FS satisfies the same
moment condition as Ψk.

Lemma 3.8. For any set S and r ∈ Z, ‖FS‖L∞ ≲ 2r.

Proof. Let x ∈ S and k ∈ Z. Then B(x, 2−k) ⊂ Sk and hence

(Vk,r \ Vk,r+1) ∩ Sk ∩B(x, 2−k) = (Vk,r \ Vk,r+1) ∩B(x, 2−k).

Thus

FS(x) =

∞∑
k=−∞

Ψk ∗ (χVk,r\Vk,r+1
· Ψ̃k ∗ f)(x) = O(2r).

Suppose x ∈ Sl \Sl+1 for some l ∈ Z. Then thanks to Lemmas ??, ?? and ??,

FS(x) =

l−1∑
k=−∞

Ψk ∗ (χVk,r\Vk,r+1
· Ψ̃k ∗ f)(x)

+

l+1∑
k=l

Ψk ∗ (χ(Vk,r\Vk,r+1)∩Sk
· Ψ̃k ∗ f)(x)

= O(2r).

□

We slightly generalize Lemma ??.
Let S be a set and κ ∈ R. Set

FS,κ(x) ≡
∞∑

k=−∞

χ(κ,∞)(k)Ψ
k ∗ (χ(Vk,r\Vk,r+1)∩Sk

· Ψ̃k ∗ f)(x) (x ∈ Rn).

Lemma 3.9. For any set S, κ ∈ R and r ∈ Z, ‖FS,κ‖L∞ ≲ 2r.

We do not prove Lemma ?? since it is similar to Lemma ??.
Form the Whitney decomposition of Ωr = {x ∈ Rn : MNf(x) > 2r} for each

r ∈ Z. For x ∈ Rn and r ∈ Z, we let ρr(x) ≡ dist(x, ∂Ωr). We let
{
B
(
ξj,r,

ρj,r

5

)}∞
j=1

be a maximal disjoint family, where ρj,r ≡ ρr(ξj,r) for j ∈ N and r ∈ Z. Then we
have the following properties:

(1) Ωr =
∞⋃
j=1

B
(
ξj,r, 2

−1ρj,r
)
.
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(2) Let j ∈ N and r ∈ Z. Set

Jj,r ≡
{
ν ∈ N ∩ (j,∞) : B

(
ξj,r,

3

4
ρj,r

)
∩B

(
ξν,r,

3

4
ρν,r

)
6= ∅
}
.

Then ♯Jj,r ≤ 300n and 7−1ρν,r ≤ ρj,r ≤ 7ρν,r for each ν ∈ Jj,r.

Let j ∈ N and k, r ∈ Z. We define Ej,k,r ≡ B
(
ξj,r, 2

−1ρj,r + 21−k
)
∩ (Vk,r \

Vk,r+1) if B
(
ξj,r, 2

−1ρj,r
)
∩(Vk,r \Vk,r+1) 6= ∅. If B

(
ξj,r, 2

−1ρj,r
)
∩(Vk,r \Vk,r+1) =

∅, then define Ej,k,r ≡ ∅. We have
∞⋃
j=1

Ej,k,r = Vk,r \ Vk,r+1 (k, r ∈ Z).

We set

Rj,k,r ≡ Ej,k,r \
∞⋃

ν=j+1

Eν,k,r (j ∈ N, k, r ∈ Z).

We write
Fj,k,r ≡ Ψk ∗ (χRj,k,r

· Ψ̃k ∗ f)
and

Fj,r ≡
∞∑

l=−∞

Fj,l,r

for j ∈ N and k, r ∈ Z. As before, we can check that the sum defining Fj,r converges
absolutely in S ′(Rn). The next lemma shows that the limit belongs to L∞(Rn).
Also observe that

f =
∑

(k,r)∈Z2

fk,r =
∑

(j,k,r)∈N×Z2

Fj,k,r =
∑

(j,r)∈N×Z

Fj,r.

Lemma 3.10. For all j ∈ N and r ∈ Z, |Fj,r| ≲ 2rχB(ξj,r,8ρj,r).

Proof. The proof consists of two steps.

• Let us verify that Fj,r vanishes outside B(ξj,r, 5ρj,r). Let k ∈ Z sat-
isfy Rj,k,r 6= ∅. Then B(ξj,r, 2

−1ρj,r) ∩ (Vk,r \ Vk,r+1) 6= ∅. Let z ∈
B(ξj,r, 2

−1ρj,r) ∩ (Vk,r \ Vk,r+1). Then

3

2
ρj,r ≥ |ξj,r − z|+ dist(ξj,r, ∂Ωr) ≥ dist(z, ∂Ωr) ≥ 21−k,

so that ρj,r ≥ 4
3 ·2

−k. Thus, B(ξj,r, 2
−1ρj,r+21−k) ⊂ B (ξj,r, 2ρj,r). Since

supp(Fj,k,r) ⊂ B

(
ξj,r,

7

2
ρj,r + 21−k + 2−k

)
⊂ B(ξj,r, 5ρj,r),

we obtain the desired result.
• Let us obtain the L∞-bound of Fj,r. If k ∈ Z satisfies 2−k ≥ 2ρj,r, then

from the definition of ρj,r,

sup
z∈B(ξj,r,2−1ρj,r)

dist(z, ∂Ωr) =
3

2
ρj,r ≤ 2−k

and hence B(ξj,r, 2
−1ρj,r)∩(Vk,r\Vk,r+1) = ∅. Namely, if k ≤ − log2 ρj,r−

1, then B(ξj,r, 2
−1ρj,r) ∩ (Vk,r \ Vk,r+1) = ∅. From the definition of Jj,r,

B(ξν,r, 2
−1ρν,r + 21−k) ⊂ B

(
ξν,r,

3

4
ρν,r

)
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for all k ≥ 10− log2 ρj,r and ν ∈ Jj,r. Let

S ≡
⋃

ν∈Jj,r

B(ξν,r, 2
−1ρν,r), S̃ ≡ S ∪B(ξj,r, 2

−1ρj,r).

Then we have

Sk ≡
⋃

ν∈Jj,r

B(ξν,r, 2
−1ρν,r + 21−k), (S̃)k ≡ Sk ∪B(ξj,r, 2

−1ρj,r + 21−k)

and

Rj,k,r =
{
(S̃)k ∩ (Vk,r \ Vk,r+1)

}
\ {Sk ∩ (Vk,r \ Vk,r+1)} .

Thus

Fj,r = FS̃,10−log2 ρj,r
− FS,10−log2 ρj,r

+
∑

− log2 ρj,r≤k≤− log2 ρj,r+10

Fj,k,r.

It remains to use Lemma ??.

□

We conclude the proof of Proposition ??. Equality (??) is a consequence of
Lemma ??. Thanks to Lemma ??, fk,r satisfies (??). It remains to prove (??).
Using Lemma ?? again and the definition of Ωr, we estimate∑

(j,r)∈N×Z

(‖Fj,r‖L∞χB(ξj,r,2−1ρj,r))
u ≲

∑
(j,r)∈N×Z

2urχB(ξj,r,2−1ρj,r)

≲
∞∑

r=−∞
2urχΩr

=

∞∑
r=−∞

2urχ(2r,∞](MNf)

≲ (MNf)
u,

as required.

4. Applications to Hardy spaces based on other ball Banach spaces

Here we modify the proof especially (??) to obtain the decomposition results
for distributions in Hardy spaces based on other ball Banach spaces. As we saw in
Section ??, it matters that the distribution vanishes weakly at infinity and that the
distribution satisfies (??). Section ?? considers the weighted Hardy space Hp(w)
with 0 < p < ∞ and w ∈ A1. As an application of Section ??, we consider Hardy
spaces based on ball Banach function spaces. We can locate Sections ??, ?? and
?? as further examples of Section ??. Hardy spaces with weight in A∞, variable
Hardy spaces and Hardy–Morrey spaces are considered in Sections ??, ?? and ??,
respectively. We will give a precise condition on L in Sections ??, ?? and ??.
We need to define the above spaces by way of MN . It is known in [?] that the
function spaces we are going to handle in this section do not depend on the choice
of N as long as N � 1. This condition L is used to obtain the boundedness of
operators. However, as we mentioned, the condition on L can be tightened since we
are considering the decompositions of distributions. So, although we present some
concrete conditions on L in Sections ??, ?? and ??, we still may assume that L is
large enough.
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We will make use of the Hardy–Littlewood maximal operator M . The space
L0(Rn) denotes the set of all complex/[0,∞]-valued measurable functions consid-
ered modulo the difference on the set of measure zero. For f ∈ L0(Rn), define a
function Mf by

Mf(x) ≡ sup
B∈B

χB(x)mB(|f |) (x ∈ Rn). (4.1)

Here mB(f) stands for the average of a locally integrable or non-negative function
f over B. The mapping M : f 7→ Mf is called the Hardy–Littlewood maximal
operator. We also use the powered Hardy–Littlewood maximal operatorM (η) defined
by

M (η)f(x) ≡ sup
B∈B

(χB(x)mB(|f |η))
1
η ,

where 0 < η < ∞ and f ∈ L0(Rn). Together with the Hardy–Littlewood maximal
operator, we need to recall the notion of weights as well as their fundamental
properties, which will be done in Sections ?? and ??. See [?] for more details on
weights.

We remark that the same idea can be used for Hardy spaces based on other
function spaces such as the ones considered in [?, ?, ?, ?, ?].

4.1. Weighted Hardy space Hp(w) with w ∈ A1. As the starting point,
we seek to change Lp(Rn) by Lp(w) for some good class of weights. Although we
work in a rather special setting, this setting will be a core of our argument. By a
weight we mean a function w ∈ L0(Rn) which satisfies 0 < w(x) < ∞ for almost
all x ∈ Rn. We write w(A) ≡

∫
A

w(x)dx if A is a measurable set of Rn. The space

Lp(w) is the set of all f ∈ L0(Rn) for which ‖f‖Lp(w) ≡ ‖fw
1
p ‖Lp <∞ (cf. [?]).

To proceed further, we compare the weights w and 1. Here we introduce a
general definition following the book [?, p. 402]. A weight w1 is comparable to a
weight w2 if there exist α, β < 1 such that w1(A) ≤ βw1(B) for any measurable
set A and any B ∈ B satisfying A ⊂ B and w2(A) ≤ αw2(B). It is important that
comparability is symmetric; w1 is comparable to w2 if and only if w2 is comparable
to w1. In this case there exists δ > 0 such that

w1(A)

w1(B)
≲
(
w2(A)

w2(B)

)δ

(4.2)

and that
w2(A)

w2(B)
≲
(
w1(A)

w1(B)

)δ

(4.3)

for any measurable set A and any B ∈ B satisfying A ⊂ B.
Let 0 < p <∞, w be a weight and f ∈ S ′(Rn). Define

‖f‖Hp(w) ≡ ‖MNf‖Lp(w).

The weighted Hardy space Hp(w) is the set of all f ∈ S ′(Rn) for which the quantity
‖f‖Hp(w) is finite. In the present paper, as long as N � 1, the definition of Hp(w)
does not depend on the choice of N .

As a preliminary and important step, we consider A1-weights among other
classes of weights. Recall that a locally integrable weight w is said be an A1-weight,
if there exists C0 > 0 such that

Mw(x) ≤ C0w(x) (4.4)
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for a.e. x ∈ Rn. The infimum of C0 satisfying (??) is called the A1-norm.
Let Γ ∈ S(Rn) and k ∈ Z. We estimate

|Γk ∗ f(x)| ≤ A inf
y∈B(x,2−k)

|Γk ∗ f(y)| ≤ ApN (Γ)

w(B(x, 2−k))
1
p

‖f‖Hp(w)

using Lemma ??. It follows from (??) and (??) that

w(B(x, 1))

w(B(x, 2−k))
≲
(

|B(x, 1)|
|B(x, 2−k)|

)δ

= 2knδ

for all x ∈ Rn and k ∈ Z \ N and that

w(B(x, 2−k))

w(B(x, 1))
≳
(
|B(x, 2−k)|
|B(x, 1)|

)δ

= 2−knδ

for all x ∈ Rn and k ∈ N. Also, it follows from (??) that

〈x〉−nw(B(1)) ≲ w(B(x, 1)) ≲ 〈x〉nw(B(1)).

Therefore,

|Γk ∗ f(x)| ≲ 2
knδ
p

w(B(x, 1))
1
p

‖f‖Hp(w) ≲ 2
knδ
p 〈x〉

n
p ‖f‖Hp(w). (4.5)

Recall that Γ ∈ S(Rn) is arbitrary. By letting Γ = Ψ̃, we learn that a counterpart
to (??) still holds. Estimate (??) also shows that f vanishes weakly at infinity. As
in [?], A1 ∩ L1(Rn) = ∅. Thus, Ωr, the level set of MNf at 2r, can not coincide
with Rn, allowing us to use Lemma ??. Therefore, the same conclusion with L� 1
as Theorem ?? holds.

Theorem 4.1. Let 0 < p < ∞, f ∈ Hp(w) with w ∈ A1 and let L � 1. Then
there exist a countable collection {fj}∞j=1 of L∞

c -functions having moment of order
L and a countable collection {Bj}∞j=1 ⊂ B satisfying (??), (??) and (??).

4.2. Hardy spaces based on ball Banach function spaces. Based on
Section ??, we establish a general theory of the decomposition of distributions in
Hardy spaces based on ball Banach function spaces.

Definition 4.2 (Ball Banach function space). Amapping ‖·‖Y → [0,∞] is said
to be a ball Banach function norm and the couple (Y (Rn), ‖ ·‖Y ) is said to be a ball
Banach function space if (Y (Rn), ‖ · ‖Y ) satisfies (1)–(7) for all f, g, fj ⊂ L0(Rn),
j ∈ N, and λ ∈ C.

(1) (Y (Rn), ‖ · ‖Y ) is a Banach space with the following property: f ∈ Y (Rn)
if and only if ‖f‖Y <∞.

(2) (Norm property):
(A1) (Positivity): ‖f‖Y ≥ 0.
(A2) (Strict positivity) ‖f‖Y = 0 if and only if f = 0 a.e..
(B) (Homogeneity): ‖λf‖Y = |λ| · ‖f‖Y .
(C) (Triangle inequality): ‖f + g‖Y ≤ ‖f‖Y + ‖g‖Y .

(3) (Symmetry): ‖f‖Y = ‖ |f | ‖Y .
(4) (Lattice property): If 0 ≤ g ≤ f a.e., then ‖g‖Y ≤ ‖f‖Y .
(5) (Fatou property): If 0 ≤ f1 ≤ f2 ≤ · · · and lim

j→∞
fj = f , then lim

j→∞
‖fj‖Y =

‖f‖Y .
(6) For B ∈ B, χB ∈ Y (Rn).
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(7) If B ∈ B and f ∈ Y (Rn), then χBf ∈ L1(Rn).

For a ball Banach function space Y (Rn), we let

Y ′(Rn) ≡

{
f ∈ L0(Rn) : ‖f‖Y ′ ≡ sup

g∈Y, ∥g∥Y =1

‖f · g‖L1 <∞

}
.

The space Y ′(Rn) is called the Köthe dual of Y (Rn) and it is known that Y ′(Rn)
is a ball Banach space if Y (Rn) is a ball Banach space; see [?, Proposition 2.3].
Assume that Y (Rn) is a ball Banach function space such that M is bounded on
Y (Rn) and Y ′(Rn). Then there exists η > 1 such that M (η) is also bounded on
Y ′(Rn) according to [?, Corollary 6.1]. Thus, for all f ∈ Y (Rn),

‖f‖L1(M(η)χB(1))
≤ ‖f‖Y ‖M (η)χB(1)‖Y ′ ≲ ‖f‖Y ‖χB(1)‖Y ′ ∼ ‖f‖Y . (4.6)

We can develop the theory of the decomposition of Hardy spaces based on
Y (Rn). But we can extend the class of linear spaces to some extent. Consider the
power of Y (Rn): For 0 < p <∞, we define

‖f‖Y (p) ≡ (‖|f |p‖Y )
1
p

for all f ∈ L0(Rn). The p-convexification Y (p)(Rn) of Y (Rn) is the set of all
f ∈ L0(Rn) for which ‖f‖Y (p) < ∞. For example, (Lp)(u)(Rn) = Lpu(Rn) for all
0 < u <∞ and 1 ≤ p ≤ ∞.

Let Y (Rn) be as above and let X(Rn) ≡ Y (p)(Rn) for some 0 < p <∞. The X-
based Hardy space HX(Rn) collects all f ∈ S ′(Rn) for which ‖f‖HX ≡ ‖MNf‖X
is finite. The number N will do as long as N � 1. As is seen from (??), HX(Rn) is
embedded into Hp(w) for some w ∈ A1. Therefore, the space HX(Rn) falls within
the scope of Theorem ??.

Theorem 4.3. Let Y (Rn) be a ball Banach function space such that M is
bounded on Y (Rn) and Y ′(Rn). Let 0 < p < ∞ and define X(Rn) ≡ Y (p)(Rn).
Then for any f ∈ HX(Rn) and L� 1, there exist a countable collection {fj}∞j=1 of
L∞
c -functions having moment of order L and a countable collection {Bj}∞j=1 ⊂ B

satisfying (??), (??) and (??).

4.3. A∞-Weighted Hardy spaces. We expand Section ?? using Section ??.
A locally integrable weight w is said to be an A∞-weight, if

[w]A∞ ≡ sup
B∈B

mB(w) exp(−mB(logw)) <∞.

The quantity [w]A∞ is referred to as the A∞-constant.
An important property of the class A∞ is that any weight in A∞ belongs to

Ap for some 1 < p < ∞. Let 1 < p < ∞. A locally integrable weight w is an
Ap-weight, if

[w]Ap ≡ sup
B∈B

mB(w)(mB(w
− 1

p−1 ))p−1 <∞.

It is remarkable that w ∈ Ap if and only if M is bounded on Lp(w). A direct
consequence of the definition is that w ∈ Ap if and only if σ ∈ Ap′ , where σ ≡
w− 1

p−1 . Remark also that {Ap}p∈[1,∞] is nested: A1 ⊂ Ap ⊂ Aq ⊂ A∞ if 1 ≤ p ≤
q ≤ ∞.

Let w ∈ A∞ and 0 < p < ∞. Based on Section ??, we consider Hp(w).
Let w ∈ A∞, so that w ∈ Au for some 1 < u < ∞. Then as we saw, M is
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bounded on Y (Rn) ≡ Lu(w) and on Y ′(Rn) = Lu′
(σ), where σ ≡ w− 1

u−1 . Since
Y (p)(Rn) = Lpu(w) for all 0 < p < ∞, the space Lp(w) with 0 < p < ∞ and
w ∈ A∞ falls within the scope of Theorem ??. In particular, Theorem ?? below
can be used for another proof of the decomposition result in [?].

Theorem 4.4. The same conclusion as Theorem ?? holds if we assume merely
w ∈ A∞ in Theorem ??.

4.4. Variable Hardy spaces. For a measurable function p(·) : Rn → (0,∞),
the variable Lebesgue space Lp(·)(Rn) with variable exponent p(·) is defined by

Lp(·)(Rn) ≡
⋃
λ>0

{f ∈ L0(Rn) : ρp(λ
−1f) <∞},

where
ρp(f) ≡ ‖|f |p(·)‖L1

Moreover, for f ∈ Lp(·)(Rn) we define the variable Lebesgue norm ‖ · ‖Lp(·) by

‖f‖Lp(·) ≡ inf
({
λ > 0 : ρp(λ

−1f) ≤ 1
}
∪ {∞}

)
.

Here we postulate the following conditions with some positive constants c∗, c
∗

and p∞ independent of x and y:

• Local log-Hölder continuity condition:

|p(x)− p(y)| ≤ c∗
log(|x− y|−1)

for x, y ∈ Rn satisfying |x− y| ≤ 1

2
, (4.7)

• log-Hölder-type decay condition at infinity:

|p(x)− p∞| ≤ c∗

log(e+ |x|)
for x ∈ Rn. (4.8)

Assuming (??) and (??) as well as 0 < p− ≡ inf p(·) ≤ p+ ≡ sup p(·) < ∞, we
can define variable Hardy space Hp(·)(Rn) as the set of all f ∈ S ′(Rn) for which
MNf ∈ Lp(·)(Rn). The number N will do as long as N � 1. Theorem ?? did not
use the structure of the underlying space Lp(Rn) heavily except in (??) and in the
proof of the fact that the distribution vanishes weakly at infinity. Modify slightly
the proof of Theorem ??, in particular (??), to have the following short proof of
the key estimates of the decomposition theorems in [?, ?].

Theorem 4.5. Assume that the exponent p(·) satisfies the above conditions.
Let f ∈ Hp(·)(Rn) and L ∈ Z ∩ [[σp− ],∞). Then there exist a countable collec-
tion {fj}∞j=1 of L∞

c -functions having moment of order L and a countable collection
{Bj}∞j=1 ⊂ B satisfying (??), (??) and (??).

We may use Theorem ?? for another proof of Theorem ??, since M is bounded
on Lp(·)(Rn) and on Lp′(·)(Rn) as long as p(·) satisfies (??) and (??) as well as

1 < p− ≤ p+ <∞. Here p′(·) = p(·)
p(·)−1 stands for the dual exponent.

4.5. Hardy–Morrey spaces. First of all, let us recall the Morrey space
Mp

q(Rn) with 0 < q ≤ p <∞. Define the Morrey norm ‖ · ‖Mp
q
by

‖f‖Mp
q
≡ sup

{
|B|

1
p−

1
q ‖f‖Lq(B) : B ∈ B

}
for f ∈ L0(Rn). See [?] for example. The Morrey space Mp

q(Rn) is the set of all

f ∈ L0(Rn) for which ‖f‖Mp
q
is finite. The Hardy–Morrey space HMp

q(Rn) is the
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set of all f ∈ S ′(Rn) for which ‖f‖HMp
q
≡ ‖MNf‖Mp

q
is finite. The number N will

do as long as N � 1.
We recall the following facts:

(1) Thanks to [?], M is bounded on Mp
q(Rn) if 1 < q ≤ p <∞.

(2) In [?], the Köthe dual of Mp
q(Rn) is specified if 1 < q ≤ p <∞.

(3) Thanks to [?], M is bounded on the Köthe dual of Mp
q(Rn) if 1 < q ≤

p <∞.

Let 0 < q ≤ p < ∞ again. Then from the above observation the space Mp
q(Rn)

falls under the scope of Theorem ??.

Theorem 4.6. Let 0 < q ≤ p <∞. Let f ∈ HMp
q(Rn) and L ∈ Z ∩ [[σq],∞).

Then there exist a countable collection {fj}∞j=1 of L∞
c -functions having moment of

order L and a countable collection {Bj}∞j=1 ⊂ B satisfying (??), (??) and (??).

Theorem ?? recovers the results in [?, ?, ?]. It is noteworthy that in the present
paper we did not depend on the diagonal argument in [?, ?]. As we did for variable
Hardy spaces, we may also reexamine the proof of Theorem ?? to prove Theorem
??.
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