Fano 4-folds with nef tangent bundle in positive characteristic

by
Yuta Takahashi and Kiwamu Watanabe

DEPARTMENT OF MATHEMATICS
 - CHUO UNIVERSITY
 BUNKYOKU TOKYO JAPAN

JAN. 25, 2023

Fano 4-folds with nef tangent bundle in positive characteristic

Yuta Takahashi and Kiwamu Watanabe

Abstract

In characteristic 0, the Campana-Peternell conjecture claims that the only smooth Fano variety with nef tangent bundle should be homogeneous. In this paper, we study the positive characteristic version of the CampanaPeternell conjecture. In particular, we give an affirmative answer for Fano 4 -folds with nef tangent bundle and Picard number greater than one.

1. Introduction

How can one compare two given smooth projective varieties? Since any smooth variety X has the tangent bundle T_{X}, we often use the tangent bundle T_{X} to compare smooth varieties. In particular, the positivity of the tangent bundle imposes strong restrictions on the geometry of varieties. For instance, in the celebrated paper [27], Mori solved the famous Hartshorne conjecture. The Hartshorne conjecture states that a smooth projective variety X defined over an algebraically closed field is the projective space if T_{X} is ample. As a generalization of the Hartshorne conjecture, Campana and Peternell studied complex smooth projective varieties with nef tangent bundle [4]. In this direction, Demailly-Peternell-Schneider [8] proved that any complex smooth projective variety with nef tangent bundle is, up to an étale cover, a Fano fiber space over an Abelian variety. As a consequence, the study of complex smooth projective varieties with nef tangent bundle can be reduced to that of Fano varieties. Moreover Campana and Peternell [4] conjectured that any complex smooth Fano variety with nef tangent bundle is homogeneous. This conjecture holds for varieties of dimension at most five, but in general this is widely open. We refer the reader to [29].

In [18], the second author and Kanemitsu proved an analogue of the theorem by Demailly-Peternell-Schneider in positive characteristic; thus the next step is to study smooth Fano varieties with nef tangent bundle in positive characteristic. When the dimension is at most three, this problem was studied by the second author [36]. In the present paper, we give a classification of Fano 4 -folds with nef tangent bundle and Picard number greater than one:

[^0]Theorem 1.1. Let X be a smooth Fano 4-fold defined over an algebraically closed field. If the tangent bundle T_{X} is nef and the Picard number of X is greater than one, then X is isomorphic to one of the following:
(i) $\mathbb{P}^{3} \times \mathbb{P}^{1}$;
(ii) $Q^{3} \times \mathbb{P}^{1}$;
(iii) $\mathbb{P}^{2} \times \mathbb{P}^{2}$;
(iv) $\mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(v) $\mathbb{P}\left(T_{\mathbb{P}^{2}}\right) \times \mathbb{P}^{1}$, where $T_{\mathbb{P}^{2}}$ is the tangent bundle of \mathbb{P}^{2};
(vi) $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(vii) $\mathbb{P}(\mathcal{N})$ with a null-correlation bundle \mathcal{N} on \mathbb{P}^{3} (see Definition 3.2).

In particular, X is a homogeneous variety with reduced stabilizer.
In characteristic 0, this was proved by Camapana and Peternell [5]. However there are some difficulties to study this kind of classification problem in positive characteristic. For instance, the proof of [5] heavily depends on the Kodaira vanishing theorem and Hodge theory, which unfortunately fail in positive characteristic. We shall give a characteristic-free proof of [5].

The contents of this paper are organized as follows. In Section 2, we recall the background of our problem. We also review some known properties of Fano varieties with nef tangent bundle, paying special attention to some results in [18]. In Section 3, we shall study Fano varieties with nef tangent bundle which admit a projective bundle structure; this study plays a crucial role in the proof of Theorem 1.1. In Section 4, we will give a proof of Theorem 1.1.

2. Preliminaries

Notations. Let k be an algebraically closed field of characteristic $p \geq 0$. Throughout this paper, we work over k and use standard notations as in $[\mathbf{1 0}$, 19, 21, 23, 24]. For a smooth projective variety X, we also use the following notations:

- We denote by T_{X} the tangent bundle of X.
- We denote by $A_{k}(X)=A^{n-k}(X)$ the group of rational equivalence classes of algebraic k-cycles on X. We denote by $A(X):=\bigoplus_{k} A_{k}(X)$ the Chow ring of X.
- We denote by $N_{1}(X)$ the group of numerical equivalence classes of algebraic 1-cycles with real coefficients on X. The dimension $\operatorname{dim}_{\mathbb{R}} N_{1}(X)$ as an \mathbb{R}-vector space is called the Picard number of X and we denote it by ρ_{X}.
- We say that a smooth projective variety X is Fano if $-K_{X}$ is ample. For a smooth Fano variety X, the pseudoindex ι_{X} of X is the minimal anticanonical degree of rational curves on X.
- An F-bundle is a smooth morphism $f: Y \rightarrow X$ between smooth projective varieties whose fibers are isomorphic to F.
- An elementary contraction means a contraction of an extremal ray.
- For a vector bundle \mathcal{E} (resp. \mathcal{E}_{i}) on X, we denote the tautological divisor of $\mathbb{P}(\mathcal{E})$ (resp. $\mathbb{P}\left(\mathcal{E}_{i}\right)$) by $\xi_{\mathcal{E}}$ (resp. $\xi_{\mathcal{E}_{i}}$). When no confusion is likely, we also simply denote the divisor $\xi_{\mathcal{E}}$ (resp. $\xi_{\mathcal{E}_{i}}$) by ξ (resp. ξ_{i}).
- For a rank two vector bundle \mathcal{E} on X, we denote the i-th Chern class of \mathcal{E} by $c_{i}(\mathcal{E})$. When $A^{1}(X)$ and $A^{2}(X)$ are isomorphic to \mathbb{Z}, there exist an
effective divisor H and an effective 2-cocycle L on X such that $A^{1}(X) \cong$ $\mathbb{Z}[H]$ and $A^{2}(X) \cong \mathbb{Z}[L]$; then we consider $c_{1}(\mathcal{E})$ and $c_{2}(\mathcal{E})$ as integers c_{1} and c_{2}, that is, $c_{1}(\mathcal{E})=c_{1} H \in A^{1}(X)$ and $c_{2}(\mathcal{E})=c_{2} L \in A^{2}(X)$. In this setting, we say that \mathcal{E} is normalized if $c_{1}=0$ or -1 . We also say that \mathcal{E} is stable (resp. semistable) if for every invertible subsheaf \mathcal{L} of \mathcal{E}, $c_{1}(\mathcal{L})<\frac{1}{2} c_{1}(\mathcal{E})\left(\right.$ resp. $\left.c_{1}(\mathcal{L}) \leq \frac{1}{2} c_{1}(\mathcal{E})\right)$.
- For a vector bundle \mathcal{E} on X, we say that \mathcal{E} is Fano if $\mathbb{P}(\mathcal{E})$ is a Fano variety.
- For a vector bundle \mathcal{E} on X, we say that \mathcal{E} is numerically flat if \mathcal{E} and its dual \mathcal{E}^{\vee} are nef (equivalently \mathcal{E} and $\operatorname{det}\left(\mathcal{E}^{\vee}\right)$ are nef).
- For a projective variety X, we denote by $\operatorname{RatCurves}^{n}(X)$ the family of rational curves on X (see [19, II Definition 2.11]).
- We denote by \mathbb{P}^{n} and Q^{n} projective n-space and a smooth quadric hypersurface in \mathbb{P}^{n+1} respectively.
2.1. Background of the Problem. Let X be a smooth projective variety with nef tangent bundle. By the decomposition theorem [18, Theorem 1.7], X admits a smooth contraction $\varphi: X \rightarrow M$ such that
- any fiber of φ is a smooth Fano variety with nef tangent bundle;
- the tangent bundle T_{M} is numerically flat.

This result suggests to study two special cases:
Question 2.1 ([18, Question 1.8], [4, Conjecture 11.1], [36, Question 1]). Let X be a smooth projective variety with nef tangent bundle.
(i) If X is a Fano variety, then is X a homogeneous space with reduced stabilizer?
(ii) If T_{X} is numerically flat, then is X an étale quotient of an Abelian variety?

In characteristic zero, for special varieties, including Fano varieties whose dimension is at most five, affirmative answers to the first question are known (see $[4,5,13,15,16,17,26,28,32,34,35,37]$), and an affirmative answer to the second question also follows from the Beauville-Bogomolov decomposition. On the other hand, very little is known in positive characteristic; we refer the reader to $[14,22,25,36]$. Here we only recall the following:

Theorem $2.2([\mathbf{4}, \mathbf{3 6}])$. Let X be a smooth Fano n-fold with nef tangent bundle. If n is at most three, then X is one of the following:
(i) X is the n-dimensional projective space \mathbb{P}^{n};
(ii) X is an n-dimensional hyperquadric $Q^{n}(n=2,3)$;
(iii) $X=\mathbb{P}^{2} \times \mathbb{P}^{1}$;
(iv) $X=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$;
(v) $X=\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)$.

To give a classification of complex Fano varieties with Picard number greater than one, it is quite common to study extremal contractions, but in positive characteristic, the existence of a contraction of an extremal ray is not known in general. The following result states that there exists a contraction of an extremal ray for Fano varieties with nef tangent bundle:

Theorem 2.3 (a special case of [18, Theorem 1.5]). Let X be a smooth Fano variety X with nef tangent bundle. Let $R \subset \mathrm{NE}(X)$ be an extremal ray. Then the contraction $f: X \rightarrow Y$ of the ray R exists and the following hold:
(i) f is smooth;
(ii) any fiber F of f is again a smooth Fano variety with nef tangent bundle;
(iii) Y is also a smooth Fano variety with nef tangent bundle;
(iv) $\rho_{X}=\rho_{Y}+1$ and $\rho_{F}=1$.

Let X be a smooth projective variety. We say that X is rationally chain connected (resp. rationally connected) if two general points on X can be connected by a connected chain of rational curves (resp. by a single rational curve); it follows from [3], [20, Theorem 3.3] that smooth Fano varieties are rationally chain connected (see also [19, Chapter V. Theorem 2.13]). We say that X is separably rationally connected if there exists a rational curve $f: \mathbb{P}^{1} \rightarrow X$ such that $f^{*} T_{X}$ is ample. In general, if X is separably rationally connected, then it is rationally connected; by definition, a rationally connected variety is rationally chain connected; moreover these notions coincide in characteristic zero, whereas there exists a rationally connected variety which is not separably rationally connected in characteristic $p>0$ (see for instance [19, V. Exercise 5.19]). For varieties with nef tangent bundle, these notions coincide:

Theorem 2.4 ([18, Theorem 1.3, Theorem 1.6]). For a smooth projective variety X with nef tangent bundle, the following are equivalent to each other:
(i) X is separably rationally connected;
(ii) X is rationally connected;
(iii) X is rationally chain connected;
(iv) X is a Fano variety.

Moreover, if X satisfies the above equivalent conditions, the Kleiman-Mori cone $\mathrm{NE}(X)$ is simplicial.

We also have the following:
Theorem 2.5 (a special case of [18, Corollary 1.4]). For a smooth Fano variety X with nef T_{X}, the following hold:
(i) X is algebraically simply connected;
(ii) $H^{1}\left(X, \mathcal{O}_{X}\right)=0$;
(iii) every numerically flat vector bundle on X is trivial.
2.2. Minimal birational sections. In this subsection, we recall minimal birational sections whose idea appeared in $[\mathbf{3 8}, \mathbf{1 8}]$. Let X be a smooth Fano variety with nef tangent bundle. Assume that $f: X \rightarrow Y$ is an extremal contraction and $\operatorname{dim} Y>0$. Since f is a composition of contractions of extremal rays, Theorem 2.3 tells us that Y and any fiber of f are smooth Fano varieties with nef tangent bundle. By Theorem 2.4, we see that any fiber F of f is separably rationally connected.

DEFINITION 2.6. Under the above notation, let $C \subset Y$ be a rational curve. We call a rational curve $\tilde{C} \subset X$ a birational section of f over C if $\left.f\right|_{\tilde{C}}: \tilde{C} \rightarrow C$ is birational. A birational section $\tilde{C} \subset X$ of f over C is minimal if the anticanonical degree $-K_{X} \cdot \tilde{C}$ is minimal among birational sections of f over C.

Let us take a rational curve $\ell \subset Y$ such that $-K_{Y} \cdot \ell=\iota_{Y}$ and let $\mathbb{P}^{1} \rightarrow \ell \subset Y$ be the normalization of ℓ. We consider the fiber product:

By the theorem of de Jong and Starr [7], f_{ℓ} admits a section $\tilde{\ell}$. Let us denote $i(\tilde{\ell})$ by $\tilde{\ell}_{X}$; then $\left.f\right|_{\tilde{\ell}_{X}}: \tilde{\ell}_{X} \rightarrow \ell$ is birational; thus $\tilde{\ell}_{X}$ is a birational section of f over ℓ. This yields that there exists a minimal birational section of f over ℓ. As a consequence, we may find a rational curve $\ell_{0} \subset Y$ and a minimal birational section of f over ℓ_{0} satisfying the following:

$$
\begin{aligned}
& \text { - }-K_{Y} \cdot \ell_{0}=\iota_{Y} \\
& \text { - }-K_{X} \cdot \tilde{\ell}_{0 X}=\min \left\{\operatorname{deg}_{\left(-K_{X}\right)} \tilde{\ell}_{X} \mid-K_{Y} \cdot \ell=\iota_{Y},[\ell] \in \operatorname{RatCurves}^{n}(X)\right\} .
\end{aligned}
$$

Let us consider a family of rational curves $\mathcal{M} \subset \operatorname{RatCurves}^{n}(X)$ containing $\left[\tilde{\ell}_{0 X}\right]$. By the same argument as in [38, Proposition 4.14], we see that \mathcal{M} is unsplit, that is, \mathcal{M} is proper as a scheme. Moreover $[\mathbf{1 8}$, Proposition 4.4$]$ implies that $\mathbb{R}_{\geq 0}\left[\tilde{\ell}_{0 X}\right]$ is an extremal ray and the contraction $g: X \rightarrow Z$ of the ray $\mathbb{R}_{\geq 0}\left[\tilde{\ell}_{0 X}\right]$ is a smooth geometric quotient for \mathcal{M} in the sense of [2]. Summing up, we obtain the following:

Proposition 2.7. Let X be a smooth Fano variety with nef tangent bundle. Assume that $f: X \rightarrow Y$ is an extremal contraction and $\operatorname{dim} Y>0$. Then there exists an unsplit covering family of rational curves $\mathcal{M} \subset \operatorname{RatCurves}^{n}(X)$ such that

- for any $\left[\tilde{\ell}_{X}\right] \in \mathcal{M},\left.f\right|_{\tilde{\ell}_{X}}: \tilde{\ell}_{X} \rightarrow f\left(\tilde{\ell}_{X}\right)$ is birational and $-K_{Y} \cdot f\left(\tilde{\ell}_{X}\right)=\iota_{Y}$;
- $\mathbb{R}_{\geq 0}\left[\tilde{\ell}_{0 X}\right]$ is an extremal ray and the contraction $g: X \rightarrow Z$ of the ray $\mathbb{R}_{\geq 0}\left[\tilde{\ell}_{0 X}\right]$ is a smooth geometric quotient for \mathcal{M}.

DEfinition 2.8 ([cf. [28, Definition 1]]). Let X be a smooth projective variety with nef tangent bundle. We say that X is an $F T$-manifold if every elementary contraction of X is a \mathbb{P}^{1}-bundle.

Example 2.9. The variety $\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)$ is isomorphic to a hyperplane section of a Segre 4 -fold $\mathbb{P}^{2} \times \mathbb{P}^{2} \subset \mathbb{P}^{8}$. Since $\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)$ admit two \mathbb{P}^{1}-bundle structures over \mathbb{P}^{2} and $\rho_{\mathbb{P}\left(T_{\mathbb{P}^{2}}\right)}=2$, it is an FT-manifold. The projective line \mathbb{P}^{1} is also a basic example of an FT-manifold.

Proposition 2.10. Let X be a smooth Fano variety with nef tangent bundle. Assume that $f: X \rightarrow Y$ is an extremal contraction and $\operatorname{dim} Y=1$. Then X is isomorphic to a product of \mathbb{P}^{1} and a variety Z.

Proof. We employ the notation as in Proposition 2.7. Remark that Y is \mathbb{P}^{1}. The contraction $g: X \rightarrow Z$ is a \mathbb{P}^{1}-bundle; moreover any fiber of g is a section of f; this yields that X is isomorphic to a product of \mathbb{P}^{1} and Z.

Corollary 2.11. Let M be a smooth Fano variety with nef tangent bundle. Assume that $f: M \rightarrow X$ is an extremal contraction onto an FT-manifold X. Then M is isomorphic to a product of X and a variety Y.

Proof. This follows from Proposition 2.10, Theorem 2.3 and the same argument as in [28, Proposition 5].

2.3. Projective bundles.

Definition 2.12 ([6, Definition 3.2]). The (cohomological) Brauer group of a scheme Y is $\operatorname{Br}(Y):=H_{e ́ t}^{2}\left(Y, \mathbb{G}_{m}\right)$.

Proposition 2.13. Let $f: X \rightarrow Y$ be a \mathbb{P}^{n}-bundle. If the Brauer group $\operatorname{Br}(Y)$ vanishes, then there exists a vector bundle \mathcal{E} of rank $n+1$ on Y such that $X \cong \mathbb{P}(\mathcal{E})$.

Proof. See for instance [12].
Corollary 2.14. Let $f: X \rightarrow Y$ be a \mathbb{P}^{n}-bundle. If Y is rational, then there exists a vector bundle \mathcal{E} of rank $n+1$ on Y such that $X \cong \mathbb{P}(\mathcal{E})$.

Proof. By [6, Theorem 5.1.3, Proposition 5.2.2], we see that

$$
\operatorname{Br}(Y) \cong \operatorname{Br}\left(\mathbb{P}_{k}^{n}\right) \cong \operatorname{Br}(k)
$$

Then [6, Corollary 1.2.4] implies that $\operatorname{Br}(k)$ vanishes; thus our assertion follows from Proposition 2.13.

3. Fano bundles over $\mathbb{P}^{2}, \mathbb{P}^{3}$ and Q^{3}

The major difficulty of the proof of Theorem 1.1 is to study the cases where a smooth Fano 4 -fold with nef tangent bundle admits a \mathbb{P}^{2}-bundle structure over \mathbb{P}^{2} or a \mathbb{P}^{1}-bundle structure over \mathbb{P}^{3} and over Q^{3}. In this section, we shall study such cases.

3.1. Rank three Fano bundles over \mathbb{P}^{2}.

Proposition 3.1. Let X be a smooth Fano 4-fold with nef tangent bundle. Assume that $f_{1}: X \rightarrow \mathbb{P}^{2}$ is a \mathbb{P}^{2}-bundle. Then X is isomorphic to $\mathbb{P}^{2} \times \mathbb{P}^{2}$.

Proof. By Theorem 2.3, we may find another smooth elementary contraction $f_{2}: X \rightarrow X_{2}$ besides f_{1}. Applying Theorem 2.2, Theorem 2.3 and [31], we see that $f_{2}: X \rightarrow X_{2}$ is a \mathbb{P}^{1}-bundle over Q^{3} or a \mathbb{P}^{2}-bundle over \mathbb{P}^{2}. We claim that $f_{2}: X \rightarrow X_{2}$ is not a \mathbb{P}^{1}-bundle over Q^{3}. To prove this, assume that f_{2} : $X \rightarrow X_{2}$ is a \mathbb{P}^{1}-bundle over Q^{3}. Then by Corollary 2.14, f_{1} and f_{2} are given by the projectivizations of vector bundles. Let us consider the Chow ring of X. Since $f_{1}: X \rightarrow \mathbb{P}^{2}$ is a \mathbb{P}^{2}-bundle over $\mathbb{P}^{2},[\mathbf{9}$, Theorem 9.6] tells us that the rank of the $A^{3}(X)$ is three; however, since $f_{2}: X \rightarrow Q^{3}$ is a \mathbb{P}^{1}-bundle over $Q^{3},[\mathbf{9}$, Theorem 9.6] tells us that the rank of the $A^{3}(X)$ is two; this is a contradiction. As a consequence, $f_{2}: X \rightarrow X_{2}$ is a \mathbb{P}^{2}-bundle over \mathbb{P}^{2}. Applying [31], we conclude that X is isomorphic to $\mathbb{P}^{2} \times \mathbb{P}^{2}$.
3.2. Rank two Fano bundles over \mathbb{P}^{3}. Let us first recall the definition of the null-correlation bundle:

Definition 3.2 (see for instance [$\mathbf{3 0}$, Section 4.2], [11, Example 8.4.1] and [39]). Let \mathcal{E} be a rank 2 vector bundle on \mathbb{P}^{3}. We say that \mathcal{E} is a null-correlation bundle if it fits into an exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{s} \Omega_{\mathbb{P}^{3}}(2) \rightarrow \mathcal{E}(1) \rightarrow 0,
$$

where s is a nowhere vanishing section of $\Omega_{\mathbb{P}^{3}}(2)$.
In this subsection, we prove the following:

Proposition 3.3. Let X be a smooth Fano 4-fold with nef tangent bundle. Assume that $f_{1}: X \rightarrow \mathbb{P}^{3}$ is a \mathbb{P}^{1}-bundle. Then X is isomorphic to one of the following:
(i) $\mathbb{P}^{1} \times \mathbb{P}^{3}$;
(ii) $\mathbb{P}(\mathcal{N})$, where \mathcal{N} is a null-correlation bundle.

Proof. Let X be a smooth Fano 4-fold with nef tangent bundle. Assume that $f_{1}: X \rightarrow \mathbb{P}^{3}$ is a \mathbb{P}^{1}-bundle. By Corollary 2.14, $f_{1}: X \rightarrow \mathbb{P}^{3}$ is given by the projectivization of a rank 2 vector bundle \mathcal{E} on \mathbb{P}^{3}, that is, $f_{1}: X=\mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}^{3}$. We assume that \mathcal{E} is normalized and consider its Chern classes $c_{1}(\mathcal{E})$ and $c_{2}(\mathcal{E})$ as integers c_{1} and c_{2} respectively. We denote by H_{1} the ample generator of $\operatorname{Pic}\left(\mathbb{P}^{3}\right)$, by F_{1} a fiber of f_{1} and by ξ the tautological divisor of $\mathbb{P}(\mathcal{E})$. By the same argument as in [33, Theorem 2.1] and [11, Example 8.4.1] (see also [39]), we see that one of the following holds:
(i) \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}} \oplus \mathcal{O}_{\mathbb{P}^{3}}$;
(ii) \mathcal{E} is isomorphic to the null-correlation bundle \mathcal{N};
(iii) \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}} \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1)$;
(iv) \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)$;
(v) \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)$;
(vi) \mathcal{E} is a stable bundle with $\left(c_{1}, c_{2}\right)=(0,3)$;
(vii) \mathcal{E} is a stable bundle with $\left(c_{1}, c_{2}\right)=(-1,4)$.

If \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}} \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1), \mathcal{O}_{\mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)$ or $\mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)$, then $X=\mathbb{P}(\mathcal{E})$ admits a birational contraction, which contradicts to our assumption that the tangent bundle of X is nef. To prove our assertion, it is enough to show that the cases (vi) and (vii) do not occur. In characteristic 0 , it was proved in [33, Theorem 2.1], but we do not know whether their argument also holds in positive characteristic or not.

From now on, we prove that the cases (vi) and (vii) do not occur. Since X is a smooth Fano variety with nef tangent bundle, Theorem 2.3 tells us that there exists another smooth elementary contraction $f_{2}: X \rightarrow X_{2}$. For any ample divisor $H_{2} \in \operatorname{Pic}\left(X_{2}\right)$, there exist integers a, b such that

$$
\mathcal{O}_{X}\left(f_{2}^{*} H_{2}\right) \cong \mathcal{O}_{X}\left(a \xi+b f_{1}^{*} H_{1}\right) \in \operatorname{Pic}(X)
$$

Let us first assume that \mathcal{E} is a rank 2 stable bundle on \mathbb{P}^{3} with $\left(c_{1}, c_{2}\right)=(0,3)$. We claim that a and b are not equal to 0 . Taking the intersection number of $a \xi+b f_{1}^{*} H_{1}$ and F_{1}, we have

$$
a=\left(a \xi+b f_{1}^{*} H_{1}\right) \cdot F_{1}=f_{2}^{*} H_{2} \cdot F_{1}=H_{2} \cdot f_{2 *}\left(F_{1}\right)>0
$$

Moreover, if $b=0$, then we have $\mathcal{O}_{X}\left(f_{2}^{*} H_{2}\right) \cong \mathcal{O}_{X}(a \xi) \in \operatorname{Pic}(X)$; in particular ξ is nef; thus \mathcal{E} is nef and $c_{1}=0$. By Corollary 2.5 (iii), \mathcal{E} is isomorphic to $\mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2}$; this is a contradiction. As a consequence, we see that $b \neq 0$.

Since we have $\xi^{2}+c_{2} f_{1}^{*} H_{1}^{2}=0, f_{1}^{*} H_{1}^{4}=0$ and $\xi \cdot f_{1}^{*} H_{1}^{3}=1$, we also have

$$
f_{1}^{*} H_{1}^{4}=0, \xi \cdot f_{1}^{*} H_{1}^{3}=1, \xi^{2} \cdot f_{1}^{*} H_{1}^{2}=0, \xi^{3} \cdot f_{1}^{*} H_{1}=-c_{2}, \xi^{4}=0
$$

By using these equations, we have

$$
0=\left(f_{2}^{*} H_{2}\right)^{4}=\left(a \xi+b f_{1}^{*} H_{1}\right)^{4}=4 a b\left(-3 a^{2}+b^{2}\right)
$$

Since $a, b \neq 0$, we have

$$
-3 a^{2}+b^{2}=0
$$

However this is a contradiction.
Secondly assume that \mathcal{E} is a rank 2 stable bundle on \mathbb{P}^{3} with $\left(c_{1}, c_{2}\right)=(-1,4)$. By the same argument as in the case where \mathcal{E} is stable and $\left(c_{1}, c_{2}\right)=(0,3)$, we have

$$
a>0, f_{1}^{*} H_{1}^{4}=0, \xi \cdot f_{1}^{*} H_{1}^{3}=1, \xi^{2} \cdot f_{1}^{*} H_{1}^{2}=-1, \xi^{3} \cdot f_{1}^{*} H_{1}=-3, \xi^{4}=7
$$

Thus we have an equation

$$
0=\left(a \xi+b f_{1}^{*} H_{1}\right)^{4}=7 a^{4}-12 a^{3} b-6 a^{2} b^{2}+4 a b^{3}
$$

Since a is positive, we have

$$
4\left(\frac{b}{a}\right)^{3}-6\left(\frac{b}{a}\right)^{2}-12\left(\frac{b}{a}\right)+7=0
$$

Then it follows from the rational root theorem that $\frac{b}{a}=\frac{1}{2}$; this implies that $2 \xi+f_{1}^{*} H_{1}$ is nef. Since $X=\mathbb{P}(\mathcal{E})$ is a Fano variety, we have

$$
0 \leq\left(2 \xi+f_{1}^{*} H_{1}\right) \cdot\left(-K_{X}\right)^{3}=\left(2 \xi+f_{1}^{*} H_{1}\right) \cdot\left(2 \xi+5 f_{1}^{*} H_{1}\right)^{3}=-232
$$

This is a contradiction. As a consequence, our assertion holds.
3.3. Rank two Fano bundles over Q^{3}. In this subsection, we prove the following:

Proposition 3.4. Let X be a smooth Fano 4-fold with nef tangent bundle. Assume that $f_{1}: X \rightarrow Q^{3}$ is a \mathbb{P}^{1}-bundle. Then X does not admit another \mathbb{P}^{1} bundle structure on Q^{3}.

Proof. Let X be a smooth Fano 4 -fold with nef tangent bundle. Assume that $f_{1}: X \rightarrow X_{1}:=Q^{3}$ is a \mathbb{P}^{1}-bundle. To prove Proposition 3.4, assume the contrary; then we have another \mathbb{P}^{1}-bundle structure $f_{2}: X \rightarrow X_{2}:=Q^{3}$ besides f_{1}. By Corollary 2.14, $f_{i}: X \rightarrow X_{i}(i=1,2)$ is given by the projectivization of a rank 2 vector bundle \mathcal{E}_{i} on Q^{3}. Denoting by ξ_{i} the divisor corresponding to the tautological line bundle $\mathcal{O}_{\mathbb{P}\left(\mathcal{E}_{i}\right)}(1)$ and by H_{i} the ample generator of $\operatorname{Pic}\left(X_{i}\right)$, we have

$$
\operatorname{Pic}(X) \cong \mathbb{Z}\left[\xi_{i}\right] \oplus \mathbb{Z}\left[f_{i}^{*} H_{i}\right] \quad \text { for } i=1,2
$$

Remark that the Chow groups $A^{1}\left(Q^{3}\right)$ and $A^{2}\left(Q^{3}\right)$ are isomorphic to \mathbb{Z}; then we consider the Chern classes $c_{1}\left(\mathcal{E}_{1}\right), c_{1}\left(\mathcal{E}_{2}\right), c_{2}\left(\mathcal{E}_{1}\right)$ and $c_{2}\left(\mathcal{E}_{2}\right)$ as integers $c_{1}, c_{1}^{\prime}, c_{2}$ and c_{2}^{\prime} respectively:

$$
c_{1}\left(\mathcal{E}_{1}\right)=c_{1} H_{1}, c_{1}\left(\mathcal{E}_{2}\right)=c_{1}^{\prime} H_{2}, c_{2}\left(\mathcal{E}_{1}\right)=\frac{c_{2}}{2} H_{1}^{2}, c_{2}\left(\mathcal{E}_{2}\right)=\frac{c_{2}^{\prime}}{2} H_{2}^{2}
$$

We may assume that \mathcal{E}_{i} 's are normalized, that is, $c_{1}, c_{1}^{\prime} \in\{-1,0\}$. We denote by F_{i} a fiber of f_{i}.

By Proposition 2.7, f_{2} is nothing but the elementary contraction which contracts minimal birational sections of f_{1} over lines on Q^{3}; this implies that

$$
f_{1}^{*} H_{1} \cdot F_{2}=1
$$

Then we obtain

$$
2=-K_{X} \cdot F_{2}=2 \xi_{1} \cdot F_{2}+\left(3-c_{1}\right)
$$

Comparing the parity of both sides of this equation, we see that $c_{1}=-1$; thus we obtain

$$
\xi_{1} \cdot F_{2}=-1
$$

Since we have $\xi_{1}^{2}+\xi_{1} \cdot f_{1}^{*} H_{1}+\frac{1}{2} c_{2} f_{1}^{*} H_{1}^{2}=0, f_{1}^{*} H_{1}^{4}=0$ and $\xi_{1} \cdot f_{1}^{*} H_{1}^{3}=2$, we also have
$f_{1}^{*} H_{1}^{4}=0, \xi_{1} \cdot f_{1}^{*} H_{1}^{3}=2, \xi_{1}^{2} \cdot f_{1}^{*} H_{1}^{2}=-2, \xi_{1}^{3} \cdot f_{1}^{*} H_{1}=2-c_{2}, \xi_{1}^{4}=2 c_{2}-2$.
For the ample generator H_{2} of $\operatorname{Pic}\left(X_{2}\right)$, there exist integers a, b such that $\mathcal{O}_{X}\left(f_{2}^{*} H_{2}\right) \cong \mathcal{O}_{X}\left(a \xi_{1}+b f_{1}^{*} H_{1}\right) \in \operatorname{Pic}(X)$. By this definition, $(a, b) \neq(0,0)$. Moreover we have

$$
0=\left(a \xi_{1}+b f_{1}^{*} H_{1}\right) \cdot F_{2}=-a+b
$$

Hence, we obtain $a=b \neq 0$; then we obtain

$$
0=\left(\xi_{1}+f_{1}^{*} H_{1}\right)^{4}=-2 c_{2}+2
$$

Hence we obtain $c_{2}=1$. Let us take integers $\alpha, \beta, \gamma, \delta$ as follows:

$$
\begin{cases}\xi_{1} & =\alpha \xi_{2}+\beta f_{2}^{*} H_{2} \tag{1}\\ f_{1}^{*} H_{1} & =\gamma \xi_{2}+\delta f_{2}^{*} H_{2}\end{cases}
$$

Remark that $|\alpha \delta-\beta \gamma|=1$, because $\left\{\xi_{i}, f_{i}^{*} H_{i}\right\}$ is a \mathbb{Z}-basis of $\operatorname{Pic}(X)$ for $i=1,2$. Since we have

$$
-1=\xi_{1} \cdot F_{2}=\alpha, \quad 1=\xi_{1} \cdot F_{1}=-\xi_{2} \cdot F_{1}+\beta f_{2}^{*} H_{2} \cdot F_{1}
$$

and

$$
1=f_{1}^{*} H_{1} \cdot F_{2}=\gamma, \quad 0=f_{1}^{*} H_{1} \cdot F_{1}=\xi_{2} \cdot F_{1}+\delta f_{2}^{*} H_{2} \cdot F_{1}
$$

we obtain

$$
\begin{cases}\xi_{1} & =-\xi_{2}+\frac{1+\xi_{2} \cdot F_{1}}{f_{2}^{*} H_{2} \cdot F_{1}} f_{2}^{*} H_{2} \tag{2}\\ f_{1}^{*} H_{1} & =\xi_{2}-\frac{\xi_{2} \cdot F_{1}}{f_{2}^{*} H_{2} \cdot F_{1}} f_{2}^{*} H_{2}\end{cases}
$$

Then the equality $|\alpha \delta-\beta \gamma|=1$ implies that $f_{2}^{*} H_{2} \cdot F_{1}=1$. Computing $-K_{X} \cdot F_{1}$, we see that $c_{1}^{\prime}=-1$ and $\xi_{2} \cdot F_{1}=-1$. Thus the equation (2) can be written as follows:

$$
\begin{cases}\xi_{1} & =-\xi_{2} \tag{3}\\ f_{1}^{*} H_{1} & =\xi_{2}+f_{2}^{*} H_{2}\end{cases}
$$

Now we have

$$
\begin{aligned}
2=H_{2}^{3} & =f_{1}^{*} H_{1} \cdot f_{2}^{*} H_{2}^{3} \\
& =f_{1}^{*} H_{1} \cdot\left(f_{1}^{*} H_{1}+\xi_{1}\right)^{3} \\
& =f_{1}^{*} H_{1}^{4}+3 f_{1}^{*} H_{1}^{3} \xi_{1}+3 f_{1}^{*} H_{1}^{2} \xi_{1}^{2}+f_{1}^{*} H_{1} \xi_{1}^{3}=1
\end{aligned}
$$

This is a contradiction.

4. Proof of the main theorem

We prove Theorem 1.1. Let X be a smooth Fano 4 -fold defined over an algebraically closed field k. Assume that the tangent bundle T_{X} is nef and the Picard number of X is greater than one. By Theorem 2.3, we may find a smooth elementary contraction $f: X \rightarrow Y$. We denote any fiber of f by F; then by Theorem 2.3 again, F and Y are smooth Fano varieties with nef tangent bundle, and we also have $\rho_{X}=\rho_{F}+\rho_{Y}, \operatorname{dim} F+\operatorname{dim} Y=4$ and $\operatorname{dim} F, \operatorname{dim} Y>0$. If X admits a contraction onto an FT-manifold W, then it follows from Corollary 2.11 that X
is isomorphic to $Z \times W$ for some variety Z; then Z is one of varieties in Theorem 2.2. Thus our assertion holds in this case. By Theorem 2.2, we may assume that Y is isomorphic to $\mathbb{P}^{2}, \mathbb{P}^{3}$ or Q^{3}. Then by Corollary 2.11, Proposition 3.1, Proposition 3.3 and Proposition 3.4, we may conclude our assertion.

References

[1] Indranil Biswas and João Pedro Dos Santos. Triviality criteria for bundles over rationally connected varieties. J. Ramanujan Math. Soc., 28(4):423-442, 2013.
[2] Laurent Bonavero, Cinzia Casagrande, and Stéphane Druel. On covering and quasi-unsplit families of curves. J. Eur. Math. Soc. (JEMS), 9(1):45-57, 2007.
[3] Frédéric Campana. Connexité rationnelle des variétés de Fano. Ann. Sci. École Norm. Sup. (4), 25(5):539-545, 1992.
[4] Frédéric Campana and Thomas Peternell. Projective manifolds whose tangent bundles are numerically effective. Math. Ann., 289(1):169-187, 1991.
[5] Frédéric Campana and Thomas Peternell. 4-folds with numerically effective tangent bundles and second Betti numbers greater than one. Manuscripta Math., 79(3-4):225-238, 1993.
[6] Jean-Louis Colliot-Thélène and Alexei N. Skorobogatov. The Brauer-Grothendieck group, volume 71 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, [2021] © 2021.
[7] A. J. de Jong and J. Starr. Every rationally connected variety over the function field of a curve has a rational point. Amer. J. Math., 125(3):567-580, 2003.
[8] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom., 3(2):295-345, 1994.
[9] David Eisenbud and Joe Harris. 3264 and all that-a second course in algebraic geometry. Cambridge University Press, Cambridge, 2016.
[10] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.
[11] Robin Hartshorne. Stable vector bundles of rank 2 on \mathbf{P}^{3}. Math. Ann., 238(3):229-280, 1978.
[12] Takumi Murayama (https://math.stackexchange.com/users/116766/takumi murayama). Geometric fibers $\mathbb{P}^{n}+$ vanishing of brauer group implies projective bundle. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2225438 (version: 2017-04-10).
[13] Jun-Muk Hwang. Rigidity of rational homogeneous spaces. In International Congress of Mathematicians. Vol. II, pages 613-626. Eur. Math. Soc., Zürich, 2006.
[14] Kirti Joshi. On varieties with trivial tangent bundle in characteristic $p>0$. Nagoya Math. J., 242:35-51, 2021.
[15] Akihiro Kanemitsu. Fano n-folds with nef tangent bundle and Picard number greater than $n-5$. Math. Z., 284(1-2):195-208, 2016.
[16] Akihiro Kanemitsu. Fano 5-folds with nef tangent bundles. Math. Res. Lett., 24(5):1453-1475, 2017.
[17] Akihiro Kanemitsu. Extremal rays and nefness of tangent bundles. Michigan Math. J., 68(2):301-322, 2019.
[18] Akihiro Kanemitsu and Kiwamu Watanabe. Projective varieties with nef tangent bundle in positive characteristic. Preprint arXiv:2012.09419, 2020.
[19] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.
[20] János Kollár, Yoichi Miyaoka, and Shigefumi Mori. Rational connectedness and boundedness of Fano manifolds. J. Differential Geom., 36(3):765-779, 1992.
[21] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[22] Adrian Langer. Generic positivity and foliations in positive characteristic. Adv. Math., 277:123, 2015.
[23] Robert Lazarsfeld. Positivity in algebraic geometry. I, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.
[24] Robert Lazarsfeld. Positivity in algebraic geometry. II, volume 49 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals.
[25] V. B. Mehta and V. Srinivas. Varieties in positive characteristic with trivial tangent bundle. Compositio Math., $64(2): 191-212,1987$. With an appendix by Srinivas and M. V. Nori.
[26] Ngaiming Mok. On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents. Trans. Amer. Math. Soc., 354(7):2639-2658 (electronic), 2002.
[27] Shigefumi Mori. Projective manifolds with ample tangent bundles. Ann. of Math. (2), 110(3):593-606, 1979.
[28] Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, and Kiwamu Watanabe. Rational curves, Dynkin diagrams and Fano manifolds with nef tangent bundle. Math. Ann., 361(3-4):583-609, 2015.
[29] Roberto Muñoz, Gianluca Occhetta, Luis E. Solá Conde, Kiwamu Watanabe, and Jarosław A. Wiśniewski. A survey on the Campana-Peternell conjecture. Rend. Istit. Mat. Univ. Trieste, 47:127-185, 2015.
[30] Christian Okonek, Michael Schneider, and Heinz Spindler. Vector bundles on complex projective spaces. Progress in Mathematics, 3. Birkhäuser, Boston, Mass., 1980.
[31] Ei-ichi Sato. Varieties which have two projective space bundle structures. J. Math. Kyoto Univ., 25(3):445-457, 1985.
[32] Luis E. Solá Conde and Jarosław A. Wiśniewski. On manifolds whose tangent bundle is big and 1-ample. Proc. London Math. Soc. (3), 89(2):273-290, 2004.
[33] Michał Szurek and Jarosław A. Wiśniewski. Fano bundles over \mathbb{P}^{3} and \mathbb{Q}_{3}. Pacific J. Math., 141(1):197-208, 1990
[34] Kiwamu Watanabe. Fano 5-folds with nef tangent bundles and Picard numbers greater than one. Math. Z., 276(1-2):39-49, 2014.
[35] Kiwamu Watanabe. Fano manifolds with nef tangent bundle and large Picard number. Proc. Japan Acad. Ser. A Math. Sci., 91(6):89-94, 2015.
[36] Kiwamu Watanabe. Low-dimensional projective manifolds with nef tangent bundle in positive characteristic. Comm. Algebra, 45(9):3768-3777, 2017.
[37] Kiwamu Watanabe. Fano manifolds of coindex three admitting nef tangent bundle. Geom. Dedicata, 210:165-178, 2021.
[38] Kiwamu Watanabe. Positivity of the second exterior power of the tangent bundles. Adv. Math., 385:Paper No. 107757, 27, 2021.
[39] G. Pete Wever. The moduli of a class of rank 2 vector bundles on P^{3}. Nagoya Math. J., 84:9-30, 1981.

Department of Mathematics, Faculty of Science and Engineering, Chuo University.
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan Email address: watanabe@math.chuo-u.ac.jp Email address: yuta0630takahashi0302@gmail.com

PREPRINT SERIES

DEPARTMENT OF MATHEMATICS CHUO UNIVERSITY BUNKYOKU TOKYO JAPAN

番号刊行年月
No． 11988 ON THE DEFORMATIONS OF WITT GROUPS TO TORI II
No． 21988 On minimal Einstein submanifold with codimension two
No． 31988 Minimal Einstein submanifolds
No． 41988 Submanifolds with parallel Ricci tensor
No． 51988 A CASE OF EXTENSIONS OF GROUP SCHEMES OVER
A DISCRETE VALUATION RING
No． 61989 ON THE PRODUCT OF TRANSVERSE INVARIANT MEASURES

No． 71989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR SECOND－ORDER ELLIPTIC PDE＇S ON NONSMOOTH DOMAINS

No． 81989 SOME CASES OF EXTENSIONS OF GREOUP SCHEMES OVER
A DI SCRETE VALUATION RING I
No． 91989 ON OBLIQUE DERIVATIVE PROBLEMS FOR FULLY NONLINEAR
SECOND－ORDER ELLIPTIC PDE＇S ON DOMAINS WITH CORNERS
No． 101989 MILNOR＇S INEQUALITY FOR 2－DIMENSIONAL ASYMPTOTIC CYCLES

No． 111989 ON THE SELF－INTERSECTIONS OF FOLIATION CYCLES
No． 121989 On curvature pinching of minimal submanifolds
No． 131990 The Intersection Product of Transverse Invariant Measures

No． 141990 The Transverse Euler Class for Amenable Foliations

No． 141989 The Maximum Principle for Semicontinuous Functions
No． 151989 Fully Nonliear Oblique DerivativeProblems for Nonlinear Second－Order Elliptic PDE＇s．
No． 151990 On Bundle Structure Theorem for Topological Semigroups．

No． 161990 On Linear Orthogonal Semigroup \mathfrak{O}_{n}
－Sphere bundle structure，homotopy type and Lie algebra－

No． 171990 On a hypersurface with birecurrent second fundametal tensor．
No． 181990 User＇s guide to viscosity solutions of second order partial differential equationd．
No． 191991 Viscosity solutions for a class of Hamilton－Jacobi equations in Hilbert spaces．
No． 201991 Perron＇s methods for monotone systems of second－order elliptic PDEs．
No． 211991 Viscosity solutions for monotone systems of second－order elliptic PDEs．
No． 221991 Viscosity solutions of nonlinear second－order partial differential equations in Hilbert spaces．
No． 23
No． 241992 On some pinching of minimal submanifolds．
No． 251992 Transverse Euler Class of Foliations on Almost Compact Foliation Cycles．

No． 261992 Local Homeo－and Diffeomorphisms：Invertibility and Convex Image．

著者

Tsutomu SEKIGUCHI
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
Tsutomu SEKIGUCHI and Noriyuki SUWA

S．HURDER and Y．MITSUMATSU
Paul DUPUIS and Hitoshi ISHII

Tsutomu SEKIGUCHI and Noriyuki SUWA

Paul DUPUIS
and Hitoshi ISHII
Yoshihiko MITSUMATSU

Yoshihiko MITSUMATSU
Yoshio MATSUYAMA
S．HURDER
and Y．MITSUMATSU
S．HURDER and Y．MITSUMATSU
M．G．Crandall and H．ISHII
Hitoshi ISHII

Yoichi NADUMO， Masamichi TOKIZAWA and Shun SATO

Masamichi TOKIZAWA and Shun SATO Yoshio MATSUYAMA

M．G．CRANDALL，H．ISHII and P．L．LIONS

H．ISHII

H．ISHII
H．ISHII and S．KOIKE
H．ISHII

Y．MATSUYAMA

S．HURDER
and Y．MITSUMATSU
G．ZAMPIERI and G．GORNI

No. 271992 Injectivity onto a Star-shaped Set for Local Homeomorphisms in n-Space. G. ZAMPIERI and G. GORNI
No. 281992 Uniqueness of solutions to the Cauchy problems for $u_{t}-\Delta u+r|\nabla u|^{2}=0$ I. FUKUDA, H. ISHII and M. TSUTSUMI

No. 291992 Viscosity solutions of functional differential equations.
No. 301993 On submanifolds of sphere with bounded second fundamental form
No. 311993 On the equivalence of two notions of weak solutions, viscosty solutions and distributional solutions.
No. 321993 On curvature pinching for totally real submanifolds of $C P^{n}(c)$
No. 331993 On curvature pinching for totally real submanifolds of $H P^{n}(c)$
No. 341993 On curvature pinching for totally complex submanifolds of $H P^{n}(c)$
No. 351993 A new formulation of state constracts problems for first-order PDEs.
No. 361993 On Multipotent Invertible Semigroups.
No. 371993 On the uniquess and existence of sulutions of fully nonlinear parabolic PDEs underthe Osgood type condition
No. 381993 Curvatura pinching for totally real submanifolds of $C P^{n}(c)$
No. 391993 Critical Gevrey index for hypoellipticity of parabolic operators and Newton polygones

No. 401993 Generalized motion of noncompact hypersurfaces with velocity having arbitray growth on the curvature tensor.
No. 411994 On the unified Kummer-Artin-Schreier-Witt theory
No. 421995 Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients.
No. 431995 A genaralization of Bence, Merriman and Osher algorithm for motion by mean curvature.
No. 441995 Degenerate parabolic PDEs with discontinuities and generalized

No. 451995 Normal forms of pseudodifferential operators on tori and diophantine phenomena.
No. 461996 On the dustributions of likelihood ratio criterion for equality of characteristic vectors in two populations.
No. 471996 On a quantization phenomenon for totally real submanifolds of $C P^{n}(c)$
No. 481996 A charactarization of real hypersurfaces of complex projective space.
No. 491999 A Note on Extensions of Algebraic and Formal Groups, IV.
No. 501999 On the extensions of the formal group schemes $\widehat{\mathcal{G}}^{(\lambda)}$ by $\widehat{\mathbb{G}}_{a}$ over a $\mathbb{Z}_{(p)}$-algebra
No. 512003 On the descriptions of $\mathbb{Z} / p^{n} \mathbb{Z}$-torsors by the Kummer-Artin-Schreier-Witt theory
No. 522003 ON THE RELATION WITH THE UNIT GROUP SCHEME $U\left(\mathbb{Z} / p^{n}\right)$ AND THE KUMMER-ARTIN-SCHREIER-WITT GROUP SCHEME
No. 542004 ON NON-COMMUTATIVE EXTENTIONS OF $\mathbb{G}_{a, A}$ BY $\mathbb{G}_{m, A}$ OVER AN \mathbb{F}_{p}-ALGEBRA
No. 552004 ON THE EXTENSIONS OF \widehat{W}_{n} BY $\widehat{\mathcal{G}}^{(\mu)}$ OVER A $\mathbb{Z}_{(p)}$-ALGEBRA
No. 562005 On inverse multichannel scattering

No. 572005 On Thurston's inequality for spinnable foliations
H. ISHII and S. KOIKE
Y. MATSUYAMA
H. ISHII
Y. MATSUYAMA
Y. MATSUYAMA
Y. MATSUYAMA
H. ISHII and S. KOIKE
M. TOKIZAWA
H. ISHII and K. KOBAYASHI
Y. MATSUYAMA
T. GRAMCHEV
P.POPIVANOV
and M.YOSHINO
H. ISHII
and P. E.SOUGANIDIS
T. SEKIGUCHI and N. SUWA

Hitoshi ISHII
and Mythily RAMASWARY

Todor GRAMCHEV
and Masafumi YOSHINO
Todor GRAMCHEV
and Masafumi YOSHINO
Shin-ichi TSUKADA
and Takakazu SUGIYAMA
Yoshio MATSUYAMA
Yoshio MATSUYAMA
T. SEKIGUCHI and N. SUWA

Mitsuaki YATO

Kazuyoshi TSUCHIYA

Noritsugu ENDO

Yuki HARAGUCHI

Yasuhiro NIITSUMA
V.MARCHENKO
K.MOCHIZUKI
and I.TROOSHIN
H.KODAMA, Y.MITSUMATSU
S.MIYOSHI and A.MORI

No． 582006 Tables of Percentage Points for Multiple Comparison Procedures

No． 592006 COUTING POINTS OF THE CURVE $y^{4}=x^{3}+a$ OVER A FINITE FIELD

No． 602006 TWISTED KUMMER AND KUMMER－ARTIN－SCHREIER THEORIES Noriyuki SUWA
No． 612006 Embedding a Gaussian discrete－time ARMA（3，2）process in a Gaussian continuous－time $\operatorname{ARMA}(3,2)$ process
No． 622006 Statistical test of randomness for cryptographic applications

No． 632006 ON NON－COMMUTATIVE EXTENSIONS OF $\widehat{\mathbb{G}}_{a}$ BY $\widehat{\mathcal{G}}^{(M)}$ OVER AN \mathbb{F}_{p}－algebra
No． 642006 Asymptotic distribution of the contribution ratio in high dimensional principal component analysis
No． 652006 Convergence of Contact Structures to Foliations
No． 662006 多様体上の流体力学への幾何学的アプローチ
No． 672006 Linking Pairing，Foliated Cohomology，and Contact Structures
No． 682006 On scattering for wave equations with time dependent coefficients
No． 692006 On decay－nondecay and scattering for Schrödinger equations with time dependent complex potentials
No． 702006 Counting Points of the Curve $y^{2}=x^{12}+a$ over a Finite Field
No． 712006 Quasi－conformally flat manifolds satisfying certain condition on the Ricci tensor

No． 722006 Symplectic volumes of certain symplectic quotients associated with the special unitary group of degree three
No． 732007 Foliations and compact leaves on 4－manifolds I Realization and self－intersection of compact leaves
No． 742007 ON A TYPE OF GENERAL RELATIVISTIC SPACETIME WITH W_{2}－CURVATURE TENSOR

No． 752008 Remark on TVD schemes to nonstationary convection equation
No． 762008 THE COHOMOLOGY OF THE LIE ALGEBRAS OF FORMAL POISSON VECTOR FIELDS AND LAPLACE OPERATORS
No． 772008 Reeb components and Thurston＇s inequality
No． 782008 Permutation test for equality of individual eigenvalues from covariance matrix in high－dimension
No． 792008 Asymptotic Distribution of the Studentized Cumulative Contribution Ratio in High－Dimensional PrincipalComponent Analysis

No． 802008 Table for exact critical values of multisample Lepage type statistics when $k=3$
No． 812008 AROUND KUMMER THEORIES
No． 822008 DEFORMATIONS OF THE KUMMER SEQUENCE
No． 832008 ON BENNEQUIN＇S ISOTOPY LEMMA AND THURSTON＇S INEQUALITY
No． 842009 On solvability of Stokes problems in special Morrey space $L_{3, \text { unif }}$
No． 852009 On the Cartier Duality of Certain Finite Group Schemes of type（ p^{n}, p^{n} ）

Y．MAEDA，
T．SUGIYAMA
and Y．FUJIKOSHI
Eiji OZAKI
ri HUZII
Mituaki HUZII

Mituaki HUZII，Yuichi TAKEDA
Norio WATANABE
Toshinari KAMAKURA
and Takakazu SUGIYAMA
Yuki HARAGUCHI

Y．FUJIKOSHI

T．SATO and T．SUGIYAMA
Yoshihiko MITSUMATSU
三松 佳彦
Yoshihiko MITSUMATSU
Kiyoshi MOCHIZUKI
K．MOCHIZUKI and T．MOTAI

Yasuhiro NIITSUMA
U．C．De and Y．MATSUYAMA

T．SUZUKI and T．TAKAKURA

Y．MITSUMATSU and E．VOGT

A．A．SHAIKH
and Y．MATSUYAMA
Hirota NISHIYAMA
Masashi TAKAMURA

S．MIYOSHI and A．MORI
H．MURAKAMI，E．HINO and T．SUGIYAMA
M．HYODO，T．YAMADA and T．SUGIYAMA

Hidetoshi MURAKAMI

Noriyuki SUWA
Yuji TSUNO
Yoshihiko MITSUMATSU

N．KIKUCHI and G．A．SEREGIN
N．AKI and M．AMANO

No． 862010 Construction of solutions to the Stokes equations

No． 872010 RICCI SOLITONS AND GRADIENT RICCI SOLITONS IN A KENMOTSU MANIFOLD

No． 882010 On the group of extensions $\operatorname{Ext}^{1}\left(\mathcal{G}^{\left(\lambda_{0}\right)}, \mathcal{E}^{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}\right)$ over a discrete valuation ring
No． 892010 Normal basis problem for torsors under a finite flat group scheme
No． 902010 On the homomorphism of certain type of models of algebraic tori
No． 912011 Leafwise Symplectic Structures on Lawson＇s Foliation
No． 922011 Symplectic volumes of double weight varieties associated with $S U(3) / T$
No． 932011 On vector partition functions with negative weights
No． 942011 Spectral representations and scattering for
Schrodinger operators on star graphs
No． 952011 Normally contracting Lie group actions

No． 962012 Homotopy invariance of higher K－theory for abelian categories
No． 972012 CYCLE CLASSES FOR p－ADIC ÉTALE TATE TWISTS AND THE IMAGE OF p－ADIC REGULATORS

No． 982012 STRONG CONVERGENCE THEOREMS FOR GENERALIZED EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES

No． 992013 Global solutions for the Navier－Stokes equations in the ratational framework
No． 1002013 On the cyclotomic twisted torus and some torsors

No． 1012013 Helicity in differential topology and incompressible fluids on foliated 3－manifolds
No． 1022013 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD
この論文には改訂版（No．108）があります。そちらを参照してください。
No． 1032013 GROUP ALGEBRAS AND NORMAL BASIS PROBLEM
No． 1042013 Symplectic volumes of double weight varieties associated with $S U(3)$ ，II
No． 1052013 REAL HYPERSURFACES OF A PSEUDO RICCI SYMMETRIC COMPLEX PROJECTIVE SPACE
No． 1062014 CONTINUOUS INFINITESIMAL GENERATORS OF A CLASS OF NONLINEAR EVOLUTION OPERATORS IN BANACH SPACES

No． 1072014 Thurston＇s h－principle for 2－dimensional Foliations of Codimension Greater than One
No． 1082015 LINKS AND SUBMERSIONS TO THE PLANE ON AN OPEN 3－MANIFOLD

No． 1092015 KUMMER THEORIES FOR ALGEBRAIC TORI AND NORMAL BASIS PROBLEM
No． $1102015 L^{p}$－MAPPING PROPERTIES FOR SCHRÖDINGER OPERATORS IN OPEN SETS OF \mathbb{R}^{d}

No． 1112015 Nonautonomous differential equations and Lipschitz evolution operators in Banach spaces
No． 1122015 Global solvability of the Kirchhoff equation with Gevrey data

Norio KIKUCHI

U．C．De and Y．MATSUYAMA

Takashi KONDO

Yuji TSUNO
Nobuhiro AKI
Yoshihiko MITSUMATSU
Taro SUZUKI
Tatsuru TAKAKURA
K．MOCHIZUKI
and I．TOROOSHIN
T．INABA，S．MATSUMOTO
and Y．MITSUMATSU
S．MOCHIZUKI and A．SANNAI
Kanetomo SATO

YUKINO TOMIZAWA

Tsukasa Iwabuchi
and Ryo Takada
Tsutomu Sekiguchi
and Yohei Toda
Yoshihiko Mitsumatsu

SHIGEAKI MIYOSHI

NORIYUKI SUWA
Taro Suzuki
SHYAMAL KUMAR HUI
AND YOSHIO MATSUYAMA
YUKINO TOMIZAWA

Yoshihiko MITSUMATSU
and Elmar VOGT
SHIGEAKI MIYOSHI

NORIYUKI SUWA

TSUKASA IWABUCHI，
TOKIO MATSUYAMA
AND KOICHI TANIGUCHI
Yoshikazu Kobayashi，Naoki Tanaka
and Yukino Tomizawa
Tokio Matsuyama
and Michael Ruzhansky

No. 1132015 A small remark on flat functions

No. 1142015 Reeb components of leafwise complex foliations and their symmetries I

No. 1152015 Reeb components of leafwise complex foliations and their symmetries II No. 1162015 Reeb components of leafwise complex foliations and their symmetries III

No. 1172016 Besov spaces on open sets

No. 1182016 Decay estimates for wave equation with a potential on exterior domains

No. 1192016 WELL-POSEDNESS FOR MUTATIONAL EQUATIONS UNDER A
GENERAL TYPE OF DISSIPATIVITY CONDITIONS
No. 1202017 COMPLETE TOTALLY REAL SUBMANIFOLDS OF A COMPLEX PROJECTIVE SPACE
No. 1212017 Bilinear estimates in Besov spaces generated by the Dirichlet Laplacian

No. 1222018 Geometric aspects of Lucas sequences, I
No. 1232018 Derivatives of flat functions

No. 1242018 Geometry and dynamics of Engel structures
No. 1252018 Geometric aspects of Lucas sequences, II
No. 1262018 On volume functions of special flow polytopes

No. 1272019 GEOMETRIC ASPECTS OF LUCAS SEQUENCES, A SURVEY
No. 1282019 On syntomic complex with modulus for semi-stable reduction case
No. 1292019 GEOMETRIC ASPECTS OF CULLEN-BALLOT SEQUENCES
No. 1302020 Étale cohomology of arithmetic schemes and zeta values of arithmetic surfaces
No. 1312020 Global well-posedness of the Kirchhoff equation
No. 1322021 Sparse non-smooth atomic decomposition of quasi-Banach lattices

No. 1332021 Integer values of generating functions for Lucas sequences
No. 1342022 Littlewood-Paley characterization of discrete Morrey spaces and its application to the discrete martingale transform

No. 1352023 A remark on the atomic decomposition in Hardy spaces based on the convexification of ball Banach spaces
No. 1362023 Fano 4-folds with nef tangent bundle in positive characteristic

Kazuo MASUDA
and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU
Tomohiro HORIUCHI
Tomohiro HORIUCHI and Yoshihiko MITSUMATSU

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi Vladimir Georgiev and Tokio Matsuyama YOSHIKAZU KOBAYASHI
AND NAOKI TANAKA
YOSHIO MATSUYAMA

Tsukasa Iwabuchi,Tokio Matsuyama and Koichi Taniguchi
Noriyuki Suwa
Hiroki KODAMA, Kazuo MASUDA, and Yoshihiko MITSUMATSU
Yoshihiko MITSUMATSU
Noriyuki Suwa
Takayuki NEGISHI, Yuki SUGIYAMA, and Tatsuru TAKAKURA
Noriyuki Suwa
Kento YAMAMOTO
Noriyuki Suwa
Kanetomo Sato

Tokio Matsuyama
Naoya Hatano, Ryota Kawasumi, and Yoshihiro Sawano
Noriyuki Suwa
Yuto Abe, Yoshihiro Sawano

Yoshihiro Sawano
and Kazuki Kobayashi
Yuta Takahashi and Kiwamu Watanabe

[^0]: 2010 Mathematics Subject Classification. 14J35, 14J45, 14M17, 14E30.
 The author is partially supported by JSPS KAKENHI Grant Number 21 K 03170 and the Sumitomo Foundation Grant Number 190170.

