AR R 1 i

A Study on Diffraction of
Electromagnetic Wave by

Dielectric Wedges

NGUYEN Minh Duc

it (%)
R FE R B

BT 22 9Tk

F 5 R
2024 £ 3 H



Contents

1 Introduction
1.1 Research Background . . . . . . . ... .. ... oo
1.2 Physical Optics Approximation . . . . .. .. .. ... ... ........
1.3 Contents of Thesis . . . . . . . . . .. . ... .

2 Physical Optics Approximation for Conducting Wedge
2.1 Formulation of PO Approximation . . .. .. .. ... ... ... .....
2.2 TM-Polarized Plane Wave . . . . . . . .. .. ... ... ... .......
2.3 TE-Polarized Plane Wave . . . . . .. ... ... ... .. .. .......

3 Extended Physical Optics Approximation for Dielectric Wedge
3.1 Extended PO Based on Equivalent Currents . . . . . ... ... ......
3.2 TM-Polarized Plane Wave . . . . . . . . . . . . ... .. ... ... ....
3.2.1 Exterior Field . . . . . . . . . . . .. . ..
3.2.2 Imterior Field . . . . . . . . .. . ..
3.3 TE-Polarized Plane Wave . . . . . . . . . .. . .. .. ... ... .....
3.3.1 Exterior Field . . . . . . . . . . . ...
3.3.2 Interior Field . . . . . . .. ... .. ..

4 Numerical Results Comparison and Discussion
4.1 PECwedge . . . . . . .
4.2 Dielectric wedge . . . . . . . ..

5 Conclusion and Future Work
5.1 Conclusion . . . . . . . L
5.2 Future work . . . . ..

Appendix
A.1 Uniform Asymptotic Evaluation for Radiation Integral . . . . . . ... ..
A.1.1 TM polarization . . . . . . . . . . . .. . ...
A.2 TE polarization . . . . . . . . . . . ...
A.3 Hidden Rays of Diffraction . . . . . . . ... .. ... ... ... .. ...
A.4 Possible Lateral Wave . . . . . .. .. ..
A4.1 TE polarization . . . . . . . ... L
A.4.2 TM polarization . . . . . . . . . . .. ...

Acknowledgment

References

10
16

20
20
21
22
28
33
33
38

41
41
56

76
76
76

78
78
78
81
83
84
85
94

99

100



List of Publications 105

i



List of Figures

1.1
1.2

1.3

1.4

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2

4.3

4.4

4.5

Scattering by a high building. . . . . .. ... ..o
Field equivalence principle model. (a) Fields E,, H; excited by original
sources by Ji, M;. (b) Fields E;, H; excited by the equivalence surface
currents Jg, Myon S. . . ...
Field equivalence principle model. (a) Scattering fields E°, H® by an object
due to the incident wave E’, H'. (b) Scattering fields E*, H* by the
equivalence surface currents J,, Myon S. . . . . . ... ... ... ...
Physical optics approximation for conducting object: (a) Conducting ob-
ject is illuminated by the incident wave E*, H'. (b) PO equivalent current
on visual surface S. . . . . . ..o

PEC wedge: one-side illumination. . . . .. . ... .. ... ... ... ..
PEC wedge: two-side illumination. . . . . . . ... .. ... .. ...
Integration contour for Eqs.(2.13) and (2.35) in the complex 7 plane.
Integration contour for Eqs.(2.14) and (2.36) in the complex 7 plane. .
Integration contours C and SDP for Eqs.(2.15) and (2.16) in the complex
angular w plane: (a) ws>w,. (b) ws<wy. . . . ..o

Dielectric wedge. . . . . . . .. L
Outside dielectric wedge: surface OA is illuminated. . . . . . . . .. .. ..
Integration contour for Eqs.(3.18) and (3.19) in the complex 7 plane. .
Integration contours C and SDP for Egs.(3.20) and (3.21) in the complex
angular w plane: (a) wy>w,. (b) ws<wy. . . . ..o
Outside dielectric wedge: surface OB is illuminated. . . . . . . . .. .. ..
Integration contour for Eqs.(3.35) and (3.36) in the complex 7 plane.
Inside dielectric wedge: surface OA is illuminated. . . . . . . . ... .. ..
Integration contour for Eq.(3.53) in the complex n plane. . . . . . . .. ..
Inside dielectric wedge: surface OB is illuminated. . . . . . . . . .. .. ..
Integration contour for Eq.(3.64) in the complex n plane. . . . . . . .. ..

GO and diffracted rays by PEC wedge. . . . . . . ... ... ... ... ..
Field distribution of PEC wedge (FDTD calculation): ¢y, = 225° ¢, =
115°. (a) Total field. (b) Diffracted field. . . . . ... ... ... ... ...
Total field of PEC wedge: ¢, = 225°, ¢9 = 115° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . . . . ... ... ... ... ...
Diffracted field of PEC wedge: ¢y, = 225°, ¢y = 115° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . .. ... ... ... .. .....
Cotangent functions of EPO and HRD (TE polarization): ¢, = 225° and
do=60°. () EPO. (b) HRD. . . . ..

1ii

13

21
22
23

42

45



4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

Cotangent functions of EPO and HRD (TM polarization): ¢y, = 225° and

do=120°. (a) EPO. (b) HRD.. . . . . ..o 19
Total field of PEC wedge: ¢, = 225° ¢y = 30° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . . . ... ... ... ... .... 50
Diffracted field of PEC wedge: ¢y, = 225°, ¢ = 30° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . .. ... ... ... ... .. .. 51
Total field of PEC wedge: ¢y, = 315°, ¢9 = 160° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . .. ... ... ... ... .... 52
Diffracted field of PEC wedge: ¢y, = 315°, ¢y = 160° and p = 3A. (a) TM
polarization. (b) TE polarization. . . . . . . . ... ... ... ... .... 53
Total field of PEC wedge: ¢, = 315°, ¢ = 30° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . .. ... ... ... ... ... 54
Diffracted field of PEC wedge: ¢y, = 315°, ¢9 = 30° and p = 3\. (a) TM
polarization. (b) TE polarization. . . . . . . . ... ... ... ... .... 55
GO and diffracted rays by dielectric wedge. . . . . . . . . ... ... ... 26
Total field distribution of dielectric wedge: ¢y, = 225°, ¢g = 115°, ¢, = 6.
(a) TM polarization. (b) TE polarization. . . .. ... ... ... ... .. 60
Diffracted field distribution of dielectric wedge: ¢, = 225°, ¢y = 115°,
e; = 6. (a) TM polarization. (b) TE polarization. . . . . ... .. ... .. 61
Total field of dielectric wedge: ¢y = 225°, ¢g = 115°, ¢, = 6 and p = 3.
(a) TM polarization. (b) TE polarization. . . . . ... ... ... .. ... 62
Diffracted field of dielectric wedge: ¢y, = 225° ¢y = 115°, ¢, = 6 and
p =3A. (a) TM polarization. (b) TE polarization. . . . . . . ... ... .. 63
Total field of dielectric wedge: ¢y, = 225°, ¢ = 30°, ¢, = 6 and p = 3\
(a) TM polarization. (b) TE polarization. . . . . ... ... ... .. ... 64
Diffracted field of dielectric wedge: ¢, = 225°, ¢ = 30°, ¢, = 6 and p = 3.
(a) TM polarization. (b) TE polarization. . . .. ... ... ... ... .. 65
Cotangent functions outside dielectric wedge: ¢y, = 225°, ¢9 = 30° and
e; = 6. (a) TE polarization. (b) TM polarization. . . . . ... .. ... .. 66
Cotangent functions inside dielectric wedge: ¢y, = 225°, ¢y = 30° and
e; = 6. (a) TE polarization. (b) TM polarization. . . . . ... .. ... .. 67
Remainder field of FDTD (TM polarization): ¢y, = 225° ¢, = 6 and p = 3\. 68
Possible lateral waves excited by edge diffracted surface waves. . . . . . . . 68
Total field distribution of dielectric wedge (FDTD): ¢y, = 225°, ¢y = 30°
and ¢, = 6. (a) TM polarization. (b) TE polarization. . . . . . . . ... .. 69
Diffracted field distribution of dielectric wedge (FDTD): ¢y, = 225°, ¢¢ =
30° and ¢, = 6. (a) TM polarization. (b) TE polarization. . . .. ... .. 70

Distribution of FDTD remainder field and possible lateral wave (TM po-
larization): ¢y, = 225°, ¢y = 30°, &, = 6. (a) FDTD remainder field. (b)
Lateral wave. . . . . . . . . . . .. 71
Distribution of FDTD remainder field and possible lateral wave (TE po-
larization): ¢y, = 225°, ¢g = 30°, ¢, = 6. (a) FDTD remainder field. (b)

Lateral wave. . . . . . . . . . . . 72
Wavefront of FDTD remainder field and possible lateral wave: ¢, = 225°,
¢o = 30°, &, = 6. (a) FDTD remainder field. (b) Lateral wave. . . . . . . . 73
Total and diffracted fields of dielectric wedge: ¢y, = 330°, ¢pg = 165°, £, = 6
and p = 3\. (a) Total field. (b) Diffracted field. . . .. ... ... ... .. 74

v



4.30

e i

\
00~ O O = W N

Total and diffracted fields of dielectric wedge: ¢y, = 330°, ¢9 = 30°, e, =6

and p = 3\. (a) Total field. (b) Diffracted field. . . . ... ... ... ... 75
Lateral wave. . . . . . . .. . L 85
Integration contours for Gy integral in Eq.(A-53). . . .. ... ... ... 86
Integration contours for G integral in Eq.(A-58). . . . ... ... .. .. 87
Integration contours for Gy integral in Eq.(A-54). . . . . ... ... .. .. 88
Integration contours for Gy integral in Eq.(A-61). . . . . ... ... .... 89
Branch point contribution. . . . . ... ... oL 90
Lateral wave when ¢/ =0. . . . . . .. ... ... .. ... .. ... ... 91
Media 2. . . . . . . 92



Chapter 1

Introduction

1.1 Research Background

From the nineteenth century, electromagnetic (EM) wave has been known since the work
of J. Maxwell that describe how electric and magnetic fields are generated by charges,
currents, and changes of the fields [1], [2]. After that, many topics for studying and ap-
plications of the electromagnetic wave have been conducted over a century [3]. Among
the countless problems of electromagnetic, electromagnetic scattering wave always attrac-
tive and difficult topic. During the history of development, many outstanding physicists
and mathematicians contributed to the theory of electromagnetic scattering wave [4]-[13].
Electromagnetic scattering is a general physical process, which describes and explains the
field behavior when the electromagnetic waves are forced to deviate from a straight trajec-
tory by one or more obstacles in the medium through which they pass. Knowledge about
scattering properties at high frequencies of objects made of lossy material is paramount
in radar applications, anti-radar designs, and high-frequency electronic device manufac-
ture. It is also an important basis for understanding radio wave propagation conditions.
From there, the optimal base station placement can be determined and compatible an-
tenna models can be developed in wireless communication applications. Although topics
on the scattering of electromagnetic waves have been widely studied with various shapes
and models for several decades, finding reliable and efficient solutions always remains a
challenging and unsolved problem. Nowadays, as high-speed and large-capacity mobile
communications become more popular, to ensure stable communication between wireless
communication base stations and small mobile wireless terminals, understanding radio
wave propagation and scattering behavior becomes even more significant. On the other
hand, the rapid development of urban areas leads to the increase of large obstacles such
as buildings and vehicles. In there, the high-rise buildings always have the most strong in-
fluence on radio wave transmission. Because buildings come in so many different shapes,
it would be extremely difficult to create a direct solution to each building’s scattering
problem. However, the common denominator is that most of the large buildings are
block-shaped, with large polygonal surfaces that can be thought of as sets of wedges.
Therefore, a more feasible solution is to find out the scattering behavior of each wedge
separately. Then, by summing up the scattering problem of many wedges, one can easily
evaluate and estimate the effect of the buildings on wave propagation.

Many solutions have been proposed for the scattering problems of electromagnetic
waves, in which several available exact solutions [14], [15] and numerical methods [16]-[23]
can be utilized for a limited number of simple shapes and small objects. Although these
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Figure 1.1: Scattering by a high building.

methods can provide highly reliable results, they consume a lot of time and memory due
to the large number of calculations, and are not ideal solutions for large objects. There-
fore, to calculate the scattering of large objects such as buildings, one needs to develop
approximation approaches that can provide acceptably fast as well as highly accurate
approximation solutions.

In the high-frequency domain, some classical approximation methods may be able to
analyze the scattering problems by large conducting objects [24]-[27], such as geometrical
optics (GO), physical optics (PO), geometrical theory of diffraction (GTD) and its ex-
tended uniform solutions. Here, GO is a ray-based method that describes the scattering
phenomena of electromagnetic waves by an object [28]-[31]. The GO technique is based
on the rule of optics ray, in which incident rays are assumed to be reflected by the scatter-
ing objects as if the surfaces of these objects are plane at the illuminated point. The GO
scattering fields can be obtained simply by utilizing the usual reflection and transmission
principles of rays at the interfaces of objects. However, the limitation of the GO method
is that it does not provide information about the diffraction effect and the field behavior
in the shadowed areas of the scattering objects.

An alternative model of diffraction named GTD was propounded first in 1802 to over-
come the shortcomings of GO. The GTD can be known as an extension of GO, which
can describe the diffraction behavior in shadowed regions that GO ignores [32]-[36]. It
was found that in addition to the usual GO reflected and transmitted rays, there is the
existence of diffracted rays that are excited when incident rays illuminate the vertices,
edges, or corners of an obstacle, or when the incident rays graze the object’s surface. In
the above cases, GO does not provide a prescription to determine the subsequent path
of scattered rays. The behavior of diffracted rays can be described by applying several
laws of diffraction, similar to the laws of reflection and refraction. The diffracted field
can be obtained by multiplying the field of the incident ray at the diffracted point with
an appropriate diffraction coefficient using the Fresnel integral. The scattering field can
then be represented as the sum of the GO field and diffracted fields. Despite solving
the diffraction failure of GO, GTD and its extensions |37]-[41] may be only applicable
to conductive objects. For penetrable objects, an extension of the uniform theory of
diffraction (HUTD) [42] were proposed to solve the radiation field of the lossy dielectric
objects adding the reflection and transmission coefficients into the UTD (uniform theory
of diffraction) formulation. However, this solution only provides the field behaviors in the
outside region of objects. This limitation requires us to look for a more potential solution
as physical optics (PO) approximation.

The PO approximation was first introduced in 1882 by Kirchhoff. PO is well known



as a simple and very efficient method for many applications in radar, antenna, and other
electromagnetic problems. The foundation of the PO method is developed based on the
surface equivalence theorem [43]-[45]. In the high-frequency domain, this method can
be efficiently utilized to solve scattering problems caused by the conducting objects [46]—
[51]. Here, the scattering field can be calculated as the radiation from the induced PO
currents excited on the illuminated surfaces of the scattered object. These PO currents
can be easily determined from the magnetic field of the incident wave and the surface of
the object. However, when the scattering objects are made of penetrable material, the
problem becomes more complicated due to due to the appearance of scattering phenomena
inside the object. In this case, the PO current based on the incident wave is not sufficient
to construct an accurate solution as in the case of non-penetrable objects.

To solve complicated scattering problems of penetrable objects, several possible solu-
tions based on the PO method have been proposed for both the internal and external
fields. These solutions are also developed based on the surface equivalence theorem [52]-
[54], in which equivalent electric and magnetic currents were proposed to replace the PO
currents. These equivalent electric and magnetic currents need more informations then
the PO currents. They can be constructed based on the magnetic and electric fields of
the incident, reflected and transmitted GO rays. Then the scattering fields can be de-
rived form the radiation integrations of these induced currents. For conducting objects,
the solution from electric and magnetic currents was found to obtain the same results
as the PO solution [55]. According to the above basis, uniform asymptotic solutions of
PO have been proposed to solve the diffraction problem of dielectric wedges [56], [57].
In these investigations, the singularity behaviors of the diffraction coefficient near the
shadow boundaries of the GO rays were mended by multiplying the transition functions
with the non-uniform components. These transition functions can be obtained from the
Fresnel integral. However, these investigations have not clearly shown the accuracy of
the diffracted field of PO. In addition, it was found from the conducting case that the
diffracted field of PO doesn’t satisfy the boundary and edge conditions, and this may also
continue to occur in the solutions for dielectric wedge cases [58], [59]. A solution named
HRD (hidden rays of diffraction) has also been proposed to extend a concept of HUTD
to the internal diffracted field [60], [61]. This solution is expected to correct the error of
PO in terms of boundary condition by using additional hidden rays. These hidden rays
were introduced to be easily traced by using the usual principle of GO in the non-physical
domain, in which the free space domain and dielectric domain are exchanged for each
other. It is also said that the HRD solution may satisfy the edge condition by modifying
the angular period of the cotangent functions [62]. Although the above approximation
solutions are efficient tools for solving the diffraction problems of the dielectric wedge in
the high-frequency domain, their reliability has not been clearly verified yet. Therefore,
we need to conduct more investigations to know the accuracy of these approximation
solutions, as well as to find other reliable solutions for the edge diffraction problems of
dielectric objects.

In this investigation, an extended PO (EPO) asymptotic solution has been presented
for edge diffraction by a dielectric wedge for both TM and TE-polarized plane waves. This
solution is constructed based on the equivalent currents method, in which the scattering
field from a dielectric wedge may be formulated as the corresponding radiation from
equivalent induced electric and magnetic currents on wedge surfaces. Unlike conventional
PO, these equivalent currents are obtained from the electric and magnetic fields of GO
rays. While the outer induced currents are determined by the incident and reflected GO



rays, the currents inside the wedge are constructed from the corresponding transmitted
rays. The scattering fields can then be found by integrating the above equivalent electric
and magnetic currents with the two-dimensional Green’s function. The obtained radiation
integrals can then be evaluated by using the saddle point technique. Then, uniform
asymptotic solutions including transition functions have been obtained. Using the error
function complement, these transition functions have mended the singularity behavior
at the shadow boundaries of GO ryas. The edge diffracted fields were represented in
terms of cotangent functions, which have one-to-one correspondences with the incident,
reflected, and transmitted GO rays. General unified formulations have then been proposed
to be applicable to any incident directions. The numerical results have been performed
to compare our EPO solution with other reference methods such as HRD and FDTD
(Finite-Difference Time-Domain) simulation. The observed comparison results show a
correlation between the reliability of our solution and previous methods. In addition, a
concept of lateral waves was proposed to enhance the accuracy of our current solutions.

1.2 Physical Optics Approximation

The physical optics approximation is constructed based on the surface equivalence the-
orem, which is known as a more rigorous reformulation of Huygens’s principle [43|, and
was introduced by Schelkunoff in 1936 [44]. This theorem is also known as the field equiv-
alence principle [45] or simply as the equivalence principle. According to the principle
of the equivalence theorem, the actual radiation sources within a region can be replaced
by equivalent fictitious sources that produce a similar field behavior as the actual sources
within that region. Based on this principle, the radiation problems can be solved by
considering the current densities on a fictitious closed surface surrounding the actual ob-
ject. This is known as a more rigorous improvement of the Huygens-Fresnel principle, in
which each point on the wavefront is considered as a spherical wave source. The equiv-
alent currents on the imaginary surface are determined by the uniqueness theorem in
electromagnetic.

____________
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(a) (b)

Figure 1.2: Field equivalence principle model. (a) Fields E;, H; excited by original
sources by Ji, M;. (b) Fields E;, H; excited by the equivalence surface currents Js, M,
on S.

Based on the surface equivalence theorem, the external radiation field of a closed surface
can be obtained from the distribution of suitable imaginary electric and magnetic cur-
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rents according to the boundary conditions. Accordingly, the density of these equivalent
currents is chosen so that the external fields are the same as those excited by the actual
radiation sources, while the internal fields of the closed surface are null. Thus, one can
deduce the radiation fields in the outside and inside regions of the surface if the density of
the equivalent current can be determined. This theorem is mathematically rigorous and
the correctness of the derived field depends on the accuracy of the obtained equivalent
current densities.

Let us now consider electromagnetic fields E;, H;, which are excited by actual electric
and magnetic current sources (Jy, M) as in Fig. 1.2(a). Assuming that a closed surface
S surrounds the sources J;, M7, then the radiation fields outside surface S can be found
from equivalent electric and magnetic currents on surface S as shown in Fig. 1.2(b).

J,=n x Hy, (1.1)

Ms :E1 X M. (12)

where m is a normal unit vector on surface S towards the outside. The reliability of
this equivalence depends on the accuracy of the fields Ey, H; on the virtual surface S.

However, the exact determination of the fields sometimes becomes difficult, then one may
use the field approximation for evaluating the radiation problems.

(b)

Figure 1.3: Field equivalence principle model. (a) Scattering fields E®, H® by an object
due to the incident wave E?, H'. (b) Scattering fields E*, H® by the equivalence surface
currents Jy, M, on S.

Now consider the case, in which the scattering fields E®, H?® are excited by an object
illuminated by incident fields E?, H' from the exterior region, as shown in Fig. 1.3(a).
The total field outside the object may then be represented by the summation of the
incident and scattering fields as

E=E'+ E° (1.3)
H=H'+ H°. (1.4)
If one assumes that the scattering fields E°, H® are excited by the secondary radiation
sources on the object, the external scattering fields can then be found from the equivalent

current sources Js and M on surface S as in Fig. 1.3(b). These surface currents can be
defined as:

J,=nx H®, (1.5)
M, =F° x n.



Then by integrating the above surface currents with Green’s function along the surface,
the radiation field at the observation point r can be expressed as

E(r) =~ /S {jwqus(’r’)G(’r, V) + M) x VG, #) — 20 oy, r’)] ds’,

JWeo
(1.7)
H’(r)=— /s {jwsoMs(r/)G(r, r') — Js(r') x V'G(r,r") — ]\j;—iz) -V'V'G(r, r’)} ds’,
(1.8)

where w, €9 and p are the angular frequency, vacuum permittivity and vacuum permeabil-
ity, respectively. V' indicates differentiation with respect to the prime source coordinates,
and G(7,7') is Green’s function. The above formulations are mathematically rigorous,
and the obtained radiation fields are reliable as long as one can correctly determine the
equivalent electric and magnetic currents Js; and M. However, it is usually difficult to
know the exact distribution of these equivalent currents.

Physical optics (PO) is a well-known high-frequency approximate technique that allows
us to solve scattering problems for electrically large conducting objects. The advantage
of PO solution is that it is able to describe the diffraction effect including the smooth
transition between the lit and shadowed portions of space at the shadowed boundary.
In this investigation, the PO approximation is constructed by determining the surface
fields of the object from the geometrical optics rays and then the scattering field can
be calculated by integrating these fields over the object’s surface. It usually means that
the current that can be found on a tangent plane of the object is taken as the same as
the current at each point on the illuminated region of the scatterer. On the other hand,
in the shadowed regions, the current is equal to zero. Then, the scattering field can be
calculated approximately by an integral over these approximate currents. To ensure the
accuracy of the PO approximation, one has to rigorously comply with several constraints
before choosing this method to solve the electromagnetic scattering problems. First,
the scattering objects must be electrically large, and their surfaces must vary smoothly.
Second, it must be possible to distinguish between illuminated and non-illuminated regions
of the scattering objects.

Now, if one considers a plane wave incident on a smooth surface of a large perfectly
conducting object as in Fig. 1.4(a), the scattered fields (E* H?) outside the object can
be given by the reflected fields, while the fields inside the conducting object are null.
According to the surface equivalent theorem, the closed surface is selected so that the
surface S is outside the scattering object, so instead of choosing the arbitrary closed
surface, one may choose most of it to coincide with the conducting parts of the physical
structure of the object as in Fig. 1.4(b). By such a choice, the external scattering fields of
the conducting object can be found from the surface characteristics of the object for the
high-frequency domain, and the internal field of the object is null. The equivalent currents
can then be determined from the tangential components of the total field at the surface
of the object. For perfectly conducting objects, the equivalent magnetic current is equal
to zero. In addition, the equivalent electric current in the shadowed region of the object
is also zero. Thus, one only needs to determine the electric current Js on the illuminated
region from the sum of the incident and scattered fields. In addition, considering the
characterization of the boundary S as a PEC plane, the PO approximation states that
the incident and scattered magnetic fields at the boundary S are in phase and also have



. 3¢
- %@é’ \
[ pge
ll\ ‘6%\0 "
. 60Q4 _'/
\\\ ‘g&‘b‘ a"'
AeS i PO
=t J =0
(a) (b)

Figure 1.4: Physical optics approximation for conducting object: (a) Conducting object
is illuminated by the incident wave E*, H'. (b) PO equivalent current on visual surface

S.

the same amplitude. Thus, the tangential component of the magnetic field on the surface
is exactly twice that of incident wave, and the electric current can then be expressed as:

Jo=nx (H + H") =2n x H". (1.9)

The electric current Js in Eq.(1.9) is called as physical optics (PO) equivalent current
JYO. Then, the complete PO formulation of the PO current density for the illuminated
and shadowed regions can be written as:

JPO _ { 2n x H'  on illuminated surface, (1.10a)
0 on shadowed surface, (1.10b)

This difference in the current density between the illuminated and shadowed regions of
the object is one of the important caveats to using the PO approximation correctly, as
mentioned before. The scattering field can then be determined by integrating the PO
current J¥© on the visual surface S with the Green’s function G as Eqs.(1.7) and (1.8).

1.3 Contents of Thesis

This thesis includes six chapters.

In Chapter 2, a uniform solutions based on physical optics (PO) are represented for the
scattering problem of conducting wedges for TM and TE-polarized electromagnetic plane
waves. According to PO method, the electromagnetic scattering fields by a conducting
wedge can be found from PO currents on illuminated surface of the wedge. This PO
currents can easily determined from the information of the magnetic fields of the inci-
dent waves and the wedge surfaces. Then, the scattering fields excited from these PO
currents are derived by integrating these currents with free-space Green’s function. By
using the saddle point technique to solve the scattering integrals, a uniform asymptotic
solution including the cotangent functions and the error function complement of the edge
diffracted field has been obtained. These cotangent functions correspond one-to-one with

7



the incident and reflected GO rays. Depending on the incident direction, one has different
formulations of scattering fields corresponding to each illuminated surface. By combining
the contributions from both surfaces and carefully rearranging, unified formulations were
then proposed to be applicable to any direction of the incident wave.

In Chapter 3, an extended PO approximation for the scattering problem of dielectric
wedges is proposed for both TM and TE polarizations based on previous results of the
conducting wedge problem. Different from conducting case, when the incident wave il-
luminates the wedge surfaces, it excites not only the reflected wave in the outer region,
but also the transmitted wave inside the wedge. These reflected and transmitted rays
can be normally derived from the formulation of the incident wave by using Snell’s law.
Therefore, the PO current constructed from the incident wave is not enough to be uti-
lized for calculating the scattering fields by the dielectric wedges. Instead, the radiation
fields of dielectric wedges can be found from equivalent electric and magnetic currents
on the dielectric wedge surfaces. Unlike conventional PO, these equivalent currents are
obtained from electric and magnetic fields of the GO incident, reflected and transmitted
rays outside and inside the wedge, respectively. The radiation integrals were then per-
formed separately for each pair of electric and magnetic currents of the corresponding
GO ray with Green’s functions. By using the same saddle point technique as in the con-
ducting case, corresponding uniform asymptotic solutions of scattering fields by dielectric
wedges were then obtained from these integrations. Then, the total external and internal
scattering fields can then be obtained by combining contributions from the incident and
reflection waves on the outside and the transmitted waves on the inside, respectively. As
same as conducting case, the diffracted fields of the dielectric wedge also can be repre-
sented in terms of cotangent functions with the corresponding reflection and transmission
coefficients.

Chapter 4 presents other calculation methods for wedge diffraction of dielectric wedge as
heuristic extension of UTD (HUTD) and hidden rays of diffraction (HRD). Here, HUTD
is high frequency approximation methods, which is extended from the uniform theory
of diffraction (UTD). By adding the reflection coefficients, the formulation of UTD for
conducting wedge can then be applied to the scattering problem of lossy dielectric wedge.
However, the HUTD solution only describes the field behavior outside the dielectric wedge
and ignores the information of the internal field. To solve this limitation, the hidden
rays of diffraction (HRD) is represented to extend a concept of HUTD to the internal
diffracted field of the dielectric wedge. In this method, additional hidden rays are proposed
in the non-physical imagined region to satisfy the boundary condition. The diffraction
coefficients of HRD solution are also illustrated by cotangent functions with modified
angular period based on the edge condition.

In Chapter 5, The numerical results are performed to discuss the accuracy of extended
PO approximation method by comparison with those by other reference methods such
as HRD and FDTD simulation. The comparisons are made for both conducting and di-
electric wedge cases. Interesting precision variation between PO and HRD for conducting
and dielectric wedges can be observed from comparison results. Furthermore, the ob-
served difference of the internal field leads us to an important discovery about the missing
contributions from the lateral wave concept.

Finally, Chapter 6 shows some conclusions on our research and future research plans.
In the following discussion, the time-harmonic factor e/“! is assumed and suppressed
throughout the thesis.



Chapter 2

Physical Optics Approximation for
Conducting Wedge

In the previous Introduction, we have reviewed over the surface equivalence theorem and
physical optics approximation method. In this chapter, a practical scattering problem
of electromagnetic scattering of electromagnetic wave by a perfectly conducting wedge
will be solved by applying PO approximation method. Based on PO approximation,
the PO current is determined on the illuminated surface of the wedge. The radiation
integrals obtained from the PO currents will be analyzed by the saddle point method.
The obtained scattering field will include as the reflected and diffracted fields. Study
on the electromagnetic scattering of the conducting wedge by PO approximation will be
presented in both TM and TE polarizations in this chapter.

2.1 Formulation of PO Approximation

According to the physical optics (PO) method, when a PEC object is illuminated by an
incident electromagnetic wave (E', H'), the scattering field (E*, H®) outside the object
may be considered as the field radiated from the induced PO currents on the illuminated
surfaces. For the two-dimensional configuration (2 = 0), the scattering field (E*, H*)
can be calculated by integrating the PO current J*© on the boundary S of the object

with the Green’s function G as [15]
E° = —/jw,quPO(r')G(r,’r")dl’, (2.1)
s
H® :/JPO('P,)XV/G('P,T/)dl/, (2.2)
s

where w and p are the angular frequency and permeability, respectively. V' indicates dif-
ferentiation with respect to the prime source coordinates, and G(r, ') is Green’s function,
which satisfies

(V2 4+ EHG(r, 7)) = =6(r —7'), (2.3)

where k = w,/egug denotes the free space wave number. For two-dimensional problem,
one gets [36]

Gr 1) = fjﬂémww I v, (2.4)



where H( ) (k+/(x 2+ (y—y')?) is the zero-th order Hankel function of the second
kind and can be represented as [15]

1 00 p—in(z—a')=j\/ k> =n?ly—y']

If the scattering object is made by a large electric conductor, the PO current J¥© can be
approximated on the object’s surface as

dn. (2.5)

JPO _ { 2n x H'  on illuminated surface, (2.6a)
0 on shadowed surface, (2.6b)

where 7 is a unit normal vector on the object’s surface to the exterior observation region,
and H' denotes the magnetic field of incident wave. This PO current J¥© can be a good
approximation as long as the scattering object is a flat perfectly electrical conducting
object and very large compared with the wavelength.

Now one considers a perfectly electrical conducting wedge as in Fig. 2.1, in which the
wedge angle is ¢,. Assuming that the wedge is illuminated by an electromagnetic incident
plane wave with incident angle ¢y. Then, the scattering calculation may be separated into
two polarizations.

7) E'H
P 25,
P
0P
N
¢W PEC Wedge
B

Figure 2.1: PEC wedge: one-side illumination.

2.2 TM-Polarized Plane Wave

A TM-polarized incident plane wave can be given by:

Hi:ejkxcosqSoJrjkysinzz)oﬁ’ (27)
B —, [ H0 ik cos o-+jky sin o (sin g —cos oY), (2.8)
€0

10



where k = w,/gopo is the wave number in free space. The illumination can be divided
into three cases depending on the direction of the incident wave. When ¢y < ¢, — 7, only
surface OA is illuminated, then the scattering field can be calculated from the current
JEXO on surface OA. On the other hand, if only surface OB is illuminated ( ¢o > 7), the
scattering field is found from the corresponding PO current J5©. When the incident wave
illuminates both surfaces OA and OB (¢ — 7 < ¢9 < ), one may need the combination
of the two above currents. The PO current JL© can be found from the magnetic field of
the incident wave as:

JNO =20, x H'|,—o = 2e7FocsP0g, (2.9)

When surface OB is illuminated as in Fig. 2.2, the TM-polarized incident plane wave can

Ay 4 yl
/P
EJH1 ¢0 ,."/ p
5 ; g j /II’ . .
/. ¢ , E1 Hl ¢ JPO A
0N\ —my e o x
G - =
¢w A
PEC Wedge
EH 5
0 J;O
i X

Figure 2.2: PEC wedge: two-side illumination.

be rewritten by using the coordinate Ox,y; as

HIB —Jka1 cos(dw—¢o)—jky1 Sin(¢w*¢o)zA’ (2_10)
B — _  [H0 ike cos(6w—d0)—ikyr sin(éuw—eo)
B =
. [sin((bw — (bo)fﬁl + COS(¢w — ¢0)Zj1] . (211)

Then the PO current JE© on surface OB can be found as:
JEO =2np x H)|, —o = —2e/rorcoslOu=oo)g, (2.12)

Then the scattering magnetic fields can be obtained by integrating the PO currents J%©
and JEO with Green’s function G as

11
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-k -k cosg,

Figure 2.3: Integration contour for Eqs.(2.13) and (2.35) in the complex 71 plane.

Hy=— /SJ H (k/ (& —¥))dSly=o
:—_j OOerkx/COS% <2/ ejn(ffz/)j\/k2772'|yd,r]> dz’ (y 2 O)
4 0 n —0o0

+1 [ [ . N
:_W/ / ik’ cos ¢o o —jn(z—a')=jr/ kLn?Iy\dndI/ (y =0)
0 —00
+1 [ Rl o o
= (/ ek’ cos go+jnz dm’) e~ Ine—i\/ k2—772|y\d77 (y =0)
—00 0
+j [ e IemiV Ryl
T om /OO kcos oo +n

dn, (y=20) (2.13)

and

HE = e /SJEO$H (kv/ (21 — 20)% + (y1 — ¥1)?)dS |y o

:2 /oo 2ejkac’1 cos(pw—0) <H /Oo efw z1—z))—j\/ k2—n? \y1|d ) (y1 2 0)
4 /o T J_oo

:i;/ / eIkt cos(duw—eo) g=in(e1=a1) =ik =Pl gpdy’  (y, = 0)

0 —00

:E 00 (/oo ke cos(¢w—¢o)+j’793'1dx’) e—jnml—j\/k2—n2|y1\dn (y1 2 0)
—00 0

2 <
Fj [ eIV Rl p
=— =0 2.14

where the integration contour in 7 plane is given in Fig. 2.3 and Fig. 2.4. Convert to
complex plane of angle w using the transformation n = ksinw, with the cylindrical

12
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Figure 2.4: Integration contour for Eqs.(2.14) and (2.36) in the complex 7 plane.

Figure 2.5: Integration contours C and SDP for Eqs.(2.15) and (2.16) in the complex
angular w plane: (a) ws>w,. (b) ws<w,.

coordinate (p, ¢), Eq.(2.13) can be obtained as

:|:] e—jkpsinwCos¢$jkpcoswsin¢d k
H =2~ ' S
A 27T/C k cos ¢g + ksinw (ksinw) (95 )
4 GO pmskesintwtdl gy (6 < 1) (2.15)

27 Jo cos g +sin w
where the integration contour C runs in the complex w plane as in Fig. 2.5. Similarly, by
using the the cylindrical coordinate (p, ¢') with z1 = pcos ¢’ and y; = psin¢’, Eq.(2.14)
can be obtained as

:Fj e—jkPSinwCOsd)’:ijpcoswsind)’
Hp =5~ d(k si 'S
7om /C k cos(¢w — ¢o) + ksinw (ksinw)  (¢"s )
:ﬂ cosw —jkpsin(w:l:¢’)d I < 9216
2m /c cos(¢y — Pp) + sin w w, (¢ sT) (2.16)

where the contour C can be defined as in Fig. 2.5 with the different position of the pole w,,.
Since the above integrals in Eq.(2.15) and Eq.(2.16) cannot be analytically evaluated, the
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saddle point method and the uniform asymptotic solution may be used on the assumption
for a large k with respect to w variable. The integrals have saddle points ws and the poles
wp. By considering the location of these saddle pint and the pole, the z-component of the
scattering fields H3 and Hj can then be obtained as

Hi=H} + H), (2.17)

Hy=H} + H), (2.18)

where H;} and Hf are the contributions from the poles, which exactly represent the

magnetic fields of geometrical optics (GO) incident and reflected waves, and can be given
by:

Hy = xeltren@mm o7y (jop—r|—gy),  (¢57), (2.19)

H;? = q:eJkPCOS(fbw—tﬁo—Tr—W—WDU(|¢’ _ 7T| —¢w+¢0)- (gb/g’ﬂ') (2.20)

H3 and H? are diffracted fields, which can be obtained by evaluating the integrals on the
SDP contour as:

H) =~ Clkp) [S—w FU(r =)+ 50— UG- m) + o0, (220)
HE =C(kp) [S(Qﬁl + dw — )U(m — ¢') + S (¢ — dw + ¢o)U (¢ — )
2sin ¢’
¥ cos @ + cos(w — %)1’ 222

where C(x) = (8mx)~/2e=7X+™/4) represents the asymptotic formulation of the Green’s
function in free space for the two-dimensional problem when Y is large. S*(a) is the
transition function and is defined as

1
~/7C(kp)

where Q(y) = fyoo e~ dx and sgn(z) are error function complement and sign function,
respectively. On the other hand, one has transformations:

S*(a) eIFPeose gon (m 4+ a)Q [ (1+7) ‘COS—) \/_} o a/2) (2.23)

2sin ¢ sin ¢g +sin¢  sin ¢ — sin ¢g
= -
COS @ + COS g  COS Py + Ccosp  €os @ + cos ¢y

2 sin ¢+¢° cos £=%0 ¢° 2 cos ¢+¢° sin 2= ¢°
2 cos ¢+¢° cos £=20 ¢° * 2 cos ¢+¢° cos £=%0 ¢°
sin ¢>+¢o sin o G0
Cos ¢+¢° co —d) 2¢°
sin 7T_(<252+¢o) sin 7T—(¢2—¢0)
T —(¢+ T™— (¢ —
= cot ((g %) | cot (‘Z %), (2.24)
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2sin ¢/ _ sin(¢y — ¢o) + sin ¢’ n sin ¢’ — sin(¢y — ¢o)
cos ¢' 4 cos(¢py — o) _cos(gbw — ¢o) +cos¢’  cos@ + cos(¢py — ¢p)
@' +(dw—0) ¢’ —(dpw—20) ¢’ +(dw—0)
2 2 2

(w—d0)
2

2 cos

. ,_
CcoS sin 2 2¢°

¢ —(Ppw—¢0)
2

2 sin

cos 2 2 cos

2 cos
gip PHGu=d0) o ¢ = (Gwc0)
_ 2 + 2
CcOoS ¢ +(¢£v_¢0) coS d’ _(‘155\'_9750)
(¢/_¢w+¢0)
2

¢’ +(¢w—c0)
5 cos

¢’ +¢o
2

cos T(@+ou—00)

= S +
sin T—(¢ +2¢w—¢0)

T—
COS

in 77~ ut60)

S1
—eot T O m ) T Ot d0) g o

2 2

By using above transformations and converting ¢’ = ¢ +2m — ¢,,, the diffracted fields H7
and HY can be rewritten as:

H = = Clip) | eot TG0 4 576 - anuro - m

4 cot TP TP (¢2+ %) S(

H? = — C(kp) {cot il ) <¢2_ %0)

O+ opo)U(m— )|, (2.26)

+ST(¢+ o)U(dw — 7 — @)

+C0tﬂ-+(¢+¢0_2¢w>
2

+ SH(P+ ¢o — 20)U(¢+ 7 — dw) |-
(2.27)

The cotangent functions in Eqs.(2.26) and (2.27) have singularities, which have one-to-
one correspondences with the shadow boundaries of the incident and reflected GO rays on
surface OA and OB, respectively. One notes that Eqs.(2.26) and (2.27) exist depending
on the incident direction. When the incident wave illuminates surface OA or OB only,
the diffracted given by only Eq.(2.26) or Eq.(2.27), respectively. On the other hand,
when both sides of wedge are illuminated, the diffraction can be calculated by the sum of
two second components in Eqgs.(2.26) and (2.27). This means one need three equations to
describe exactly the behavior of diffracted field depending on incident direction. When the
incident direction changes, only suitable one of the three equations has to be selected to
describe the corresponding diffracted field behavior. This can sometimes be bothersome
for the calculation. Thus, by decomposing the contributions due to the PO currents
JEO and JEO, and by carefully rearranging the terms, a unified expression containing
four cotangent functions for the diffracted field can be obtained. This unified expression
provides valid field behavior for any incident direction and observation angle 0 < (¢, ¢o) <
¢w, and can be written as
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Hq = —C(kp)| cot

THOZG0) 4 5 (90U (w7~ DU (G0 b7~

+cotww—@—%)w—ww(w—m

oot P02 o (r60) 50+ 60) U (m - 0)U (7~ 0)
+ cot ‘W+¢O_¢2W’+¢_¢W sgn (4o — du)
+S+(¢O+¢_2¢W)U(¢+ﬂ—_¢W)U(¢O+7T_¢W) . (228)

When the direction of incident wave ¢, changes, two of four cotangent functions in
Eq.(2.28) correspond to the non-physical rays and cancel out each other to show ex-
act behavior of the diffracted fields. For example, when only surface OA is illuminated,
the first and fourth cotangent functions with their uniform expression are canceled. Then,
the remainder equations give us the contribution of diffracted due to incident and reflected
waves from surface OA only. Same behavior also occur when only surface OB or both
sides of wedge are illuminated.

Similarly, the GO contributions in Eqs.(2.19) and (2.20) also can be rewritten with
transformation ¢’ = ¢ + 27 — ¢,, and combined as:

HP :ejkpcos(<z>+<z>o)U(7r — ¢ — o) U(m — ) — ejkpcos(¢—¢o)U(¢ — 7 — ¢o)U(m — o)
+ eIkpeos(@teo=20w)TT (¢ 4 1 — 20y + 0)U (¢ + T — by)
— ks (o — 71 — )U (g + T — by). (2.29)

2.3 TE-Polarized Plane Wave

For TE-polarization, the incident plane wave can be given by:

E' —eikecosdotikysingo 5 (2.30)
Hi — [ 59 ik cos go+jkysin go (= sin ¢od + cos dog). (2.31)
Ho

The TE-polarized incident wave also can be rewritten by using the coordinate Oxy; for
surface OB illumination as:

E% —elkm cos(¢puw—¢0)—jky1 sin(%*(bo)é’ (2_32)
Hi, = [ S0 ek cos(@u—do)—ikys sin(éu—do)
Ho
- [sin(@y — ¢o)@1 + cos(Py — Po)Y1] - (2.33)

Then the corresponding PO currents JY© and JE© can be obtained as
. i €0 . A
JAPO =2np x H}|,—0 = 2, [ 20 gikzcosdo giy D02,
Ho

T50 =2 x Hylymg =2, [ B0 sino, = )2 (2.34)
0
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Then the scattering electric fields can be obtained by integrating the PO currents J%©
and JEO with Green’s function G as

—W
B =2 [ OB (e P Pl

_ —WHo - €0 jka' cos o s 1 > e—jn(x—x’)—j vy /
= 2\ —e sin ¢o— dn dx
4 J Lo T J oo k2 — 12
o0 e’} —in(z—2")—i+/k2—n2
= — ﬁ sin ¢0/ / ejkﬁ’ cos ¢q € gt )= 71yl dndl‘/
2m 0o Jooo k2 — 2

0o oo PR x
= — ﬁ sin ¢0 / (/ ejk‘x’ cos ¢0+jnx/dx/> e In ]\/—7]|y| dn
27 -0 \Jo \/m

ik o0 e~ Inr—j\/k2=n?ly| p
= — —sin ) 2.35
2m %/oo(k:cosqﬁo—i-n)\/kQ—n? 7 (2.35)

—W
By == / TEOHG (k/(er = 21)2 + (1 — 91))dS |0

4 Jo Fo

1 [ e—in(@i—21)=iVE—n?ly1-yi]
/ dn dx'l
—00 V k - 77 /

e—In(@1—1)—j\/ k>—n|yi]
=— — sm — ) eJ ki cos(éw—go) dndzx’
VE? —n?

k —jnz1—j/k2—n2|y1]
- E o, ¢w/ (/ ”“m%¢mﬂﬁfqe in
—00 0

2 /K2 — 2

9] —jinz1 \/142—| 1]
sk (¢w—¢0)/ i ’ (2.36)

= — —sin
2 w {k cos( — ¢o) +n} /K% —

Converting to plane of complex angle w with the transformation n = ksinw, and using
the cylindrical coordinates (p, ¢) and (p, ¢'), Eqs.(2.35) and (2.36) can be rewritten as

e—jkpsinw cos ¢Fjkp cosw sin ¢

Ej:—isingbo/ - dw
2 ¢

s coS ¢ + sinw

e—jkp sin(w+t¢)

J .
=— = —dw. 2.
or o %0 ¢ €OS ¢ + sinw v (237)

e—jk:p sin w cos ¢’ Fjkp cos w sin ¢’

By =- i sin(¢pw — %)/c - dw

2 cos(py — ¢o) + sinw
j e jkpsin(wtg’) p

= — 2 gin(py, — . , 2.38
2 sin(¢ %) /c cos(¢w — ¢p) + sinw v ( )

where the contour C can be defined as in Fig. 2.5. By the same manner as TM polar-
ization, the integrals in Eq.(2.37) and Eq.(2.38) can be solved by using the saddle point
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technique with respect to w variable. Then, the uniform asymptotic solutions of the
scattering electric fields £ and E3 can be obtained as

E% = E} + E, (2.39)
Ey =E} + ED, (2.40)

where E;f and EE’ also represents the contribution of geometrical optics (GO) incident
and reflected rays as:

EpA - _ eJ”ﬁPCOS(%*W*W*WDU(W — 7T‘ — ¢p)
- _ ejkpcos(¢+¢o)U(7T — ¢ — o) — _Eoejkpcos(¢—¢o)[](¢ — 7 — o), (2.41)
E,? = — ehreos@w—do=m=l' =D 7 (|4 — 71| — By + o)
—6jkpcos(¢_¢0|)U<¢0 T — ¢) _ Eoejkpcos(¢+¢o—2¢w)U(¢ + ¢0 + 7 — 2¢W>’ (2_42)

and £} and EY are diffracted fields, which can be written as:

2 sin ¢g

_ 2.43
cos ¢+ cosdy | (243)

EA =~ C(kp) [s—ws )V — ) — 56+ )U(m — ) —

B =Clip)[S7(0/ + 0w — )0 (n — &) = 576 = 6 + 00)U(& )
2 Sin(¢w - ¢0)
cos o/ + cos(y — 00) ]’ (244)
One then has the following transformations:

—2singg  —singy+sing  singy +sing

COS ¢+ Cosdy  COS Py + COS ¢ COS @ + €Oos ¢g
¢+¢>0 o— ¢>0 9 gin 2% ¢+¢>0 cos &=% ¢0

2 cos 222 sin

2 coS ¢>+¢0 COS o— ¢>0 2 cos ¢>+¢>0 COS o— ¢>0
2 2
o—¢o ¢0 sin ¢+¢0

_ sin
cos 2=% Pp—do ¢0 cos &% ¢+¢0
Tr—(cb $0) (p+¢0)
~ cos — _cos TO
sin m—(¢$—¢0) sin m—(¢+do)
2 2
_ cot w ot w, (2.45)
2sin(¢y — ¢o) _ sing’ 4 sin(¢y — ¢o)  sing’ — sin(¢y — Po)
cos @ + cos(¢y — ¢o)  cos @ + cos(py — dg)  cos @ + cos(dy — ¢o)
3 ¢/+(¢W_¢ ) d)/_(d’w_d’ ) ¢ +(¢W ¢ ) ¢
:2s1n 5> COS S _2008 0 0
2 cos &' +(dpw—¢0) COS ¢'—(pw—20) 2 cos ¢ +¢>0 COS ¢ (¢w ¢0)
2 2 2
B in ¢/+(¢;_¢O) B sin ¢l_(¢;v_¢0)
0S ¢/+(¢;v*¢0) CcoSs ¢/*(¢;v*¢0)
CcoS 7"*(¢l+¢w*¢0) cos W*(¢l*¢w+¢0)
_ 2 _ 2
(¢ +dw—do) s —(¢ —dwteo)
sin TSR gin AR
=cot Gl C +2¢W %) — cot T (¢ 2¢W + ¢0). (2.46)
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By using above transformations and converting ¢/ = ¢+ 27 — ¢, the diffracted fields E7
and E¥ can be rewritten as:

B} = Clho) | ot T G756 - )06 - )

— cot w — S (4 o) U — )|, (2.47)

EY = — CO(kp) [cot w + S (P4 ¢0)U(pw — 7 — @)

—cotw+<¢+;bo_2¢w> — ST+ do = 20)U(p+ 7 — ) |

(2.48)

As same as TM polarization case, the singularities of the cotangent functions in Eqs.(2.47)
and (2.48) correspond to the shadow boundaries of the incident and reflected GO rays
on surface OA and OB, respectively. One also can see that the diffracted field of TE
polarization need three separate equation to describe the field behavior when the incident
direction changes. Then, by decomposing the contributions due to the PO currents J£°

and JEO, by carefully rearranging the terms, a unified expression for the diffracted field
can be obtained as

By = ~C(kp) | cot THEZO) 525 g0)U (6 —m—6)U (0t 700

+cotww—w—%ww—w)ww—%)

— cotW—S(¢+¢0)U(7T—¢)U(7T—¢o)
— cot |W+¢O_¢W|+¢_¢W
2
- S+(¢0+¢_2¢W)U(¢+ﬂ_¢W)U(¢O+T(—¢W) : (249)

When the incident angle ¢, changes, the cancellation between two of four cotangent
functions also occurs to create exact behavior of diffracted field as TM polarization in
previous section. However, one can see that Eq.(2.49) doesn’t need the sign functions to
have this cancellation as the formulation of TM-polarization. This is due to the difference

of phase between two polarizations. Similarly, the GO contributions also can then be
combined as:

Ag - _ ejk‘pCOS(<15+<150)U<7T — ¢ — do)U(m — o) — ejkPCOS(¢—¢o)U(¢ — 7 — ¢o)U(T — )
— eIkpeos(@t G020 T (4 1 — 2byy + o) U (o + T — )
— TkPeos@=00) ] (g — 71 — B)U (g + T — byy). (2.50)

Four terms in Eq.(2.50) are exactly equal to the electric field of the incident and reflected
GO waves on surfaces OA and OB, respectively.
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Chapter 3

Extended Physical Optics
Approximation for Dielectric Wedge

In previous chapter, uniform asymptotic solution based on PO method have been pre-
sented for scattering problem of conducting wedge. Based on results of the conducting
wedge problem, an extended PO approximation for the scattering problem of dielectric
wedges is proposed in this chapter. In this dielectric wedge case, a rather flat-angle wedge
is selected to avoid the multiple internal reflections of the transmitted. The radiation
fields of dielectric wedges can be found from equivalent electric and magnetic currents,
which are found from electric and magnetic fields of the GO incident, reflected and trans-
mitted waves. Uniform asymptotic solutions of scattering fields by dielectric wedges were
then obtained from the integrations for both TM and TE polarizations.

3.1 Extended PO Based on Equivalent Currents

As mentioned before, when the incident wave illuminates a dielectric wedge, it excites the
reflected in the outside and transmitted waves in the inside. Accordingly, the PO currents
determined by the incident wave are not enough to solve scattering problem of penetrable
objects. In this case, the equivalent electric and magnetic currents can be utilized to
calculate the scattering field. These induced currents can be found from the total of GO
fields as:

J=nxH, (3.1)
M =FE x n.
where H and E denote the magnetic and electric fields, respectively. For the outside
region of wedge, the total field may be given by the sum of incident and reflected waves,
while the internal field is determined by the transmitted wave. For two-dimensional
objects, the current density is distributed along the boundary length C' of the object.

Then, the integrals of the scattering fields (E°, H®) in Eq.(1.7) and (1.8) can be rewritten
by integral along the length of the object as

B /C {jqu(r’)G(r, )£ M (') < V'G(r, r')} dr, (3.3)

H = — /C [jweM(r’)G(r, )= J () x V'G(r, r')] ' (3.4)
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where w, € and p are the angular frequency, permittivity and permeability, respectively.
And two-dimensional Green’s function G(7,7') can be found in Eq.(2.4).
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Dielectric wedge
B €0 &r

Figure 3.1: Dielectric wedge.

Now, one considers a dielectric wedge of the dielectric constant ¢, and the wedge angle
is ¢y as in Fig. 3.1. Assuming that the dielectric wedge is illuminated by an incident
plane wave. Then, the equivalent electric and magnetic currents outside wedge can be
expressed as:

J™ =ny x (H' + HY),
M®™ =(E'+ E") x ny.

Inside the wedge, the electric and magnetic currents may be given by:

Jin = — ’fLA x H*
M™ =E' x (—ny).

From these equivalent currents, the scattering field can then be calculated separately in
two polarization cases as follows:

3.2 TM-Polarized Plane Wave

As represented before, a TM-polarized incident plane wave is given by:

Hi :ejkxcosqﬁo-l—jkysinqﬁoﬁ’ (39)
Ei— /@ejlm o do+jky sin do (sin go & —cos dog ), (3.10)
€0

When the incident illuminates surface OA of the dielectric wedge, it excites the scatter-
ing fields in both exterior and interior regions of the dielectric wedge. Therefore, The
calculations can be performed sequentially as follows: the reflected wave (H}, E}) in
the outside region and transmitted wave (Hj, EY) in the inside region. Accordingly, the
external and internal fields can be calculated sequentially as follows.
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Figure 3.2: Outside dielectric wedge: surface OA is illuminated.

3.2.1 Exterior Field

Outside the wedge, the incident wave excites the reflected wave (H}, E) as:

HR:FAejkxcosqﬁo—jkysinqﬁoﬁ’ (311)
Bl = —T gy [0 ek condo=ikysindo (sin o+ cos o), (3.12)
€o

where I'5 is the corresponding reflection coefficient on surface OA and can be written as:

g, 8in ¢y — /&, — cos? ¢y
Iy =— .
€, 8in ¢g + /&, — cos? ¢g

Then, the external equivalent currents Jg* and Mg* can be found from the magnetic and
electric fields of above GO rays. Accordingly, one may obtain the corresponding equivalent
electric and magnetic currents on surface OA from the formulations of the incident and
reflected waves, respectively as:

(3.13)

JA =np x HY|,—y = eFreosdog (3.14)
M™ =E' X fi|y—0 = \/’;:geﬂ"ms% sin ¢ 2 (3.15)
JD =iy x Hy |, = Dpedtocosdog (3.16)
M™ =E} x fal|y=0 = —PA\/Q‘—E@’WWO sin ¢ 2. (3.17)

By substituting above equivalent currents into Eq.(3.4), the z-component of the scattering
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Figure 3.3: Integration contour for Eqs.(3.18) and (3.19) in the complex 7 plane.

fields due to incident and reflected waves on surface OA can be obtained as:
H#A = — / {ng M ()G — J* x V’G} dl’

/ gk’ cos o < — jksin ¢oG + 0_G> dx’
0 oy’ 4 =0

o —k sin ¢g 1 _ /122
jkx cos ¢g +1 Jn(z—a’) k 2|y >
/ ( T )M(/ dn) (y 20)

/ / e ]77(3: 1‘ \/kQ IyI Jka? cos ¢o m :l: 1 ld”]’]dx/ (y 2 O)
/k? _ ,'72

1

47

(/ ejkfﬂ cos do--jna’ dx) ( —ksin ¢0 + 1) —Jjnz—j\/k2—n |y‘d77 (y 2 O)
vk =P

j k sin ¢ e Ine k2 =n?lyl
4_/ ( T 1) (oosdin) @ W=20) (3.18)

S

H™A = [jweoMrA( NG — J* x V’G} dl’

oG

/ ejkm/ cos ¢o (jk sin ¢OG + _/) dx,
) ' ) y=o
o0 , k sin ¢0 1 \ k2=
F ejkz cosgo [ VPO +1= e —in(e—a" )/ k ‘y|d77 (y 2 O)
. /2 — n? 47
/oo h [y e in(@=a"yi/ 2 =n?lyl pika’ cos do m +1 —dndx (y 20)
; k2 — 2 41

s [ ([ ) (B0 ey (20
T J—x 0 V -7
jFA/ ksin ¢0 . eInr=i\/ k> =n?|y|
- (k cos ¢o+n)

—00

di (yz0) (3.19)
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Figure 3.4: Integration contours C and SDP for Eqs.(3.20) and (3.21) in the complex
angular w plane: (a) ws>w,. (b) ws<w,.

Convert to complex plane of angle w using the transformation n = ksinw, with the
cylindrical coordinate (p, ¢), Eqs.(3.18) and (3.19) can be rewritten as:

. y k(= si + —jkpsinw cos ¢pFjkp cosw sin ¢
H* :L/ (= sin okcosw) ¢ . kcoswdw (¢ < )
A J& k cos w k(cos ¢p+sinw)
:i/ — sin ¢Oicoswe—jkp(sinwCos¢:|:coswsin¢)dw (¢ § 7T)
A1 J& cos ¢p+sinw
+4 2 + -
:4—7i/C0t 71'/ —|—2U) ¢0 e—gk,osm(wiqi))dU)7 (¢ § 71') (320)
C
jFA k’(SiIl ¢0iCOS w) efjkpsinwcos ¢Fjkp cosw sin ¢
H™ = k cos wd <
s 47T/C k cosw k(cos ¢p+sin w) wdw (¢S 7)

:jFA sin ¢OZ|ICOS we_jkp(sjnwcos ¢~tcos w sin ¢)dw (¢ < 7T)
4dm Jecos gp+sinw =

—ijFA/COt 7T/2—|—’LU:F¢0 6—jkpsin(wi¢)dw

= et T . (@sn) (321)

where the contour C can be defined as in Fig. 3.4. By using saddle point technique in
the same manner of the PEC wedge case, uniform asymptotic solutions for H!* and HI
can be obtained as:

HA =H + H (3.22)
HIi)A = — eIhreos(6=00) (¢ — 11 — gby) (3.23)
HIA =HA 4 1A (3.24)
Hrr)A :FAeﬂwCOS(<15+¢>0)U(7T — o — ¢), ( )

where H!A and H:? present the diffracted field contributions and can be given by:
HY = — C(kp) {cot # +57 (6= o) U — w)} (3.26)

T—(¢+o)
2

H» = — C(kp) [FA cot + FAS_(¢+¢0)U(7T—¢):| (3.27)
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When surface OB is illuminated, the corresponding reflected wave (Hf, Ef) can be
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Figure 3.5: Outside dielectric wedge: surface OB is illuminated.

written in the coordinate Ox1y; as:

H, :FBejk‘xl cos(¢w—o)+7ky1 (dw—sin ¢0)2’ (3.28)
EL=Ip /@ejkl’l COS(¢W—¢0)+jk1ysin(¢w—¢o)[Sin(¢w — o) & —cos(pw — ¢0)Y], (3.29)
€0

where the reflection coefficient I'g from surface OB is defined as:

_ & Sin(7 + ¢o — dw) — \/&r — cos?(m + ¢ — Py

I
B ersin(m + g — bw) + v/ — OS2 (T + G0 — Gu)

(3.30)

From the GO incident and reflected rays on surface OB, one can define external currents
Jg* and M. The electric and magnetic currents due to the incident and reflected waves
on surface OB then can be obtained separately as:

JB =fip x Hi|, g = —e/korcosou=ool g, (3.31)
M™® =F' x fgl,,—o = \/’;:gej’mws(%—w sin(g,, — ¢o)2, (3.32)
JB =np x Hy|,—o = —[peltrrcos@u—eolg, (3.33)
M™ =E} x fgl|y,—0 = —FB\/QL—EeJ”mwsww%) sin(¢u, — ¢o)2. (3.34)

Then, the z-component of the scattering fields due to incident and reflected waves on
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Figure 3.6: Integration contour for Eqs.(3.35) and (3.36) in the complex 71 plane.

surface OB can also be obtained as:
HB = — / [ngoMiB(r')G — JBx V’G} dl’
c

:/ ejkm’l cos(¢pw—¢o) ( _ ]k: Sin(¢w — ¢O)G — 86;) dx’l
0 oy -0

:/OO gkl cos(dw—do) —ksin(¢y, — ¢o) F1 / eI =BTV R Il g ) dat (g = 0)
0 N =
_ / / e—jn<m_zw\/m|yl|emacosww—qso)("f Sin(Gw = do) :F1> idndrci (912 0)

0

- k2 —n? 47
:ﬁ oo (/oo ejkxll cos(Gw—o0) i, d$,1) (—k Sirll{:(¢w ?7 ¢0) ) —jnz1—j/ k2—n2|y1|d77 (y1 2 0)
—00 0 V -
_J ( v 1) ”
) N\ o ) eos(on — o)t

dn (1 20) (3.35)

H™® = / {ng MG — J®B xV’G] dl’
F ejkzl cos(pw—¢0) ( ik sin( ¢y, —

).
/OO I's e]kzl cos(dw—¢o) (kSIH(qu ) ( OO e In@1— T)IVE - y1|d77) dwl (yl 2 O)
0

/
dz;y

k’—n —00

0o oo 3 W 1
/ Dpe M@ =2V K =0’y gike] cos(dw—¢o) sm(gb 2250 T 1) 4—d77d9cl1 (y1 2 0)
0 00 77 "
r o o . Lk . o
:ﬁ (/ e]kxl COS(¢W¢0)+J7711dJ;/1) < Slnsj; 77;250) F1 e InT1=iy/ k27n2\yl|dn (yl 2 0)
—00 0 \% o
i [ (ksin(g, — do)_ ) =]
_Jl's 1 d >0 3.36
4 ( + kCOS((bW - ¢0)+7} 7 (yl = ) ( )

k2_772

—00
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Convert to complex plane of angle w using the transformation n = ksinw, with the
cylindrical coordinate (p, ¢'), Eqs.(3.35) and (3.36) can be rewritten as:

B ] k(_ sin(qbw _ ¢0)q:COS w) efjkpsinwcos¢’$jkpcoswsin¢>’

kcoswdw (¢ < )

S dn ) k cos w k(cos(¢w — ¢o)+sinw)

Jj [ —sin(¢w — ¢o)Fcosw k(s ot in ') ,

—_ Sin w Cos COS W SIn d <
A J& cos(py — ¢p)+sinw ‘ w (s

: 2 v — N

:ﬂ/cot /2 wF (9 (bO)e_Jkpsm(wﬂ Vdw, (¢ S ) (3.37)
dm J& 2
; : _ —jkpsinw cos ¢’ Fjkp cos w sin ¢’

H™® :jFB/Msm((bw do) Feosw) e ]p , kcoswdw (¢ < )

4 Jo k cos w k(cos(¢w — ¢o)+sinw)

_]FB/ sin(gbw - (?0):FC(‘)Swe—jkp(sinwcos¢'iCOSwSin¢/)dw ((b/ <

4m Jacos(dw — ¢o)+sinw

::FjFB/COt 7T/2+wj:(¢w - gbO) 6—jkpsin(w:|:¢/)dw,
A J& 2

(¢ s ) (3.38)

where the contour C can be defined similarly as in Fig. 3.4 with the different position of
the pole w,. By using saddle point technique, uniform asymptotic solutions for H:® and
H'™® can be obtained as:

HP =HP + 0P (3.39)
HIi)B _ ejkp605(¢’+¢wf¢o)U(7T — ¢ + g — (/5’)
= — ehoeoso—d0) g — 7 — @), (3.40)
H® =HP + HP (3.41)
HFr)B :PBejkpCOS(¢/_¢W+¢O)U(¢’ — T — ¢y + Do)
=['pelfP s+ Q=201 (¢ 4 By + 7 — 2y). (3.42)

where the diffracted fields H? and HI? can be given by:

(¢/+2¢W _¢0) —S_(

HP =—C(kp)| — cot T

vy —%)U(w—aﬂ

=~ Clp)| oot I 56 )~ 7)) (3.43)
1 =~ Clkp) | ~ Tyeot "0 pg( o o - )]
[t (do+ 0 —204)

= — C(kp) |I's cot

2 + FBS+(¢O + ¢ - 2¢W)U(7T + qb— ¢W):| :
(

3.44)
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by considering the incident direction, one has the unified formulation of diffracted field
outside the wedge as:

19" = ~Clhp) | cot T CZ O (6, ) 457 (- 0V ~ MU — 7—c0)

4 oot wm% — ) +5H (6 —do)U (b — T—d)U (9 — 7)

4+ Ty cot %WU(W — o) + TaS™ (6-+60)U (=) U(7 — o)

T+ (G0t 8 —204),
2

U+ 60— ¢)U(T + o — dw) |- (3.45)

+ I'g cot (T + ¢o — dw) + TS (¢o + & — 2¢y)

Similarly, one can also obtain unified formulation for GO contribution as:

HO™ = — /06000 (¢ — 7 — 60)U (g — 7~ )
— ety — 7 — $)U (o — )
+ D a0 (1 — gy — p)U (m — o)
+ TpedkreoslOoroo=20TT (4 g + 1 — 20 )U (o + T — ) (3.46)
When the dielectric constant €, tends to infinity (the dielectric wedge become a PEC
wedge), the reflection coefficients I'y and I's become a unit. Accordingly, the resulting

diffracted field H9" in Eqs.(3.45) becomes exactly the same as the one formulated by the
PO formulation.

3.2.2 Interior Field

&0 . .
EH

i X

in in A
a MO \:/
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B E0 Er

o
]

Figure 3.7: Inside dielectric wedge: surface OA is illuminated.

Inside the dielectric wedge, the transmitted wave (HY, EY) excited by the incident
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Figure 3.8: Integration contour for Eq.(3.53) in the complex 7 plane.

wave from surface OA can be given by:

Hg :TAe—jklm cos ¢k—jk1ysin¢22’ (347)
E}\=Tx ;—ge’jkl‘“‘“ Shkysindi (_sin ¢l &4cos oL 7), (3.48)
r<0

with k1 (= wy/Eoflp) is the wave number inside dielectric wedge. ¢% (= ) is the
transmitted angle and is defined as:

coS ¢

P = 7 + arccos( ) (3.49)

NS
T4 is the transmission coefficient from surface OA and given by:

2¢e, sin ¢y
£, 8in ¢p + /2y — cos? gy

Then the corresponding internal magnetic and electric currents due to transmitted wave
(HY, EY) can be obtained as:

Tao=1+4+1A=

(3.50)

T =% = (=) x Hy|y— = ~Tae Me%g (3.51)
M =M™ = B x (—fa)||ym0 = Tay e 717059 gin 6, 2. (3.52)
Eréo

Then, the scattering magnetic field excited by the transmitted wave (HY, EY) can be
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represented as:
HA = — / lngraoM“A(r’)G — J%x V’G} dl’
c

o S oG
:/ —Tpe IR cosdy (jk1 sin ¢4\ G + —/> dx’

(o0} . t 0o
_/ Tyt (MIMOL 4 L / eyl gy | !

0 k2 —n? A \ J_

[ee] o0 . ¢

- / / _TAeijn(xfz/)_j V k%*nz‘we*ﬂflml cos ¢t kl Sin ¢A —1 ld?]dq;/

0 s N
= _TA /00 (/00 eijklx/ cosdﬁAJrjnx/dI,) ( ]’Cl sin gbtA B 1) e*jnmfj\/k%jhﬂdn
47 0 —/—k% =7
—JTa [ [ kysin . eI/ ki—n?ly|

Am /— <\/ K- ) —ky cos ¢y +1

Convert to complex plane of angle w using the transformation 7 = k;sinw, with the
cylindrical coordinate (p, ¢), Eq.(3.53) can be rewritten as:

o0

—00

dn. (3.53)

[e.9]

A — —jTa [ ki(sin ¢l — cosw) e~ Ikipsinweos ‘b“klpcos‘”“wkl cos wdw
s At Jo k1 cos w k1(— cos ¢, +sinw)
_ _jTA/ sin ¢tA — Cosw 6—jk‘1p(sinwcos ¢—cos w sin <Z>)d,w
A Je—cos @l +sinw
— w2
= iﬁA/Ccot —¢A 5 / e~ Ikpsin(w=o) g, (3.54)

The contour C can be defined similarly as in Fig. 3.4, where the position of the pole
w, changes depending on the transmitted angle ¢%. By using saddle point technique,
uniform asymptotic solution for HA can be obtained as:

HA =Tae 7FPeos@O=0 (g — ¢t ), (3.56)

where H'* represents the diffracted field contributions, and can be given by:

HP = — C(kyp)|Ta cot(b_;bA —TaAS™ (= s+ ) U (d—w) |- (3.57)

The contribution from H;A is exactly equal to the magnetic field of transmitted wave
from surface OA.

When surface OB is illuminated, one may also have transmitted wave (Hf, EL) from
surface OB, which can be written in the coordinate system Ox,y; as:

HY =Tpe hm cos(¢p —¢w)—jk1ya sin ¢5-\2’ (3.58)

By =Ty [ 290 0l o0 [in (0}, — )b +c05(0f — 0w )i, (8.59)
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Figure 3.9: Inside dielectric wedge: surface OB is illuminated.

where the transmitted angle ¢% and the transmission coefficient Tg are defined as:

=¢y, + arccos cos(m + G = du) (3.60)
Ver
2 T 1 - W
TB =1+ FB = - c Sln(ﬂ- + (ZSO (b ) . (361)
& Sin(T + ¢o — by) + \/Er — cos2(T + o — Pu)
Then, the internal equivalent currents JiI* and M can be derived as:
T =J® = (—np) x Hf|y,— = Tpe /171500, (3.62)

M =M = B x (=)o = ~Toy e 0 0 sin(ehy — 6,)2. (369
rc0

Then, one has the z-component of the scattering fields due to the transmitted wave on
surface OB as:

HP = — / {jwsraoMtB(r’)G — JBx V’G} dl’

/ ek cos(dh—6w) (jk1 sin(¢p — ¢w)G + %:) day
; ayl y, =0

/OO Tge™ Jk1z! cos(opp—¢ k1 sin((st — (bw) +1 i /Oo e In(@1—a1)—j/ k?*nQ\mldn dr’
0 k% - 772 4m —00 !
0o oo ; to_
/ / Tpe @ -2/ M7y g =ih12} cos(d—éw) (kl S,m/—(fB Ou) 1) L e,
o] : t
:E/ (/ 7_]k193/1 cos(pfy —pw)+jna] dIll) (kl Sln(¢ ¢W> )ejn21]'\/k%_712y1 dn

™ k2 —n?
]TB (k?l sin(gp — o) n 1) e Ineiy/ K=ty
N —k1 cos(9p — dw)+1

o0

dn. (3.64)
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Figure 3.10: Integration contour for Eq.(3.64) in the complex 7 plane.

Convert to complex plane of angle w using the transformation n = ki sinw, with the
cylindrical coordinate (p, ¢'), Eq.(3.64) can be rewritten as:

k1 cos wdw

_]TB/ k1(81n(¢]t3 . ¢W) + cos w) efjklpsinwcos¢>’fjk:1pcoswsind>’
s dr J& k1 cos w ki(— cos(ply — ¢w)+sinw)

. . t
:jTB/ Sln((bB - ¢W) + Cosw efjklp(sinwcos¢>’+coswsin¢>’)d
C

A Jo—cos(phy — ¢y) +sinw v
18 - w _ 2 j i !
:]4: /CCOt s — ¢ ;Lw T/ e ik1psin(wtd) gy, (3.65)

where the contour C can be defined similarly as in Fig. 3.4, and the position of the
pole w, depends on the transmitted angle ¢};,. By using saddle point technique, uniform
asymptotic solution for H'® can be obtained as:

HP =HP + HP (3.66)
H}t)B :TBe—jk1pcos(¢/—¢tB+¢w)U(¢tB _ wa — Qﬁ’), (367)

where H® represents the diffracted field contributions, and can be given by:

H® = — C(kip) { — Ty cotw%(ﬁuTBS‘(w— OB + Gw +0 U (2T — ¢y — ¢’)U(¢’)} :
(3.68)

By converting ¢' = ¢ — ¢y, H.® and H® can be rewritten as:
HP =Tpe F1Peos@=dB) (gt — @), (3.69)
HP == Cllp)[ - Tacot s sy + 00 -0w)]. @70

The contribution from H{® in Eq.(3.69) is exactly equal to the magnetic field of trans-
mitted wave from surface OB. By combining the contributions from surfaces OA and OB
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with considering the incident direction, a general unified formulation of the internal fields
can be obtained as:

H;i)n :TAe—jklpCOS(¢—¢tA)U(¢ _ ¢tA)U(7r _ ¢0)
+ r:[\BefjknpCOS(¢*¢)§3)U’(qﬁ%3 _ ¢)U(¢O + 71— ¢w)7 (371)
H = — C(kip)|Ta cot¢_2¢A U(m — ¢o) —TaS™ (m— L +0)U(dp—dw)U (7 — o)
¢ — 5
2

Uldo+7 — bw) |- (3.72)

— Ty cot U(do + 7T — o)+ TS (71— ¢y + 0)U(d —by,)

3.3 TE-Polarized Plane Wave

For TE-polarization, the incident plane wave can be given by:

Ei —¢ihucoséotikysingo 5 (3.73)
. £n - P R N
H — _Oe]ka: cos ¢po+jky sin ¢o (_ sin ¢0€C + cos ¢Oy) (374)
V Ko

The TE-polarized incident wave also can be rewritten by using the coordinate Ox,y; for
surface OB illumination as:

EjB —eJka1 cos(duw—¢o)—jky1 sin(d>w—<¢>o)£7 (3.75)

V 0

As same as the TM-polarization, the TE-polarized incident wave excites the reflected
and transmitted waves outside and inside the dielectric wedge, respectively. Then, the
scattering problem can be solved in each region as follows:

3.3.1 Exterior Field

Outside the wedge, the reflected field excited from surface OA can be written as:

Ef& :FAejka: cos ¢po—jky sin (;502’ (377)
H) =Ty, [ 20 gika cos go-+ikysin %0 (sin ¢o @ + cos do7 ). (3.78)
Ho

where I'y is the corresponding reflection coefficient on surface OA and can be written as:

F, - sin ¢g — /& — cos? qzﬁg‘ (3.79)
sin ¢ + /er — cos? ¢g

When surface OB is illuminated, the corresponding reflected wave (Ef, Hf) can be
written in the coordinate Oz y; as:

ETB :f‘Beﬂml cos(pw—¢0)+jky1 (dpw—sin ¢>0)2’ (380)

H}, =I'y /%ea‘kwlcos(%—%)ﬂkm sin(¢w—do) [— sin(¢y — G0)@1 + cos(Pw — d0)Ya], (3.81)
0
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where the reflection coefficient I'g from surface OB is defined as:
r sin(gg + 7 — ¢y) — \/5r — cos?(pg + T — dy)
B — )
sin(¢g + 7 — ¢y) + \/Er —cos?(Pg + T — by )

From the formulations of the incident and reflected waves, one may obtain the corre-
sponding equivalent electric and magnetic currents on surface OA as:

(3.82)

JA =iy x H'|,—g = \/%ejkm% sin ¢ 2 (3.83)
M =F' X fup |, = —e?h %0z (3.84)
J? =g x Hy|ymo = —FA\/%ejk“‘mo sin ¢ 2 (3.85)
M™ =F% x fp||y=0 = —Lae/F %03, (3.86)

By substituting above equivalent currents into Eq.(3.3), the z-component of the scattering
fields due to incident and reflected waves on surface OA can be obtained as:
E* = — / [jwquiAG + M x V’G} dr’
c
o oG
:/ eIke COS%(—jksingboG—i— —/) dz’
0 ay y'=0
= /Oo eIk’ cos do —k sin ¢ 41 i /OO 6—3'77(56—96’)—3'\/162—772\11|ag77 dr’ (y = 0)
0 \/ k2 — 772 4 —00

o e VT ks I
_/i/ WWIHWWWW“MKV%g%iQI®M’@z®
0 —00 k’i -1 T
:4i 00 </°° ejkz’cosdﬁoJrjnx'dx/) (% 4+ 1) e,jnmﬂ /k27772‘y|d7] (y z 0)
T J-—x 0 -n
J [~ (—k sin ¢y ) e Ine IV K=yl
+1

d
V=1 ( cos go+1)

(y=20) (3.87)

:E .

EA =~ / {jweoJrA(r’)G + M™% V’G} dl'
C

_/ f‘Aejkgy’coscbO (jk sin (bOG_'_ a_G/) dx'
0 ay y'=0

— /00 f‘Aejkw' Cos ¢o ( ksin ¢0 + 1) i ( /OO e—jn(ﬂc—w’)—j\/ k2—’72|y|dn) dZL‘/ (y 2 O)
0 V k= AT\ J o
[ e (580 ) Lz
0 /L2 — n> 4
_FA > > jka! cos po+ina’ 3,1 k sin ¢ —inz—j\/k?—n?|y| >
_E (/0 e dx ﬁil € dn (y<0)
ﬂx/M(kmwoiQGMMVW%w
k2 =12 (k cos ¢o+n)

—00

— 00

dn (y=20) (3.88)

—0o0
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Convert to complex plane of angle w using the transformation n = ksinw, with the
cylindrical coordinate (p, ¢), Eqs.(3.87) and (3.88) can be rewritten as:

A :L k<_ sin (bO:i:COS U)) e_jkpsmwCOS¢:ijpCOSwsin¢
o drn fs k cosw k(cos ¢p+sinw)
_ j —Sinqﬁo:lzcosw

kcoswdw (¢ = )

efjkp(sinwcos ¢ptcos w sin d))dw <¢ § 7T)

A J& cos ¢p+sinw

+J 24w+ -
Z—J/cot me—akmm(wi@dw’ (p <) (3.89)
dm J& 2
jFA k:(sin qb():l:COSU)) efjkpsinwcosd):ijpcoswsincj)
EI‘A - IIl/ d <
® 47 /c k cos w k(cos ¢pg+sinw) coswdw (¢ =)

:jFA sin (b(]:l:COS wefjkp(sinwCOS¢iCOSU}Sin¢)dw (¢ < 7'(')
4dm Jecos ¢go+sinw =

::l:jFA/cot 7T/2+w:F¢O€—jkpsin(wi¢)dw
c

o ; . (s (3.90)

where the contour C can be defined as in Fig. 3.4. By using saddle point technique,
uniform asymptotic solutions for E* and E* can be obtained as:
EéA :E(le + EII)A
EIiJA - _ ejkpCOS(¢f¢o)U(¢ — T — ¢p)
E;A :ESA + EII;A
E;A :fAejkPCOS(¢+¢o)U(7T — o — ),

where E'* and E'* present the diffracted field contributions and can be given by:

B = Clin) | cor TG =) s anto - ) (3.95)

P+po)
2

E = — C(kp) {I_‘A cot = + fAS_(¢+¢0)U(W—¢)] (3.96)

Similarly, one can obtain the electric and magnetic currents due to the incident and
reflected waves on surface OB as:

JP =fip x Hly,—o = \/%ejk“ cos(@u=00) sin (b, — )2, (3.97)
MB —E' x fag|,,_o = ehmeosou—do)gs, (3.98)
JB =g x HE|,—0 = —fB\/%ef’mwS(%—W sin( gy — ¢o)2, (3.99)
M'™ =E% x figl|,,—o = Tpe/trcos@u=olg, (3.100)
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Then, the z-component of the scattering fields due to incident and reflected waves on
surface OB can also be obtained as:

E;B — _/ [jw,quiBG + MiBXV/G:| dl/
C
o oG
:/ e]k‘:v]_ COS(¢W_¢O) ( — jk Sln(¢w —_ gbo)G _— /) dl'll
0 ayl y’1:0
o0 . / _k i w 1 - j d j V
:/ ejkxl COS(¢W—¢O)( SII;(;b ?72¢0) + 1) E </ 6_jn(xl_x1)_j k2_n2y1|d77) dx,I (yl 2 O)
0 A/ — —00
e /OO /OO e_jn($1—zl1)—j\/ k2—772|y1‘ejkzll cos(¢w—o) (_k Sin(¢w — ¢0) + 1) idndl'/l (yl 2 0)
0 —00
1

k2 — n? 47 <

0o </oo ejkﬂfll cos(¢w—¢0)+jnm,1dx,1) (—k Sin(¢w ¢0) ) —jnx1—j\/k2—n2\yl|dn (yl 2 0)
—00 0

:E k2_n

Jo[ (ksin(gy = go) N elmIVE

dn, (y120) (3.101)

EP— / [ngoJrBG + M™x V’G] dl
C

o

[gelko cos(éw—eo) <]k sin(¢y — ¢o)
0 y;
(

/ )y1
[ T S LY R A W
0

dr}

VE =
o0 o0
/ / e IM@ =21/ k2 =n?ly1| giky cos(éw—o)
0

[e.9]

—00

k sin( oy, 1
<¢ 77?0 + 1) Edﬁdxﬁ (y1 20)
F o0 . ’ . Vi k w . .
:ﬁ (/0 6]k1‘1 COS(¢W_¢O)+]nz1dI/1> < Slngj; = 77?0) T 1)1V k2—772‘yl|dn (yl Z 0)
T [ (ksin(¢y — ¢o) 1 e/ k=02l
Cdr S\ 2 ki cos(dw — o)+

Convert to complex plane of angle w using the transformation n = ksinw, with the
cylindrical coordinate (p, ¢'), Egs.(3.101) and (3.102) can be rewritten as:

. (3 2 0) (3.102)

N :i/ k‘(— sin(qzﬁw . (bo):FCOS'lU) o—Jkpsinw cos ¢/ Fjkp cos wsin ¢/ L eos wduw (¢/ < 7T)
s A1 |= k cosw k(cos(pw — ¢o)+sinw) -
[ 2SO = QTS e e gy (g7 < 1
“4r Jg cos(gy — go)+sinw -
2 W . . /
—ﬂ/cot 7T/ +U):F(¢ ¢0) e—]kpsm(wiqﬁ )dw, ((b/ § ﬂ-) (3103)
At J& 2
JUs [ k(sin(gw — o) Feos w) e~ Ihpsinweos ¢'Fikpcoswsin g/ /
B k d S
s 47 / k cosw k(cos(¢w — ¢o)+sinw) coswdn (¢ 5 )

:]fB/ Sin(¢ ¢0):FCOS we_JkP(smeOS ¢’ +cos w sin ¢/ )d'w (Qb/ S 7T)
A J5cos(py — ¢p)+sinw i

I:ijB/COt 7T/2+w:|:<¢w ¢0) 7jkpsm w:l:d))d
A J& 2

w, (¢ s (3.104)
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where the contour C can be defined similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solutions for E® and E™ can be obtained as:

EP =EP + EP (3.105)
E;B = — lkpeos(@ w1 (1 — ¢, + do — @)
= — eihreoso—d0) g — 1 — @), (3.106)
E° =EP + E}° (3.107)
E;B :fBejkpCOS(¢/f¢w+¢o)U(¢/ — T — ¢y + Do)
=[peros@t60=26M 1 (4 g + 7 — 2y,). (3.108)

The diffracted fields E'P and EXP can be written as:

(¢/+2¢W _¢0) —Si(

EP =—C(kp)| — cot T

T+(¢ — o)
2

Y —¢O>U<w—¢’>}
() cot 56— G0)U (G — w—¢>] (3.100)

7T_<¢/_2¢W+¢0) _FBS_(

EP =—C(kp)| — 'p cot

T+ (¢o + ¢ — 2¢w)
2

6 by +60) UG — >}

= —C(k’p) fB cot +FBS+(¢O+¢_ 2¢W)U(ﬂ-+¢_ ¢w):|

(3.110)

By considering the incident direction, one has the unified formulation of diffracted field
outside the wedge as:
m— (¢2 — %)y

E(?Ut = _C(kp) cot (¢W - 7T_¢0) +S_(¢_¢O)U(¢ - 71-)U(QSW - 7T—¢0)

oot THOZO) 160 2) 1546 - 00U 0w — 7 6)U (60~ )

+Daeot T 0 g0) 4 DS (600U (- O — )

+ Tpeot THOL 20 504 6,) 4 T (00 + 6 - 26)
Ul + 6= $u)U(m + do — bu)] - (3.111)

Similarly, one can also obtain unified formulation for GO contribution as:
EQ™ = — e ooy (6 — 1 — o)l (6 — 7 6v)
— e gy — 7 — $)U (g — )
+ fAejkPCOS(¢+¢o)U(7T — o — O)U (7 — )
+ Dpelhreos@t@0=20011 (g 4 Gy + 7 — 200 )U (o + T — ). (3.112)
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3.3.2 Interior Field

Inside the dielectric wedge, the transmitted wave (EY, HY) excited by TE-polarized
incident wave from surface OA can be written as:

Ej =Ty /hrcosdhihysindy 3 (3.113)
t T @ —jk1z cos g —jk1ysin Y (. t s t o~
H, =T, ¢ A Alsin o T —cos ppY), (3.114)

where the transmission coefficient Ty is given by:
2 sin ¢q

sin g 4+ /er — cos? @y

Then the corresponding magnetic and electric currents due to transmitted wave (EY, H})
can be obtained as:

Ta=1+Ts= (3.115)

JA =(—fp) x HY|,—0 = Ta il e~Ikzeos bl gin P\ 2, 3.116
Aly . A
M =E% x (—np)||y—0 = Tpe ikizcosdh g 3.117
A y

Then, the scattering electric field excited by the transmitted wave (HY, E%)) can be
represented as:

E;;A — _/ [jwMOJtAG + MtAXv/G:| dl/
C
o o oG
= / —TAG_]klx cos P (jk’l sin QSEAG + —/) dx’
0 8y y'=0
00 3 t s
:/ _TAefjkla:’ cos ¢, ( k1 sin ¢A . 1> i (/ e*jn(mfx/)—j\/ k%nz?ﬂdn) dx’
0 Vi —n? dm\J-
o0 oo : t
:/ / Ty a2yl sl cosy (k—ﬂ - 1) ~dnd’
0 —00 k% - 772 dr
T () 00 3 t
:—TA / (/ T COS¢tA+jW,dx,> ( k1 sin ¢y _ 1) e—jnx—j\/kf—nzlyldn
) 0 vV ki —n?
~ —jTa /OO k1 sin @Y 1 eIV K=l
 4r k2 — 2 —ky cos ¢4 +7

Convert to complex plane of angle w using the transformation n = kjsinw, with the
cylindrical coordinate (p, ¢), Eq.(3.118) can be rewritten as:

[e.9]

o0

dn. (3.118)

—00

k1 cos wdw

AT : t —jk1psinw cos ¢p+jk1 p cos w sin ¢
A _ jTA/lﬁ(smqﬁA cosw) e
(@]

S 4T kq cosw k1(— cos ¢ +sinw)

N s . t
o _]TA / S ¢A — CoswW —Jjk1p(sin w cos ¢p—cos w sin qS)d
= € w
C

A Jo—cos @l + sinw
_iT 6 9
_J A/cot ¢ —w+T/ e~ Ikipsin(w=9) gy, (3.119)
A J& 2
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where the contour C can be defined similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solution for E** can be obtained as:

E;A :TAe—jklpc08(¢—¢§\)U<¢ —&Y), (3.121)

where EY* represents the diffracted field contributions, and can be given by:

t

EY™ = — CO(kyp)|Ta (:01;¢_2¢A —TAS™ (m— s+ ) U (d— ) |- (3.122)

The contribution from EIEA is exactly equal to the magnetic field of transmitted wave from
surface OA. When surface OB is illuminated, one may also have transmitted wave (Ef,
H}) from surface OB, which can be written in coordinate system Ozyy; as:

El, =Tpe k1 cos(éh—dw)—jhiyising} 5 (3.123)
H5=Tg CrE0 ki1 cos(¢h—w)ikiy SINOB =) Kin (g, — dy )@ —cos(dh — )], (3.124)
Ho

where the transmission coefficient Ty is defined as:

2sin(m + ¢g — dw)

Tg=1+1Tg = : (3.125)
Sin(ﬂ- + ¢O - ¢w) + \/Er - COSz(ﬂ- + Qbo - ¢W)
Then, the corresponding equivalent currents J*® and M*® can be derived as:
JB =(—fag) x HY|, o = —Tpy 2k eos6h—0w) gin (oL, — )2, (3.126)
Ho
M'B =E% x (—#p)||y—0 = —Tpe7Rzrcos@b—dwlg, (3.127)

Then, one has the z-component of the scattering fields due to the transmitted wave on
surface OB as:

E® = — / [jwerathBG + M™® x V’G} dl’
C

°° _ o, . oG
:/ Tge k1o cos($p—dw) (jk1 sin(¢h — ¢y )G + ) dr’
0 Y1 =0

Iy
o0 1 & >
:/ Py e cos(6—s) ki sin(of — ow) 1 1 / e—jn(asl—z’l)—j\/kf—nzlylIdn dr’
; k% — 2 AT\ J_ o

oo L0

: t
_ Tpein@—a)-iy/B—ry1 o= jkia] cos(dl—6w) (kl sin(dh — dw) + 1> idnd:p’l

Vi —n? A
T e . / t N k i bt W ; ; 2 2
:4_3 (/ eIk} COS(¢B—¢W)+J7led$/1) ( 1 Sm(‘fB 2¢ ) + 1) e—ynm—meldn
T J—co \Jo VEL =1
:jTB > (/ﬁ sin(¢p — dw) + 1> ¢ Inei vk =0
47 A /]g% — 7]2 —kl COS(¢% - ¢W)+77

0 —00

dn. (3.128)

—00
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Convert to complex plane of angle w using the transformation n = kjsinw, with the
cylindrical coordinate (p, ¢’), Eq.(3.128) can be rewritten as:

T : t —jk1psinw cos ¢’ —jk1 p cos w sin ¢’
JTg [ ki(sin(o — ¢w) + cosw) e
E® = B ) ) ky cos wdw
C

i 4 k1 cosw k1(— cos(ol — ¢w)+sinw)
_]TB/ Sln(¢tB B (bW) + cosw —jk1p(sinw cos ¢’ +cos w sin ¢')
= —e d
4t Jo—cos(@h — dy) + sinw

T b — w — 2 j Si !
_JTs / cot BT O U T2 psinwr e gy (3.129)
Am J& 2

w

where the contour C can be defined similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solution for E*® can be obtained as:

E =EP + EP (3.130)
fors —Tpeikpeos@'—b+e) (ot — o — &), (3.131)

where E® represents the diffracted field contributions, and can be given by:

E® = — Ckup) { ~ Tpeot LB T (r gl 4+ 6, +0)U 2 —6, — U (¢’>} -
(3.132)

By converting ¢' = ¢ — ¢y, EL° and E can be rewritten as:
E® —Tpe ThpeosG=eR) (4t — @), (3.133)
EP =~ Clhp) { ~ Tpeot 2B LT (- g + U0 —asw)] S (3134)

The contribution from E'P in Eq.(3.133) is exactly equal to the magnetic field of trans-
mitted wave from surface OB. By combining the contributions from surfaces OA and OB
with considering the incident direction, a general unified formulation of the internal fields
can be obtained as:

E}i)n :TAe—jklpcos(fb—qﬁk)U(gb — ¢)U(m — o)
+ Te 1P BU (¢ — ¢)U (¢ + 7 — ), (3.135)

EY =—C(kip) | Ta C0t¢_2¢AU(7T — o) —TAS™ (1= +0)U(d—dw)U(m — ¢o)
T cot P80 (G0 7 — )+ ToS (n— 6 + O)U(6 —64)
Ul + 7 — ¢w) | (3.136)
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Chapter 4

Numerical Results Comparison and
Discussion

In this chapter, the accuracy of extended PO (EPO) is evaluated by comparing the nu-
merical results with those obtained from reference methods such as HRD (hidden ray of
diffraction) and FDTD simulation. As mentioned in Chapter 1, the scattering problem of
wedges may also be calculated using the UAPO solution. However, UAPO doesn’t provide
significant differences, which are created by the contribution of hidden rays as in the HRD
solution. Thus, the results of UAPO are not shown in this chapter for comparison with
our EPO. While the results EPO are derived from formulations in Chapter 2 and Chapter
3, those by HRD can be found from formulations in Appendix A. On the other hand,
the field patterns of FDTD are obtained by linear interpolation of the field distribution,
which can be directly obtained from the simulation. The computational processing of
the FDTD method is relatively simple, but it consumes a lot of time and memory. The
execution time and memory consumption of FDTD are many times larger than those of
the EPO and HRD approximation methods. If the object size exceeds a certain value, the
computer memory may not be enough to handle the calculation processing of FDTD. In
addition, the size of the simulated objects in FD'TD is limited, while the wedge body cur-
rently analyzed is infinite. Therefore, a suitable wave propagation time must be carefully
selected to avoid the unexpected diffraction effect caused by the absorbing boundaries.
The numerical comparisons can then be represented separately for PEC and dielectric
cases as follows.

4.1 PEC wedge

In this section, the numerical results comparison is made for the PEC wedge case. In
this case, one notes that the results of EPO are equal to the conventional PO. Thus, the
EPO formulation can be applied to calculate numerical results for the PEC wedge case
by setting corresponding reflection and transmission coefficients. In addition, to obtain
reliable FD'TD simulation results, the simulation parameters are selected for PEC wedges
as in Table. 4.1. As shown in Fig. 4.1, when the incident wave illuminates wedge surfaces,
it excites the GO reflected fields and edge diffracted field. Therefore, the scattering field
can be considered as the sum of these contributions. Figure 4.2(a) shows the map of the
total field contribution, which can be obtained directly from the FDTD simulation. In
this case, the incident wave illuminates both surfaces of the wedge with incident angle
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Incidence

Figure 4.1: GO and diffracted rays by PEC wedge.

¢o = 115°. and the wedge angle is selected as ¢, = 225°. Then, the incident wave
excites the GO reflected fields and edge diffracted fields from both surfaces OA and OB.
Accordingly, the total field outside the PEC wedge is the sum of the incident, reflected
and diffracted fields, while the internal is equal to zero. Then by subtracting GO reflected
fields, one can obtain the distribution of diffracted fields as in Fig. 4.2(b). It can be seen
that the diffracted distributes mainly near the areas, which correspond to the direction of
reflected GO rays. From the above field distributions, the circular graph of the total and
diffracted field can be obtained by linear interpolation technique to compare with EPO
and HRD solutions.

Figure 4.3 shows the comparison of the total fields of the PEC wedge among three
solutions: EPO, HRD, and FDTD. The numerical results were shown for both TM and
TE-polarization cases. The field patterns are taken at the observation distance p = 3\
from the total field distribution in Fig. 4.2(a). As shown in Figs. 4.3(a) and 4.3(b), the
field patterns of the three solutions match pretty well in all directions for both TM and
TE-polarization. One can also see the different behaviors of the total fields between two
polarizations, in which the total fields of TE tend to zero near the interface while the other
of TM doesn’t. This is due to the difference in boundary conditions of two polarizations.

Figure 4.4 shows the comparison of diffracted fields of three solutions for TM and TE-
polarizations. While the diffracted fields of EPO and HRD can be obtained by evaluating
the radiation integrals on the SDP contour, those of FDTD simulation are the results
of subtracting the GO fields from the total field. One can see that all patterns of the
three solutions have two peaks, which correspond to the shadow boundary direction of
reflected waves from surfaces OA and OB. One also observes that the diffracted field
is very small compared with the GO fields, and distributes mainly in the regions that
are near the shadow boundaries SB™ of the GO reflected fields. The contribution of the
diffracted fields can compensate for the abrupt transitional behavior of the GO fields
at the shadow boundaries. From the comparison, one also can observe that the HRD
and FDTD results are almost identical, and have some differences from the EPO result.
The differences become more apparent when the observation point approaches the wedge
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Table 4.1: Parameters of FDTD simulation for PEC wedge.

Parameter Incident angle ¢y = 115° | Incident angle ¢, = 30°
Frequency 6 GHz 6 GHz
Wave length 50 mm 50 mm
Max iteration number 45000 50000
Convergence 1076 1076
Time step 10713 1013
Calculation region 600 mm X 600 mm 700 mm X 700 mm
Yee cell size 0.25 mm X 0.25 mm 0.25 mm x 0.25 mm

surface. As mentioned above, the diffracted field is small compared with the GO rays,
so one may not see the difference between HRD and EPO in the comparison of the total
field. The differences can be explained by the fact that the diffracted field of the PO
approximation doesn’t satisty the boundary and edge conditions. On the other hand, the
HRD solution can satisfy the boundary condition thanks to the additional contribution of
hidden diffracted rays in the non-physical region, which can be explained by the behavior
of the cotangent functions. In addition, the angular period of the cotangent functions
of HRD are modified based on the edge condition. Accordingly, the results of the HRD
solution are exactly the same as those of the UTD solution in the perfectly conducting
wedge case.

Figure 4.5 shows the cotangent functions of EPO and HRD solutions for TE-polarization
in the two-side illumination case. These cotangent functions have singularity behaviors
at the shadow boundaries of GO incident and reflected rays. When both surfaces are
illuminated, one only has two shadow boundaries of GO reflected waves in the physical
domain. Accordingly, the shadow boundaries of incident waves exist in the non-physical
domain. As mentioned in Chapter 2, two of four cotangent functions in EPO formulation
correspond to hidden incident rays and cancel out each other. Therefore, the EPO formu-
lation only has two cotangent functions corresponding to GO rays in the physical domain
as shown in Fig. 4.5(a). These two remainder cotangent functions can not cancel when
¢ = 0 or ¢y, and this leads to the electric field of EPO not equal to zero at the interface
of the wedge. On the other hand, the formulation of HRD always has four cotangent
functions for any incident direction. And two cotangent functions of hidden incident rays
in the non-physical domain can cancel two cotangent functions of reflected rays when
¢ =0 or ¢y as shown in Fig. 4.5(b). Accordingly, the electric field of HRD tends to zero
at the interface to satisfy the boundary condition. A similar difference in cotangent func-
tions between EPO and HRD can also observed for TM-polarization as shown in Fig. 4.6.
However, in the TM-polarization case, four cotangent functions of HRD don’t cancel out
each other to give us zero magnetic fields at the wedge interface. Instead, the angular
derivative of cotangent functions has cancellation at the interfaces, and this gives us the
correct behavior of the diffracted field by HRD: the angular derivative of the diffracted
field (H,) becomes zero at the PEC boundary.
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When the incident angle is selected as 30°, one has the comparisons of total and
diffracted fields as in Fig. 4.7 and Fig. 4.8, respectively. In this case, the incident only
illuminated the upper surface of the wedge. One can see that the differences of EPO
compared with HRD and FDTD become bigger than those in the two-side illumination
case. The difference can be observed more clearly when the observation point moves to
the shadow regions. This shows that the error of EPO is more significant for the shadow
region of the one-side illumination.

In Fig. 4.9 and Fig. 4.10, one has the comparisons among three solutions when the
wedge is sharper (¢, = 315°), and the incident wave illuminates both surfaces of the
wedge. Compared to the case of wedge angle ¢, = 225°, the differences from EPO also
become more apparent. On the other hand, unlike the flat-angle wedge, these differences
are improved when the incident angle is selected as 30°. These behaviors show that the
error of EPO in terms of boundary condition depends on the wedge angle and incident
direction.
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Figure 4.2: Field distribution of PEC wedge (FDTD calculation): ¢, = 225°, ¢g = 115°.
(a) Total field. (b) Diffracted field.
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Figure 4.3: Total field of PEC wedge: ¢, = 225°, ¢y = 115° and p = 3. (a) TM
polarization. (b) TE polarization.
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Figure 4.4: Diffracted field of PEC wedge: ¢y, = 225°, ¢y = 115° and p = 3\. (a) TM
polarization. (b) TE polarization.
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Figure 4.5: Cotangent functions of EPO and HRD (TE polarization): ¢, = 225° and
$o = 60°. (a) EPO. (b) HRD.
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Figure 4.6: Cotangent functions of EPO and HRD (TM polarization): ¢, = 225° and
¢o = 120°. (a) EPO. (b) HRD.
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(b)

Figure 4.7: Total field of PEC wedge: ¢, = 225° ¢, = 30° and p = 3\

polarization. (b) TE polarization.
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Figure 4.8: Diffracted field of PEC wedge: ¢, = 225°, ¢9 = 30° and p = 3\. (a) TM
polarization. (b) TE polarization.
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Figure 4.9: Total field of PEC wedge: ¢, = 315°, ¢9 = 160° and p = 3. (a) TM
polarization. (b) TE polarization.
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Figure 4.10: Diffracted field of PEC wedge: ¢, = 315°, ¢o = 160° and p = 3\. (a) TM
polarization. (b) TE polarization.
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Figure 4.11: Total field of PEC wedge: ¢y, = 315°, ¢9 = 30° and p = 3\
polarization. (b) TE polarization.
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Figure 4.12: Diffracted field of PEC wedge: ¢y, = 315°, ¢9 = 30° and p = 3\. (a) TM
polarization. (b) TE polarization.
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4.2 Dielectric wedge
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Figure 4.13: GO and diffracted rays by dielectric wedge.

When the PEC wedge is replaced by a dielectric wedge, one may have more transmitted
waves from surfaces OA and OB. Therefore, the external scattering fields include the GO
reflected and diffracted fields, while the internal fields are the sum of GO transmitted
and diffracted fields as shown in Fig. 4.13. As same as the PEC wedge case, the FDTD
simulation results of the dielectric wedge also have the spurious diffraction effect from
the absorbing boundaries. In addition, unexpected multiple reflections may occur inside
the finite dielectric wedge of FDTD. Thus, to avoid the multiple internal reflections of
the transmitted rays inside the dielectric wedge, only a flat-angle wedge is selected for
the numerical example in this dielectric case. This requires us to select an appropriate
transient time carefully. In the following numerical comparisons, the numerical results are
calculated for the wedge of wedge angle ¢, = 225° and dielectric constant ¢, = 6. The
simulation parameters of FDTD for dielectric wedges are shown in Table. 4.2.

Figure 4.14 shows the total field distribution of the dielectric wedge for both TM and
TE polarizations. It can be see that the total field of the TM polarization is stronger than
that of the TE polarization. One also notes that an appropriate transient time has been
selected so that the transmitted field doesn’t excite the multiple reflections inside the
wedge. By subtracting the GO reflected and transmitted fields based on the wavefronts,
one obtains the diffracted field distribution as shown in Fig. 4.15. A difference in the
magnitude of the internal diffracted field between TM and TE polarizations can also be
observed. For more detailed comparisons, the field patterns were then derived from the
field distribution at the observation distance p = 3.
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Table 4.2: Parameters of FDTD simulation for dielectric wedge.

Parameter Incident angle ¢y = 115° | Incident angle ¢, = 30°
Frequency 6 GHz 6 GHz
Wave length 50 mm 50 mm
Max iteration number 50000 55000
Convergence 1076 1076
Time step 10713 1013
Calculation region 600 mm X 600 mm 750 mm X 750 mm
Yee cell size 0.25 mm X 0.25 mm 0.25 mm X 0.25 mm
Dielectric constant e =06 e =06

Figure 4.16 shows the comparison of the total fields when the incident wave illuminates
the dielectric wedge with incident angle ¢y = 115° for both TE and TM polarizations.
In this case, the incident wave illuminates both sides of the dielectric wedge and excites
the reflected and transmitted waves in the outside and inside regions, respectively. As
shown in Figs. 4.16(a) and 4.16(b), the total fields of the three solutions match well for
both TE and TM polarizations. It can be seen that the scattering field in the outside
region has quite similar behavior to those of the PEC wedge case in Fig. 4.3. Inside the
dielectric wedge, one can observe a main scattering lobe near the direction of the incident
wave. The two biggest sidelobes correspond to the direction of the two transmitted waves
from surfaces OA and OB. These field behaviors are nearly similar between TM and TE
polarizations with different amplitudes due to the differences in reflection and diffracted
coefficients.

Figure 4.17 shows the comparison of the diffracted fields of three solutions. In the
outside region, one can see that the diffracted fields of EPO and FDTD have a good
agreement, and have some differences with those of the HRD solution. This is different
from the above PEC wedge case, in which HRD has better agreement with the FDTD
simulation than EPO. So far, we have not been able to explain exactly why the EPO
solution becomes better than the HRD solution when applied to the dielectric wedge.
This change in the accuracy of EPO and HRD between PEC and dielectric cases may be
due to the edge condition. Inside the dielectric wedge, all three solutions yield twin peaks
at the shadow boundaries SB' of the transmitted waves. While the diffracted fields of
EPO and HRD in Fig. 4.17 exhibit the same behavior, those of the FDTD simulation show
some differences. These differences are apparent in the areas near the shadow boundary
directions of two transmitted waves from surfaces OA and OB. It can be observed that,
in the wedge dielectric case, the diffracted fields of both EPO and HRD don’t satisfy the
boundary condition. This reminds us that some significant contributions at the boundary
of two media may be missed, and need to be considered.

When one selects the incident angle ¢ as 30°, the incident wave only illuminates surface
OA and the comparison of the corresponding total fields is shown in Fig. 4.18. In this
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case, the incident wave excites only one reflected wave and one transmitted wave from
the illuminated surface OB. One observes that all three results match well in the exterior
region for both TM and TE polarizations, while there are some differences in the interior
region. To know what causes these differences, a comparison of the diffracted fields has
been made and shown in Fig. 4.19 for both TM and TE polarizations. Similar to the one-
side illumination case, the outer field of EPO and FDTD have a good agreement and have
some differences with the HRD solution. However, the diffracted field has two large peaks
corresponding to the shadow boundaries of the incident and transmitted wave compared
with the direction of the reflected wave. Inside the wedge, the difference has been found
in the diffracted field, in which additional field constituent seems to radiate in the interior
region. One can see that the significant differences in the internal diffracted fields are the
main reason for the difference in the field inside the wedge. These differences are bigger
than those of the two-side illumination case in Fig. 4.17.

Figure 4.20 shows the behavior of cotangent functions corresponding to the outside
region of the wedge for the one-side illumination. As the same as the PEC case, two
cotangent functions have singularity behaviors in the physical domain, while two remain-
der functions have singularities in the non-physical domain. However, these cotangent
functions of the dielectric case don’t have any cancellation behavior at the interface of the
wedge as PEC case. This is due to the change of reflection coefficients, which relates to
the dielectric constant €. Similarly, one has a cotangent function corresponding to trans-
mitted waves inside the wedge as in Fig. 4.21. Here, one also sees that two cotangent
functions have two corresponding singularity behaviors in physical and non-physical do-
mains, respectively. The location of these behaviors corresponds to the shadow boundaries
of transmitted rays.

In Fig. 4.22, one can see the remainder field of FDTD, which was obtained by subtract-
ing the diffracted field of EPO from the diffracted field of FDTD in Fig. 4.19(a). The
corresponding result for ¢y = 40° is also plotted in Fig. 4.22. It can be seen that the
remainder field is distributed mainly in the areas near shadowed surface OB, where the
surface diffracted wave is bigger than one on surface OA. When the incident angle changes
to 40°, the remainder field becomes bigger, but keeps the same oscillation behavior as in
the case of ¢g = 30°. These observation results remind us of the concept of lateral wave,
which relates to the boundary condition of edge diffracted field. One knows that the
GO fields satisfy the boundary condition, in which the sum of the external incident and
reflected field is equal to the internal transmitted field at the boundary of two media.
On the other hand, the edge diffracted field excited by the incident wave at the wedge
tip doesn’t satisfy this boundary condition. This is due to the difference in the wave
propagation speed of the edge diffracted field between the exterior and interior regions of
the dielectric wedge. To compensate for this difference, one needs to consider the con-
tribution of the lateral waves that are excited in the dielectric medium inside the wedge.
The model of the lateral wave may be outlined sketch as in Figure 4.23. Here, the lateral
waves are considered as the radiation field excited by a line source that is located at the
boundary between two media. The wavefronts of these lateral waves create an angle of
. = 1//; with the surfaces of the wedge. One notices that the excitation of the lateral
waves depends on the surface fields. As shown in Fig. 4.19, it can be observed that the
diffracted field at the surface of ¢ = 225° is stronger than the one at the surface of ¢ = 0°.
Accordingly, the lateral waves in the vicinity of surface OB are also stronger than those
of surface OA.

The contribution of these lateral waves may be found from the two-media problem, in
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which the radiation due to a current source in the denser medium can be derived from
free-space Green’s function and a static Green’s function G5. This Green’s function Gy
has saddle points and branch points. Then the contribution from the branch points may
describe the behavior of the lateral wave. The formulation of these branch points can be
found in Appendix A. Figure 4.24 shows the total field distribution of FDTD for both
TM and TE polarizations in the one-side illumination case (¢9 = 30°). One can see that
the total fields of TM polarization are mainly distributed in the interior region, while
those of TE polarization are almost distributed in the exterior region. Subtracting the
incident field and the GO reflected field from surface OA in the outside, one then has
the corresponding diffracted field distribution of TM and TE polarization as in Fig. 4.25.
As mentioned before, the diffracted field is mainly distributed in the region around the
direction of the GO reflected and transmitted waves. Figures 4.26 and 4.27 show the
distribution of the remainder field of FDTD and possible lateral wave excited inside
the dielectric wedge, in which the FDTD remainder field is obtained by subtracting the
diffracted field from Fig. 4.25. One can see the same behavior between the remainder
field of FDTD and the lateral waves. However, the amplitudes of the two results are
different, and the lateral wave tends to infinity near the shadow boundary. This is due
to the singularity behavior of the non-uniform solution when the branch point is near the
saddle point. Ome also can observe the same behaviors of the wavefront of the FDTD
remainder field and possible lateral wave inside the wedge as shown in Fig. 4.28. So far,
it is still being investigated to apply the contribution of the lateral waves to our EPO
solution.

Figure 4.29 and Figure 4.30 show the field behaviors of the dielectric wedge for wedge
angle ¢, is selected as 330°. In Fig. 4.29, one can see a big difference between TM
and TE polarization for both total and diffracted fields. While the internal fields of
TM polarization are very small compared with those of TE polarization, an opposite
phenomenon can be seen for the external region. One can see that the differences between
TM and TE occur in the region containing the GO reflected and transmitted rays. This
is due to the difference in the reflection and transmission coefficients between TM and TE
polarizations. For the two-side illumination as in Fig. 4.29(a), the difference in the outer
region is more apparent in small areas near two surfaces that are occupied by the reflected
waves. A similar behavior can also be observed when the incident wave illuminates one
side of the wedge with wedge angle ¢y = 30° as in Fig. 4.30(a), in which the external total
field of TE has weaker oscillation than TM polarization. In this one-side illumination, the
difference in the reflected waves between TM and TE is bigger and occurs over a larger
area than in the case of two-side illumination. Inside the wedge, the total field of TE
behaves stronger than TM polarization. This change also occurs for the diffracted fields
in the direction of reflected and transmitted waves as in Fig. 4.30(b).
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Figure 4.14: Total field distribution of dielectric wedge: ¢y, = 225°, ¢y = 115°, ¢, = 6.
(a) TM polarization. (b) TE polarization.
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Figure 4.15: Diffracted field distribution of dielectric wedge: ¢, = 225°, ¢g = 115°, e, = 6.
(a) TM polarization. (b) TE polarization.
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Figure 4.16: Total field of dielectric wedge: ¢y, = 225°, g9 = 115°, ¢, = 6 and p = 3\. (a)
TM polarization. (b) TE polarization.
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Figure 4.17: Diffracted field of dielectric wedge: ¢y, = 225°, ¢ = 115°, ¢, = 6 and p = 3.
(a) TM polarization. (b) TE polarization.
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Figure 4.18: Total field of dielectric wedge: ¢, = 225°, ¢g = 30°, &, = 6 and p = 3\. (a)
TM polarization. (b) TE polarization.
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Figure 4.19: Diffracted field of dielectric wedge: ¢, = 225°, ¢pg = 30°, &, = 6 and p = 3.
(a) TM polarization. (b) TE polarization.
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Figure 4.21: Cotangent functions inside dielectric wedge: ¢y, = 225°, ¢y = 30° and ¢, = 6.
(a) TE polarization. (b) TM polarization.
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Figure 4.22: Remainder field of FDTD (TM polarization): ¢, = 225° ¢, = 6 and p = 3\.
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Figure 4.23: Possible lateral waves excited by edge diffracted surface waves.
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Figure 4.24: Total field distribution of dielectric wedge (FDTD): ¢, = 225°, ¢y = 30°
and ¢, = 6. (a) TM polarization. (b) TE polarization.
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Figure 4.25: Diffracted field distribution of dielectric wedge (FDTD): ¢y, = 225°, ¢9 = 30°
and ¢, = 6. (a) TM polarization. (b) TE polarization.
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Figure 4.26: Distribution of FDTD remainder field and possible lateral wave (TM polar-
ization): ¢y = 225°, ¢9 = 30°, &, = 6. (a) FDTD remainder field. (b) Lateral wave.
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Figure 4.27: Distribution of FDTD remainder field and possible lateral wave (TE polar-
ization): ¢y = 225°, ¢9 = 30°, &, = 6. (a) FDTD remainder field. (b) Lateral wave.
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Figure 4.28: Wavefront of FDTD remainder field and possible lateral wave: ¢, = 225°,
¢o = 30° &, = 6. (a) FDTD remainder field. (b) Lateral wave.
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Figure 4.29: Total and diffracted fields of dielectric wedge: ¢, = 330°, ¢y = 165°, ¢, = 6
and p = 3\. (a) Total field. (b) Diffracted field.
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Figure 4.30: Total and diffracted fields of dielectric wedge: ¢, = 330°, ¢pg = 30°, ¢, = 6
and p = 3\. (a) Total field. (b) Diffracted field.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, the approximation solutions have been constructed based on the surface
equivalence theorem for the scattering problem of the electromagnetic waves by wedges.
The scattering fields by wedges can be calculated as the field radiated from the induced
currents on the surfaces of the wedges.

For the PEC wedge cases, the induced currents can be approximated by the PO ap-
proximation method. Then the scattering fields can be obtained by integrating the PO
currents on the illuminated surface with the two-dimensional Green’s function. The ob-
tained radiation integrals can then be solved by using the saddle point technique. The
uniform asymptotic solution of the diffracted field was then expressed by different equa-
tions depending on the incident direction. To solve this calculation complication, a unified
expression including four cotangent functions has been proposed. This solution is valid
for all incident and observation angles.

For the scattering problem of dielectric wedge cases, an extended PO solution has
been proposed by utilizing the equivalent electric and magnetic currents on the wedge’s
surface. These currents can be simply determined from the GO incident, reflected, and
transmitted rays. The uniform asymptotic solutions were then found and represented in
terms of cotangent functions.

The accuracy of EPO was then evaluated by comparing the numerical results with other
reference methods. EPO has a better comparison with FDTD than HRD in the outer
region of the dielectric wedge. In the inside region of the wedge, the diffracted fields of
EPO and HRD yield almost the same behavior. Accordingly, EPO may be suitable for
the scattering problem of the dielectric wedge without the nonphysical additional terms
of HRD, and requires significantly less computational resources than FDTD. From the
difference with FDTD, the lateral wave needs to be considered to enhance the accuracy
of EPO and HRD inside the wedge. The accuracy change of the EPO and HRD solutions
between the PEC and dielectric cases also reminds an additional consideration for the
edge condition. These aspects are motivations for the next research in the future.

5.2 Future work

In order to improve the research, there are various things to do in the coming year.
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e Firstly, it is necessary to find out the exact contribution of lateral wave to improve
the accuracy of EPO solution for the internal field of dielectric wedge.

e On the other hand, the current calculations are performed for the lossless dielectric
wedge. Thus, we need to extend the investigation for lossy materials following the
same calculation process, but more complicated.

e Finally, I will extend the analytical calculation result for the other geometric shapes
and the 3D scattering problems.
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Appendix

A.1 Uniform Asymptotic Evaluation for Radiation In-
tegral

A.1.1 TM polarization

In this section, the uniform asymptotic evaluation of the integral on SDP contour for
TM polarization case is derived for example. As presented in Chapter 2, the diffracted
magnetic field due to surface OA can be represented as integral on the SDP contour as

== COs W

HA e~Tkpsn@E) gy (3 < ). (A1)

21 Jgpp €OS ¢p + sinw

Now, consider the integral U(kp) on the SDP contour:

U(kp) = / p(w)ef9 ™ duw, (A-2)
SDP
where
g(w) = —jsin(w + ¢), (A-3)
Cos w
PAT= os ¢o + sinw’ (A-4)
Q=kp (A-5)

The function p(w) has a simple pole singularity at w = wp. In can be found from
cos ¢ + sinwgy = 0

as wo = P — g +2nm  (n eN). (A-6)

Then wy = ¢ — 7/2 is the pole singularity of function p(w) which satisfies the condition
—m/2 < wy < 7/2. The function g(w) has the first order saddle point wy so that

g9'(ws) =0
as — j COS(ws + ¢) = 07 <¢ § 7T>

as ws = | — 7| — g +2nm  (neN). (A-7)

Then wy = |¢p—7|—7/2 is the saddle point which satisfies the condition —7/2 < w, < 7/2.
If the pole wy is near the saddle point w,, the asymptotic approximation of the integral
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U(kp), valid uniformly as wg — ws, is given by

Ulkp) ~ 29w {ij2cﬁe_9d2Q($jd\/§) + \/gR(O)} . Im(d) =0, (A-8)

where
c
R(0) =vf (ws) + -, (A-9)
Qy) = / e " dr, (A-10)
Y
and
: . cosw(w — w)
-1 _ — ]
‘ wg?ﬂo ((w = wo)f(w) wl—gxo cos ¢ + sinw
cos w(w — wp) COS Wy
= lim — . = . .
w—wo SN w — sin wy lig S — sinw
w—wo w — Wy
_coswy _ o (A11)
COS Wy

one also has

d =v/g(ws) — glwe) = \/—j + jsin(py — /2 % )
=v/=Jj—J cos<|¢>| +¢0) = v/ —j2cos? {(¢o £ 0)/2}

— & Va|os MEL et (o5 (A-12)

F \/7 V26l (A-13)

The Arg(d) is defined so that d — (wg — ws)/v as wg — w,. Then, one has two cases:
When wy — ws = 0 or ¢g > |¢ — 7,

and

cos %o ;C ¢ <0
as d=—v2cos { %o ;C ¢} e~Im/4, (A-14)
and when wy — ws < 0 or ¢g < |¢ — 7,
COS Po ;t ¢ >0
as d=—v2cos {@} e~ Im/4, (A-15)

Finally, one gets

d—=— ﬁcos{@}e_”/“ (o = | — 7|)

(-1 +j)cos{¢0;:¢}. (6< ) (A-16)
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From Eq.(A-16), Sm(d) = 0 & ¢y < |¢ — n|. Then the function Q(Fjbv/Q) can be
represented as

@iV =Q [xi-1+ ) cos{ 2Z2 VA s jo- )
0 [0+ )eos{ 2T VA] (s lo-a)
4o { 2FVA]L @slo-a) (a1

=Q |(1+7)

From Eqgs.(A-11), (A-13), (A-16) and (A-17), the asymptotic approximation of the in-
tegral U(kp) can be derived as
+
o[

ke | T V2ei™ 4 sin | — 7| B eIm/A B
e p\/kjo( COS Qg + €os ¢ \/§cos{(¢oi¢)/2}> » Gos o=,

=sgn(r — ¢o F ¢)2jﬁejkpcos(¢0:t¢)Q [(1 + 7) |cos {¢0;:¢}‘ \/k?_p:|

—jkp+in/d 2_7( sin|¢ —w| 1 ) -
e \/’:P cosgg +cosp  2cos{(do+¢)/2} ) (A-18)

Then from Eq.(A-18) and Eq.(A-1), one obtains

U(/{:p) ~ + e*jkijﬁejkpﬂ'kpCos(¢>oi¢)Q {(1 4 j)

»
Hy=57U(kp), (6S7)

~F %eﬂ“ﬂm(%ﬂ) sgn(m — ¢ F ¢)Q {(1 + )

cos (50| Vg

kpgmja | L [ 2sin|g—m| 1
T e Ikr—im/4 87rkp(cos¢+cos¢o cos {(¢o £ ¢)/2} )’ (psm)

=F %ejkpcos(%:t(b) sgn(w — gbo + QZ))Q |:(1 +]) coS {¢0 ;‘Z ¢}‘ \/k?_p:|

2sin ¢ 1
~ Clhr) (cow T cosdo T cos {(do £ ¢>>/2}) B (A19)

The complementary error-function @ in Eq.(A-19) can be expressed in term of the well-
tabulated Fresnel integrals C'(z) ans S(x) as

an+d = - 5 |e () - ()] i
where
C(z) = /0 " cos (g#) dt, S(x)= /0 "sin (gﬂ) dt. (A-21)
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A.2 TE polarization

For TE polarization, the diffracted electric field can be represented as
e—jkpsin(w:l:¢)

J .
EA=_2L - 4 A-22
d o O %0 /SDP oS ¢y + sin w “ ( )

Now, consider the integral I(kp) on the SDP contour:

I(kp) = f(w)e® du, (A-23)
SDP
where
q(w) = —jsin(w £ ¢), (A-24)
1
flw) = o8 ¢g + sinw’ (A-25)
Q= kp. (A-26)

The function f(w) has a simple pole singularity at w = wp. It can be found from
cos ¢ + sinwg = 0

as Wy = ¢o — g +2nm  (n €N). (A-27)

Then wy = ¢ — m/2 is the pole singularity of function f(w) which satisfies the condition
—m/2 < wy < 7/2. The function ¢(w) has the first order saddle point ws so that

q/<w8) =0
as — jcos(ws £ ¢) =0
as ws = |¢p — 7| —gj:an (n € N). (A-28)
Then ws = |¢p—7|—7/2 is the saddle point which satisfies the condition —7/2 < w, < 7/2.

If the pole wy is near the saddle point w,, the asymptotic approximation of the integral
I(kp), valid uniformly as wy — ws, is given by

I(kp) ~ eftatws) {ian\/Ee_szQ(:Fjb\/ﬁ) + \/gT(O)} . Im(b) =0, (A-29)

where
T(0) =hf(w,) + 5. (A-30)
= [ a, (A
y
and
' w — Wy
— 1 - = os gy T sinw
a wigluo [('UJ wo)f(w)] wigluo COS d)[) + Sinw
w — Wy 1

= lim — - =
w—wo SN W — Sin wy

. sinw — sinwy
lim ——
w—wo w — Wy
1 1
= = (A-32)

coswy  singg

81



One also has

) = q(wo) = v/—j + jsin(¢p — /2 £ )
=\/—J — jcos(|¢] + ¢o) = /—j2cos? {(¢ £ ¢)/2}
— + /2 |cos W‘ eI (p<S ) (A-33)
and
=/ 71 ,/ = v2e/m4, (A-34)
ws

The Arg(b) is defined so that b — (wy — wg)/h as wy — ws. Then one has two cases:

When wy — w, = 0 or ¢g = |¢p — |
cos %o 2i ¢ <0
as d= —ﬂcos{¢02i¢}ej“/4, (A-35)
and when wy —w,; < 0 or ¢g < |p — 7,
COS %o ;: ¢ >0
as d = —/2cos {@} e=Im/4, (A-36)
Finally, one gets
b=—+2cos {@} eI (¢ = |p—m])
=(-1 +j)cos{¢0;:¢}. (psm) (A-37)

From Eq.(A-37), Sm
represented as

(d) 2 0 < ¢g < |¢ — w|. Then the function Q(Fjbv/Q) can be

QFI) = |Fi(-1L+ ) eos {22 4VA] (oo
—Q 21+ { MFVA (o5 jo )
—o|a+i|os{®F VAl @slo-a @y

From Eqs.(A-32), (A-34), (A-37) and (A-38), the asymptotic approximation of the in-
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tegral I(kp) can be derived as

o2
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Then from Eq.(A-39) and Eq.(A-22), one obtains
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+ C(kp) (

A.3 Hidden Rays of Diffraction

It is well known that the diffracted field of the PO approximation method doesn’t satisfy
the boundary and edge conditions. To correct the error of PO, the HRD solution was then
proposed to satisfy the boundary and edge conditions for the PEC wedge cases. In this
solution, additional hidden diffracted rays have been traced in the non-physical domain.
The contribution of these rays can compensate for the shortcoming of PO at the boundary
of the wedge. For TM polarization, the HRD solution of diffracted fields in the outer and
inner regions of a two-dimensional dielectric wedge can be represented as:

o =—C(kp)
Lot ™00 4 (g0 (6-m)
+ 2ot THOZO) g g (6 —m—0)
+ D otM \S™(¢+60)U (T —9)
+% Wﬁf 20u) | 1 % (G0+6-260)
U(g+m—du) |, (A-41)
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H™ =~ C(kip)
Ty
n

cot ¢ ;nch — TS (7 — ¢y + O)U (¢ — by)
T Rt
ot %_ TS (64 + 7 — AU (S — b)) (A-42)

where the corresponding reflection coefficients Iy and I'y of surfaces OA and OB are
given by

oo e:] sin ¢o| — \/&r — cos? ¢ (A-43)
A er|sin gg| + /er — cos? g

v — & sin(go + T — ¢w)| — \Ver — cos?(dg + T — Py)
P alsin(do + m— du)l + Ve — oo + T — )

(A-44)

T, =1+1T" and Ty = 1 + 'y are corresponding transmission coefficients from surfaces

OA and OB, respectively. Based on the edge condition, the angular period of cotangent

functions has been modified, in which the parameter n is selected as the minimum positive

value that satisfies:

_¢w 2 — ¢w
n——.

= ta
n n

g, tan (A-45)
For the PO solution, modifying the angular period based on the edge condition does not
provide a significant correction to the field behavior as HRD. The formulations of HRD
solution in Eqgs.(A-41) and (A-42) are applicable for all directions of the incident wave.
One may also need the contribution of the additional multiple diffracted fields depending
on the particular cases of the wedge and incident angles.

For TE-polarized plane incident wave, the external and internal diffracted fields can
also be found from Eqs.(A-41) and (A-42), in which the reflection and transmission
coefficients of the TM polarization are replaced by the corresponding coefficients as:

o | sin ¢pg| — v/&r — cos? ¢y (A-46)
A | sin ¢g| + \/er — cos? ¢
o Isin(do+ 1 —dw)| — Ve — cos (g + T — ¢y

= A-47

. | Sin(¢0 + 7= ¢w)| + \/6r - COSQ(¢0 + 77— ¢w) ( )
Iy =1+T" (A-48)
Ty =1+T%. (A—49)

A.4 Possible Lateral Wave

Consider two-media problem with a current source located in denser media 1 as in
Fig. A-1. The radiation fields excited by the current source can be derived from the
two-dimensional Green’s functions. The problem can then be considered in two case
polarizations as follows [15].
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Figure A-1: Lateral wave.

A.4.1 TE polarization

For TE polarization, the radiation fields excited by the current source can be derived from
the two-dimensional Green’s functions, which satisfy:

(vz T k%) Crlp.p) = —3(p— ) (y <0)
(vz " k%)Gg(p, P=0  (y>0), (A 50)

where k1 = w\/ue; and ky = w\ /ey (1 = €o&r, €2 = £9). Then the solution is given
by: Subject to a radiation condition at infinity in both regions, and to the continuity
requirements at y = 0:
0G,  0Gy
G — G , - = = t e O7 A751
1 2 By By at vy ( )
Then the solution is given by:
For y < 0 (media 1):
The radiation field can be found from Green’s function G, which is given by:

Gl(ﬁ? 16/) - Gfl(ﬁ: pA/> + Gs(ﬁ’ 16,)7 (A752)
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Figure A-2: Integration contours for G integral in Eq.(A-53).

where G is the two-dimensional free-space Green’s function given by:

ey = —j /oo i€ a—a")—j\ /=€y~ y|d§ (A5
nwy)=- [ N
Gs(p, ') contains the interface effect and can be given by:
i) - 2 [ (A-51)
(0 e - )
where
F@%:v%f—?—~¢%n—€2 (A-55)

VT =€+ /kin — &2

with n = ey/e; = 1/e,.
For y > 0 (media 2): The radiation field can be found from Green’s function Gs:

., —j [ el )=/ kIn—E2y+jy/k3—€2y
Ga(p,p') / T(§)d¢, (A-56)

n H-e

where T(§) = 1+ I'(€§). Now let us consider Green’s functions in media 1 as follows:
1) Evaluation of Gy (p, p):

—i [ g ib@=a) =i/ ki -2 |y—y/|
Gr(z,y) = —-J
f1 Y A . /—]{}% — 52

By using transformation & = k; sinw and coordinate system (py, 61) with z—2' = p; sin 6,
and |y — /| = p1 cos by, the integral can be rewritten as:

de. (A-57)

G =7 7‘77_ edh1p1cos(w=01) gy (A-58)
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Figure A-3: Integration contours for G; integral in Eq.(A-58).

The integral in Eq.(A-58) has saddle point ws = 6;. By saddle point technique, the
integral in Eq.(A-58) can then be given by:

_j —27 —jk1p1 cos(ws—01)—jm/4
G~ jkip1 s—01)—]
=4y \/k1p1] cos(ws — 91)]6

1 ) )
_ e~ Ikip1—jm/4 (A-59)
vV 87T/€1p1

2) Evaluation of G,(p,/):

[ e RSy
GS“,“:—/ T (€)de. A-60
Similarly, by using transformation ¢ = k;sinw and coordinate system (p, #) with
x—2a'=psinf and y + ' = —pcosh, one has:
Gs(p,p) = ;—‘7 / e~ Ik1peosw=bP (L) sinw)duw, (A-61)
T Jp
where
JR— — 1 2
(e sin ) — cosw — \/n — sin®w (A-62)

cosw + \/n — sin?w

The integral in Eq.(A-61) has saddle point w, = 6 exists on the integration contour.
And one may also have branch point w, = Arcsin+/n = 6 exist on the positive imagine
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Figure A—4: Integration contours for G integral in Eq.(A-54).

domain. We may have the contribution from the branch point w, when wy > wy, (6 > 6)
as in Fig. A-5. Then G, can be given by:

Gy = Gsd—i—Gst(ws —wb) = Gsd+Gst(9—§), (Af63)

where Gy, is the contribution from the integral on the steepest-descent path P given by:

2
_cost —/n—sin"0 1 o—ik1p=in/4

Gsa = , (A-64)
cosf + \/n —sin? 9 V8Tkip
and G is the banch point contribution given by:
G _J e_j’“lpcos(“’_a)I‘(kl sin w)dw
47 Py
:__j —jk1pcos(w—0) d A—
ym /Pbe f(w)dw, (A-65)
where f(w) = I'(k; sinw).
Now, let us consider the integral:
I, = / f(w)e ™) du (A—66)
Py,
where
q(w) = —j cos(w — ) (A-67)
Q= k‘lp, (A*GS)

and Py is contour encircling the branch cut. In typical problem, f(w) behaves like:
fw) = a+ byvw — wy, (A-69)

near wy, where a and b are constants. Then we have:

fl(w) = Z\/%U)bb‘wb
as b= 2[Vw — wyf (w)]w, (A-70)
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Figure A-5: Integration contours for G integral in Eq.(A-61).

We change variable to s (s = 0 when w = wy,) as:
) =

= q(wp) — q(w)
as 82 _ (] ’LU) - Q(UJb) (U} . wb)
w — Wy
as s* = —q'(wp) (w — wy)
as s =V =¢'(wp)/ (w — wy)
as (W —wp) = —— (A-71)
—q'(wy)
and we have
dw 2s
> A-72
ds —q'(wp) ( )
so we have:
b
Fw) =a+ —— (A-73)
—q'(wy)
Then Eq.A—66 can be rewritten as:
_6 q(wp) / f —Qs ds
2as 2bs? 2
=t (wb)/ ( + )6_95 ds
Lo N\ (wp) [ (wy)]3/?
—efa(we) / G(s)e ¥ ds (A-T74)
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Figure A-6: Branch point contribution.

Since G(s) is regular at s = 0, it can be expanded into a power series as:

l\')

G(s) = G(0) + G (0)s + G"(0) 5 + -+ G (0)— + -+ (A-75)
I, then can be written as:

m

I i

m=0

(A-76)

where 1,,(2) = 0 can be evaluated in terms of the gamma function I'(z), in which 7,,,(Q2) =
0 when m is odd, and

1,(Q) = /_ T g5 gy _ w (A-77)

o0

when m is even. So, we have:
G"(0)I'(3/2)
Iy = et == = (A-78)

On the other hand I'(3/2) = \/7/2, so we have:
Qqluy) V4D 1

A[—q (wy)]3/72 Q372
Qq(wp) by/m

[— Q' (w)]??

:eQQ(w")—Qﬁ Vw —wy f(w
[ Qq/( )]3/2[ bf( )”wb

— TS ()] e ) (A-79)

Ib =€

=€
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Then, one has the approximation of G, as

Gam 2o B W | et (acs)
w wy

" [kypsin(0 — wy)]3/?
on the other hand, one has:
d];(;u) _ —2sin w(n — sin® w) + 2sinw cos? w (A-81)

2
\/n—sin2w<cosw+ n—Sin2w)

Then, one has

[\/w — wbdj;(w)} = lim { \/ﬂ —2sinw(n — sin’ w) + 2 Sinw20052 w }
w w—rwy o
wy, n — sin” w (cos w4 /1 — i’ w)

. VW — Wy
5 lim > >
COS™ Wy w—rwy \/ sin“ w — sin” wy

1

sin? w — sin? w,

: 2
_ 2 sin wy, cos” wy, %

=2 sin wye I7/?
lim

w—rwWp w — Wy
2sinwye ™2 /2y/sinwye I/ _ \/§e_j”/2< n )1/4

:\/ZSinwb COS Wy N \/COS Wy, 1—n
(A-82)

AY

€0

¥ Lateral wavefront

80 8r

Figure A-7: Lateral wave when 3’ = 0.
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Figure A-8: Media 2.

Then, the lateral wave contribution from branch point can be written as:

sb

. 1/4 )
s —J 2ﬁ o \/567]'#/2 ( n ) efjklpcos(979)6j37r/4
Am [k1psin(6 — 6)] L=n

1 e—jk1pcos(6—0)e—j7r/4< n )1/4
V27 [kypsin( — 6)]* \1—n

1 e_J(k1L1+k2L2+k1L3)€_]7T/4 \lsine_

Ve [y Lo] > cos?
1 efj(k1L1+k2L2+k1L3)e—j7r/4 n1/4
- (A-83)
V2 [leZ]?’/Z 1—n

where § = arcsin y/n = arcsin (1/,/z,)
When the current source is located at the origin as in Fig. A-7, one has L; =0, p; = p.
Then, the contributions from G, and G, can be written as

1

G = —jklp—jﬂ/‘l’ A-84
= (A-84)
0 — —sin?0 1 g A
Gs :COS n Sin e—]klpfjﬂ/ll + Gst<(9 . 0)’ (A785)
cosf + \/n —sin? 0 V87kip
1 e—jk1pcos(6—§)e—j7r/4 ( n ) 1/4
sb — _
V27 [kypsin(@ — 0)]* \1—n
1 7j(k‘1L1+k‘2L2+k1L3) 7j7T/4 1/4
- ° c. (A-86)

\/% |:le2:| 3/2 l—n

3) Evaluation of Gy(p,p'):
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One has:

= [ edema) i iV ey

By using transformation £ = k; sinw, we have:

T(&)dg (A-87)

_] 00 e*jkl sin w(z—a')—jk1\/n—sin? w(—y)+jk1 cos wy’
A Al
Gof ) __/

P, p T (ky sinw)ky cos wdw

A | o ky cosw

___j / e—jkl[sin w(z—2")4+1/n—sin? w(—y)—cos wy/]T(kl sin w)dw
P

4w
dm Jp
where
g(w) = — [sinw(z — 2') + Vn — sin? w(—y) — coswy'] (A-89)
2
folw) =T(ky sinw) = ot (A-90)
cosw + \/n — sin® w
The integral in Eq.(A-88) may have saddle points w; satisfy:
ga(ws) =0
(A-91)
Then, one has
coswy(x — ') — (n — sin® w,) ™2 sin w, cos w,(—y) + sinw,y’ = 0 (A-92)
On other hand, one has:
x —x = Lysinfy + Lssin 05,
—y = Ly cos s,
y' = —Lycosby. (A-93)

So, Eq.(A-92) can rewritten as:

2

cos ws(Lysinfy + Lssinfs) — (n — sin ws)_1/2 sin w, cos wg Ls cos 05 — sin wy L4 cos By = 0

or Ly(cosw,sin 0, — sinw, cos f) + Ls|cos w, sin 05 — (n — sin? ws)_l/2 sin w; cos w cos B3] = 0
(A-94)
Eq.(A-94) satisfy VL4 and Ls when
COS Wy sin #4; = sin w; cos 64
cos wsinfs = (n — sin® ws)_1/2 sin w, cos wy cos O5
or  coswgsinfy = sin wg cos 0,
COS Wy sin 0,4 COS W, SIN W,
\/n—sin2 04 \/n—sianS
(A-95)
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So we have wy = 0, £2mm (m € N) and we choose the saddle point w, = 6, exists on the
integration contour.

The integral in Eq.(A-88) also has a branch point w, = arcsin \/n = 0. Because w, < w
(64 < ), we might not need the contribution from the branch point wy.

So we have:

where Gy is the contribution from the integral on the steepest-descent path P given by:

9 -2
G2s %_J =

= Jjk1g2(ws)—jm/4
i \| ity e

(A-97)
On other hand, we have:
2 . .
y cos“ 0y (Lysin€, Lgsinby
a2 (Ws) sin 04 ( cos2 0, + cos? 05 ( )
g2(ws) = — (L + Ls\/n) (A-99)
then we have:
Gy = Goy %__'] —2r 2 cos 0, eIk (LatLsy/n)—jm/4
4m fo, cos? 64 <L4 sinfy | Ls sin05> cosf, +\/n —sin 6,
1%5in 6, cos? 04 cos? 05
_2€—jk1(L4+L5\/ﬁ)—jﬂ/4 V/sin 0, 1
- ) sin sin
V 8k cos By + \/n — sin® 6, \/[;:ts29i4+i50520z5
(A-100)

When w, > wy (64 > ) Gap is the banch point contribution given by:

—j 27 [ df2<w>] sy 73 sy
Gy =2 Vw2 ikiaan) 45 arglsa o) A-101
P A [l (wy) 372 Ydw |, ( )

On the other hand, we have:
¢b(wy) = — cos @ + (n — sin® 6) /% sin § cos Gy — sin Gy’ (A-102)

Because sin = \/n, ¢5(w,) — 00. so we have Gy — 0

A.4.2 TM polarization

For the TM polarization, the radiation field excited by current source can also be derived
from the two-dimensional Green’s functions in Eqs.(A-53), (A-54) and (A-56) with the
coefficients ['(£) and T(&) are replaced by
[(g) = ki — & = vkin — & (A-103)
nyk¥ — &+ \/kin — &2

T(E) =1+T(¢) (A-104)
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Now let us consider Green’s functions in media 1 as follows:
1) Evaluation of Gy (p, p):

—i R g ib@—a) =i/ k] =& |y—y/]
Ghlz,y) = 2
T,y A . k‘% — 62

By using transformation £ = k; sin w and coordinate system (p1, 61) with z—2’ = p; sin 6,
and |y — y'| = p1 cos by, the integral can be rewritten as:

de. (A-105)

_ _j —jk1p1 cos(w—01)
Gp = —L | emdkaprcostutng A-106
nE e w ( )

The integral in Eq.(A-106) has saddle point ws = 6. By saddle point technique, the
integral in Eq.(A-106) can then be given by:

_] —27 —jk1p1 cos(ws—01)—jm/4
G o jk1p1 cos(ws—61)—j
g \/k1p1|cos(w5 —91)|6

1 . .
_ e Ikip1—jm/4 (A-107)
V8mkip1

2) Evaluation of G,(p, p):

G55 —j [ e—jé(w—x’)ﬂ'\/kf—§2(9+y')F A
o= [ e T (A-108)

Similarly, by using transformation £ = k; sin w and coordinate system (p, ) with z — 2’ =
psinf and y + 1y = —pcos @, one has:

Gs(p,p) = ;—] / e~ IRPeosW=OT (k) sinw)dw, (A-109)
T Jp
where
—_— —_— 1 2
[ (kysinw) = neostw nos (A-110)

ncosw + v/ n — sin? w

The integral in Eq.(A-109) has saddle point ws, = € exists on the integration contour.
And one may also have branch point w, = Arcsin/n = 0 exist on the positive imagine
domain. We may have the contribution from the branch point w, when wy > wy, (6 > )
as in Fig. A-5. Then G can be given by:

Gs = Gy + GoU(ws — wy) = Ggq + GuU(0 — 0), (A-111)
where Gy, is the contribution from the integral on the steepest-descent path P given by:

/ 2
n cos 0 n—sin“g 1 o—ik1p—in/4

Gsd ~
ncos + \/n — sin% V8Tkip

: (A-112)
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and G, is the banch point contribution given by:

G _—]/ e‘jklpcos(w_e)f‘(klsinw)dw
Py,

:47T

:__j —jki1pcos(w—0) B
ym /Pbe f(w)dw, (A-113)

where f(w) = ['(k;sinw). One has the approximation of G as

o, | |
Gy VT VT )| et (a1

~ i [k1psin(0 — wy)]3/2 "dw

on the other hand, one has:

df(w)  —2nsinw(n — sin®w) + 2nsinw cos? w (A-115)

dw — — 2
vVn—smm“w|ncosw + Vv n —sm°w

Then, one has

wW—rWp

df(w)} T { Vw—w, —2nsinw(n — sin?w) + 2n sinw cos? w }
dw a S a2 2
b s (n cosw + /n — sin? w)

. 2
:2nsmwb cos wbe_jﬂ/2 lim AW — wy

—>|: w — Wy

n? cos® wy w—rwy \/ sin? w — sin® wy
:28111 W — jm/2 1
n _ sin®w — sin® wy,
lim
w—rwp w — Wy

2 sin wye I7/2 V2/sinw,e ™2 /2 —j7r/2( n )1/4
— = —¢ _

:n\/2 sin wy, cos wy N 704/COS Wy, n 1—n
(A-116)
Then, the lateral wave contribution from branch point can be written as:
. 1/4
sb %__‘7 2ﬁ @ —j7r/2( n ) / e—jklpcos(6—§)6j37r/4
4m [k}lpsin(e — 9_)}3/2 n l=n
1 e—jklpcos(e—é)e—jﬂ/ll ( n >1/4
V2 [kypsin(d — 6))° \1—n
1 6*j(’£1L1+k2L2+k1L3)efjﬂ'/4 Vsin 9_
C2r [k Lo 3/2 cos? f
1 —j(k1L1+k2L2+k1L3) —jﬂ'/4 1/4
- e (A-117)
ny 2w [lez} / 1—n

where 6 = arcsin y/n = arcsin (1/,/2,)
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When the current source is located at the origin as in Fig. A-7, one has L; =0, p; = p.
Then, the contributions from G4 and G can be written as

1 . .
Qo= —ikup—jm/4 A-118
n= e ( )
0 —+/n—sin*0 1 . -
GS :n COS n Sin efjklpfjﬂ/ﬁl + Gst(e _ 0), (A*]_]_g)
ncosf + \/n — sin2 0 V8mkip
1 6—jk1pcos(9—é)€—j7r/4 n 1/4
-
nV2T [kypsin(g — )] L—n
1 7j(k‘1L1+k‘2L2+k1L3) 7'].71'/4 1/4
_ e = € n (A-120)
nv2m [/ﬁLz} 1—n
3) Evaluation of Gy(p, p'):
One has:
g [ e/ Rn- oy /-y
Go(p,p) = —/ T(&)d A-121
2(p, 0) e 7o (€)d¢ ( )

By using transformation £ = ky sinw, we have:

T (ky sinw)ky cos wdw

_] 00 o—jk1 sin w(z—a')—jk1\/n—sin? w(—y)+jk1 cos wy’
Gap, p') ===
(7.7 At J_o k1 cosw

___j/ejkl[sin’w(xz')+\/nsin21U(y)COSWy/]T(kl sinw)dw
P

An
:;—i /P /M) £, () dw. (A-122)
where
g(w) = — [sinw(z — 2') + Vn — sin? w(—y) — coswy'] (A-123)
2
Folw) =T(ky sinw) = nesd (A-124)

ncosw + \/n — sin® w

The integral in Eq.(A-122) may have saddle points w; satisfy:

ga(ws) =0
(A-125)
Then, one has
cosws(z — ') — (n — sin® w,) ™2 sin w, cos w,(—y) + sinwyy’ = 0 (A-126)
On other hand, one has:
x —a' = Lysinf, + Lssin 05,
—y = L5 cos 05,
y' = —Lycosby. (A-127)
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So, Eq.(A-126) can rewritten as:

cos wy(Lysin 0y + Ly sin 05) — (n — sin? ws)’l/2 sin wg cos wgLs cos 05 — sin wy L4 cos By = 0

or  Ly(coswgsinfy — sinw, cos f) + Ls[cos wy sin @5 — (n — sin® w,) ™Y/ sin w, cos w, cos f5] = 0
(A-128)
Eq.(A-128) satisfy VL4 and Ls when
CoSs W sin f4 = sin w, cos 04
cos w, sin O = (n — sin® ws)’l/2 sin wg cos wg cos O
or coswssin @, = sinw; cos 6,
COS W, sin 0,4 oS W SN Wy
\/n — sin 6, B V/n — sin® w,
(A-129)

So we have wy = 04+ 2mm (m € N) and we choose the saddle point w,s = 6, exists on the
integration contour.

The integral in Eq.(A-122) also has a branch point w, = arcsiny/n = . Because
ws < wyp (04 < 9), we might not need the contribution from the branch point wy,.

So we have:

where G is the contribution from the integral on the steepest-descent path P given by:
—J —27 k1 qo (ws)—jm /4
Gy o—2 J)edFraa(ws)=j
2 g \| Tl )
(A-131)
On other hand, we have:
2 . .
y cos® Oy (Lysinf, Lssinfs
a2 (Ws) sin 0,4 ( cos2 0, + cos? 05 ( )
q2(ws) = — (Ly + Lz/n) (A-133)
then we have:
G2 _ G2S %—_j -2 2n cos 94 e*jkl(L4+L5\/ﬁ)*jﬂ'/4
4m ., <os® 0 (L4sin04 1 L5sin05) ncosfy + v/n — sin? 6,
1756, cos? 04 cos? 05
_2€—jk1(L4+L5\/ﬁ)—j7r/4 n\/m 1
N in2 sin sin
V 8Tk ncosQ4+\/n—sm 04 \/Lcis20i4+€:is20i5
(A-134)

When w > wy, (64 > 5) Gop is the banch point contribution given by:

—j Zﬁ |: dfz(u]):| k1 g (wp) -3 i
Gop ~ —2L : /0 — w eIk1a2(wp)+35 arg[—jgs(ws)] A-135
AT FACTSIRE Cdw ], ( )

On the other hand, we have:
¢h(wy) = — cos @ + (n — sin® §)"1/? sin A cos Oy — sin Oy’ (A-136)

Because sinf = \/n, ¢4(w) — 00. so we have Gap — 0
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