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Chapter 1

Introduction

1.1 Research Background

From the nineteenth century, electromagnetic (EM) wave has been known since the work
of J. Maxwell that describe how electric and magnetic �elds are generated by charges,
currents, and changes of the �elds [1], [2]. After that, many topics for studying and ap-
plications of the electromagnetic wave have been conducted over a century [3]. Among
the countless problems of electromagnetic, electromagnetic scattering wave always attrac-
tive and di�cult topic. During the history of development, many outstanding physicists
and mathematicians contributed to the theory of electromagnetic scattering wave [4]�[13].
Electromagnetic scattering is a general physical process, which describes and explains the
�eld behavior when the electromagnetic waves are forced to deviate from a straight trajec-
tory by one or more obstacles in the medium through which they pass. Knowledge about
scattering properties at high frequencies of objects made of lossy material is paramount
in radar applications, anti-radar designs, and high-frequency electronic device manufac-
ture. It is also an important basis for understanding radio wave propagation conditions.
From there, the optimal base station placement can be determined and compatible an-
tenna models can be developed in wireless communication applications. Although topics
on the scattering of electromagnetic waves have been widely studied with various shapes
and models for several decades, �nding reliable and e�cient solutions always remains a
challenging and unsolved problem. Nowadays, as high-speed and large-capacity mobile
communications become more popular, to ensure stable communication between wireless
communication base stations and small mobile wireless terminals, understanding radio
wave propagation and scattering behavior becomes even more signi�cant. On the other
hand, the rapid development of urban areas leads to the increase of large obstacles such
as buildings and vehicles. In there, the high-rise buildings always have the most strong in-
�uence on radio wave transmission. Because buildings come in so many di�erent shapes,
it would be extremely di�cult to create a direct solution to each building's scattering
problem. However, the common denominator is that most of the large buildings are
block-shaped, with large polygonal surfaces that can be thought of as sets of wedges.
Therefore, a more feasible solution is to �nd out the scattering behavior of each wedge
separately. Then, by summing up the scattering problem of many wedges, one can easily
evaluate and estimate the e�ect of the buildings on wave propagation.
Many solutions have been proposed for the scattering problems of electromagnetic

waves, in which several available exact solutions [14], [15] and numerical methods [16]�[23]
can be utilized for a limited number of simple shapes and small objects. Although these
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Figure 1.1: Scattering by a high building.

methods can provide highly reliable results, they consume a lot of time and memory due
to the large number of calculations, and are not ideal solutions for large objects. There-
fore, to calculate the scattering of large objects such as buildings, one needs to develop
approximation approaches that can provide acceptably fast as well as highly accurate
approximation solutions.
In the high-frequency domain, some classical approximation methods may be able to

analyze the scattering problems by large conducting objects [24]�[27], such as geometrical
optics (GO), physical optics (PO), geometrical theory of di�raction (GTD) and its ex-
tended uniform solutions. Here, GO is a ray-based method that describes the scattering
phenomena of electromagnetic waves by an object [28]�[31]. The GO technique is based
on the rule of optics ray, in which incident rays are assumed to be re�ected by the scatter-
ing objects as if the surfaces of these objects are plane at the illuminated point. The GO
scattering �elds can be obtained simply by utilizing the usual re�ection and transmission
principles of rays at the interfaces of objects. However, the limitation of the GO method
is that it does not provide information about the di�raction e�ect and the �eld behavior
in the shadowed areas of the scattering objects.
An alternative model of di�raction named GTD was propounded �rst in 1802 to over-

come the shortcomings of GO. The GTD can be known as an extension of GO, which
can describe the di�raction behavior in shadowed regions that GO ignores [32]�[36]. It
was found that in addition to the usual GO re�ected and transmitted rays, there is the
existence of di�racted rays that are excited when incident rays illuminate the vertices,
edges, or corners of an obstacle, or when the incident rays graze the object's surface. In
the above cases, GO does not provide a prescription to determine the subsequent path
of scattered rays. The behavior of di�racted rays can be described by applying several
laws of di�raction, similar to the laws of re�ection and refraction. The di�racted �eld
can be obtained by multiplying the �eld of the incident ray at the di�racted point with
an appropriate di�raction coe�cient using the Fresnel integral. The scattering �eld can
then be represented as the sum of the GO �eld and di�racted �elds. Despite solving
the di�raction failure of GO, GTD and its extensions [37]�[41] may be only applicable
to conductive objects. For penetrable objects, an extension of the uniform theory of
di�raction (HUTD) [42] were proposed to solve the radiation �eld of the lossy dielectric
objects adding the re�ection and transmission coe�cients into the UTD (uniform theory
of di�raction) formulation. However, this solution only provides the �eld behaviors in the
outside region of objects. This limitation requires us to look for a more potential solution
as physical optics (PO) approximation.
The PO approximation was �rst introduced in 1882 by Kirchho�. PO is well known
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as a simple and very e�cient method for many applications in radar, antenna, and other
electromagnetic problems. The foundation of the PO method is developed based on the
surface equivalence theorem [43]�[45]. In the high-frequency domain, this method can
be e�ciently utilized to solve scattering problems caused by the conducting objects [46]�
[51]. Here, the scattering �eld can be calculated as the radiation from the induced PO
currents excited on the illuminated surfaces of the scattered object. These PO currents
can be easily determined from the magnetic �eld of the incident wave and the surface of
the object. However, when the scattering objects are made of penetrable material, the
problem becomes more complicated due to due to the appearance of scattering phenomena
inside the object. In this case, the PO current based on the incident wave is not su�cient
to construct an accurate solution as in the case of non-penetrable objects.
To solve complicated scattering problems of penetrable objects, several possible solu-

tions based on the PO method have been proposed for both the internal and external
�elds. These solutions are also developed based on the surface equivalence theorem [52]�
[54], in which equivalent electric and magnetic currents were proposed to replace the PO
currents. These equivalent electric and magnetic currents need more informations then
the PO currents. They can be constructed based on the magnetic and electric �elds of
the incident, re�ected and transmitted GO rays. Then the scattering �elds can be de-
rived form the radiation integrations of these induced currents. For conducting objects,
the solution from electric and magnetic currents was found to obtain the same results
as the PO solution [55]. According to the above basis, uniform asymptotic solutions of
PO have been proposed to solve the di�raction problem of dielectric wedges [56], [57].
In these investigations, the singularity behaviors of the di�raction coe�cient near the
shadow boundaries of the GO rays were mended by multiplying the transition functions
with the non-uniform components. These transition functions can be obtained from the
Fresnel integral. However, these investigations have not clearly shown the accuracy of
the di�racted �eld of PO. In addition, it was found from the conducting case that the
di�racted �eld of PO doesn't satisfy the boundary and edge conditions, and this may also
continue to occur in the solutions for dielectric wedge cases [58], [59]. A solution named
HRD (hidden rays of di�raction) has also been proposed to extend a concept of HUTD
to the internal di�racted �eld [60], [61]. This solution is expected to correct the error of
PO in terms of boundary condition by using additional hidden rays. These hidden rays
were introduced to be easily traced by using the usual principle of GO in the non-physical
domain, in which the free space domain and dielectric domain are exchanged for each
other. It is also said that the HRD solution may satisfy the edge condition by modifying
the angular period of the cotangent functions [62]. Although the above approximation
solutions are e�cient tools for solving the di�raction problems of the dielectric wedge in
the high-frequency domain, their reliability has not been clearly veri�ed yet. Therefore,
we need to conduct more investigations to know the accuracy of these approximation
solutions, as well as to �nd other reliable solutions for the edge di�raction problems of
dielectric objects.
In this investigation, an extended PO (EPO) asymptotic solution has been presented

for edge di�raction by a dielectric wedge for both TM and TE-polarized plane waves. This
solution is constructed based on the equivalent currents method, in which the scattering
�eld from a dielectric wedge may be formulated as the corresponding radiation from
equivalent induced electric and magnetic currents on wedge surfaces. Unlike conventional
PO, these equivalent currents are obtained from the electric and magnetic �elds of GO
rays. While the outer induced currents are determined by the incident and re�ected GO
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rays, the currents inside the wedge are constructed from the corresponding transmitted
rays. The scattering �elds can then be found by integrating the above equivalent electric
and magnetic currents with the two-dimensional Green's function. The obtained radiation
integrals can then be evaluated by using the saddle point technique. Then, uniform
asymptotic solutions including transition functions have been obtained. Using the error
function complement, these transition functions have mended the singularity behavior
at the shadow boundaries of GO ryas. The edge di�racted �elds were represented in
terms of cotangent functions, which have one-to-one correspondences with the incident,
re�ected, and transmitted GO rays. General uni�ed formulations have then been proposed
to be applicable to any incident directions. The numerical results have been performed
to compare our EPO solution with other reference methods such as HRD and FDTD
(Finite-Di�erence Time-Domain) simulation. The observed comparison results show a
correlation between the reliability of our solution and previous methods. In addition, a
concept of lateral waves was proposed to enhance the accuracy of our current solutions.

1.2 Physical Optics Approximation

The physical optics approximation is constructed based on the surface equivalence the-
orem, which is known as a more rigorous reformulation of Huygens's principle [43], and
was introduced by Schelkuno� in 1936 [44]. This theorem is also known as the �eld equiv-
alence principle [45] or simply as the equivalence principle. According to the principle
of the equivalence theorem, the actual radiation sources within a region can be replaced
by equivalent �ctitious sources that produce a similar �eld behavior as the actual sources
within that region. Based on this principle, the radiation problems can be solved by
considering the current densities on a �ctitious closed surface surrounding the actual ob-
ject. This is known as a more rigorous improvement of the Huygens-Fresnel principle, in
which each point on the wavefront is considered as a spherical wave source. The equiv-
alent currents on the imaginary surface are determined by the uniqueness theorem in
electromagnetic.

E1,H1

S J1,M1 S

Js= � x H1

Ms= E1 x �

�

0

(a) (b)

E1,H1

Figure 1.2: Field equivalence principle model. (a) Fields E1, H1 excited by original
sources by J1, M1. (b) Fields E1, H1 excited by the equivalence surface currents Js, Ms

on S.

Based on the surface equivalence theorem, the external radiation �eld of a closed surface
can be obtained from the distribution of suitable imaginary electric and magnetic cur-
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rents according to the boundary conditions. Accordingly, the density of these equivalent
currents is chosen so that the external �elds are the same as those excited by the actual
radiation sources, while the internal �elds of the closed surface are null. Thus, one can
deduce the radiation �elds in the outside and inside regions of the surface if the density of
the equivalent current can be determined. This theorem is mathematically rigorous and
the correctness of the derived �eld depends on the accuracy of the obtained equivalent
current densities.
Let us now consider electromagnetic �elds E1, H1, which are excited by actual electric

and magnetic current sources (J1, M1) as in Fig. 1.2(a). Assuming that a closed surface
S surrounds the sources J1, M1, then the radiation �elds outside surface S can be found
from equivalent electric and magnetic currents on surface S as shown in Fig. 1.2(b).

Js =n̂×H1, (1.1)

Ms =E1 × n̂. (1.2)

where n̂ is a normal unit vector on surface S towards the outside. The reliability of
this equivalence depends on the accuracy of the �elds E1, H1 on the virtual surface S.
However, the exact determination of the �elds sometimes becomes di�cult, then one may
use the �eld approximation for evaluating the radiation problems.

E
i
, H

i

S

Object

E
s
, H

s

S

Object

E
s
, H

s

�

Js= � x H
s

Ms= E
s
 x �

(a) (b)

Figure 1.3: Field equivalence principle model. (a) Scattering �elds Es, Hs by an object
due to the incident wave Ei, H i. (b) Scattering �elds Es, Hs by the equivalence surface
currents Js, Ms on S.

Now consider the case, in which the scattering �elds Es, Hs are excited by an object
illuminated by incident �elds Ei, H i from the exterior region, as shown in Fig. 1.3(a).
The total �eld outside the object may then be represented by the summation of the
incident and scattering �elds as

E =Ei +Es (1.3)

H =H i +Hs. (1.4)

If one assumes that the scattering �elds Es, Hs are excited by the secondary radiation
sources on the object, the external scattering �elds can then be found from the equivalent
current sources Js and Ms on surface S as in Fig. 1.3(b). These surface currents can be
de�ned as:

Js =n̂×Hs, (1.5)

Ms =Es × n̂. (1.6)
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Then by integrating the above surface currents with Green's function along the surface,
the radiation �eld at the observation point r can be expressed as

Es(r) =−
∫
S

{
jωµ0Js(r

′)G(r, r′) +Ms(r
′)×∇′G(r, r′)− Js(r

′)

jωε0
· ∇′∇′G(r, r′)

]
dS′,

(1.7)

Hs(r) =−
∫
S

{
jωε0Ms(r

′)G(r, r′)− Js(r
′)×∇′G(r, r′)− Ms(r

′)

jωµ0

· ∇′∇′G(r, r′)

}
dS ′,

(1.8)

where ω, ε0 and µ0 are the angular frequency, vacuum permittivity and vacuum permeabil-
ity, respectively. ∇′ indicates di�erentiation with respect to the prime source coordinates,
and G(r, r′) is Green's function. The above formulations are mathematically rigorous,
and the obtained radiation �elds are reliable as long as one can correctly determine the
equivalent electric and magnetic currents Js and Ms. However, it is usually di�cult to
know the exact distribution of these equivalent currents.
Physical optics (PO) is a well-known high-frequency approximate technique that allows

us to solve scattering problems for electrically large conducting objects. The advantage
of PO solution is that it is able to describe the di�raction e�ect including the smooth
transition between the lit and shadowed portions of space at the shadowed boundary.
In this investigation, the PO approximation is constructed by determining the surface
�elds of the object from the geometrical optics rays and then the scattering �eld can
be calculated by integrating these �elds over the object's surface. It usually means that
the current that can be found on a tangent plane of the object is taken as the same as
the current at each point on the illuminated region of the scatterer. On the other hand,
in the shadowed regions, the current is equal to zero. Then, the scattering �eld can be
calculated approximately by an integral over these approximate currents. To ensure the
accuracy of the PO approximation, one has to rigorously comply with several constraints
before choosing this method to solve the electromagnetic scattering problems. First,
the scattering objects must be electrically large, and their surfaces must vary smoothly.
Second, it must be possible to distinguish between illuminated and non-illuminated regions
of the scattering objects.
Now, if one considers a plane wave incident on a smooth surface of a large perfectly

conducting object as in Fig. 1.4(a), the scattered �elds (Es Hs) outside the object can
be given by the re�ected �elds, while the �elds inside the conducting object are null.
According to the surface equivalent theorem, the closed surface is selected so that the
surface S is outside the scattering object, so instead of choosing the arbitrary closed
surface, one may choose most of it to coincide with the conducting parts of the physical
structure of the object as in Fig. 1.4(b). By such a choice, the external scattering �elds of
the conducting object can be found from the surface characteristics of the object for the
high-frequency domain, and the internal �eld of the object is null. The equivalent currents
can then be determined from the tangential components of the total �eld at the surface
of the object. For perfectly conducting objects, the equivalent magnetic current is equal
to zero. In addition, the equivalent electric current in the shadowed region of the object
is also zero. Thus, one only needs to determine the electric current Js on the illuminated
region from the sum of the incident and scattered �elds. In addition, considering the
characterization of the boundary S as a PEC plane, the PO approximation states that
the incident and scattered magnetic �elds at the boundary S are in phase and also have
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Figure 1.4: Physical optics approximation for conducting object: (a) Conducting object
is illuminated by the incident wave Ei, H i. (b) PO equivalent current on visual surface
S.

the same amplitude. Thus, the tangential component of the magnetic �eld on the surface
is exactly twice that of incident wave, and the electric current can then be expressed as:

Js = n̂× (H i +Hs) = 2n̂×H i. (1.9)

The electric current Js in Eq.(1.9) is called as physical optics (PO) equivalent current
JPO. Then, the complete PO formulation of the PO current density for the illuminated
and shadowed regions can be written as:

JPO =

{
2n̂×H i on illuminated surface, (1.10a)

0 on shadowed surface, (1.10b)

This di�erence in the current density between the illuminated and shadowed regions of
the object is one of the important caveats to using the PO approximation correctly, as
mentioned before. The scattering �eld can then be determined by integrating the PO
current JPO on the visual surface S with the Green's function G as Eqs.(1.7) and (1.8).

1.3 Contents of Thesis

This thesis includes six chapters.
In Chapter 2, a uniform solutions based on physical optics (PO) are represented for the

scattering problem of conducting wedges for TM and TE-polarized electromagnetic plane
waves. According to PO method, the electromagnetic scattering �elds by a conducting
wedge can be found from PO currents on illuminated surface of the wedge. This PO
currents can easily determined from the information of the magnetic �elds of the inci-
dent waves and the wedge surfaces. Then, the scattering �elds excited from these PO
currents are derived by integrating these currents with free-space Green's function. By
using the saddle point technique to solve the scattering integrals, a uniform asymptotic
solution including the cotangent functions and the error function complement of the edge
di�racted �eld has been obtained. These cotangent functions correspond one-to-one with
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the incident and re�ected GO rays. Depending on the incident direction, one has di�erent
formulations of scattering �elds corresponding to each illuminated surface. By combining
the contributions from both surfaces and carefully rearranging, uni�ed formulations were
then proposed to be applicable to any direction of the incident wave.
In Chapter 3, an extended PO approximation for the scattering problem of dielectric

wedges is proposed for both TM and TE polarizations based on previous results of the
conducting wedge problem. Di�erent from conducting case, when the incident wave il-
luminates the wedge surfaces, it excites not only the re�ected wave in the outer region,
but also the transmitted wave inside the wedge. These re�ected and transmitted rays
can be normally derived from the formulation of the incident wave by using Snell's law.
Therefore, the PO current constructed from the incident wave is not enough to be uti-
lized for calculating the scattering �elds by the dielectric wedges. Instead, the radiation
�elds of dielectric wedges can be found from equivalent electric and magnetic currents
on the dielectric wedge surfaces. Unlike conventional PO, these equivalent currents are
obtained from electric and magnetic �elds of the GO incident, re�ected and transmitted
rays outside and inside the wedge, respectively. The radiation integrals were then per-
formed separately for each pair of electric and magnetic currents of the corresponding
GO ray with Green's functions. By using the same saddle point technique as in the con-
ducting case, corresponding uniform asymptotic solutions of scattering �elds by dielectric
wedges were then obtained from these integrations. Then, the total external and internal
scattering �elds can then be obtained by combining contributions from the incident and
re�ection waves on the outside and the transmitted waves on the inside, respectively. As
same as conducting case, the di�racted �elds of the dielectric wedge also can be repre-
sented in terms of cotangent functions with the corresponding re�ection and transmission
coe�cients.
Chapter 4 presents other calculation methods for wedge di�raction of dielectric wedge as

heuristic extension of UTD (HUTD) and hidden rays of di�raction (HRD). Here, HUTD
is high frequency approximation methods, which is extended from the uniform theory
of di�raction (UTD). By adding the re�ection coe�cients, the formulation of UTD for
conducting wedge can then be applied to the scattering problem of lossy dielectric wedge.
However, the HUTD solution only describes the �eld behavior outside the dielectric wedge
and ignores the information of the internal �eld. To solve this limitation, the hidden
rays of di�raction (HRD) is represented to extend a concept of HUTD to the internal
di�racted �eld of the dielectric wedge. In this method, additional hidden rays are proposed
in the non-physical imagined region to satisfy the boundary condition. The di�raction
coe�cients of HRD solution are also illustrated by cotangent functions with modi�ed
angular period based on the edge condition.
In Chapter 5, The numerical results are performed to discuss the accuracy of extended

PO approximation method by comparison with those by other reference methods such
as HRD and FDTD simulation. The comparisons are made for both conducting and di-
electric wedge cases. Interesting precision variation between PO and HRD for conducting
and dielectric wedges can be observed from comparison results. Furthermore, the ob-
served di�erence of the internal �eld leads us to an important discovery about the missing
contributions from the lateral wave concept.
Finally, Chapter 6 shows some conclusions on our research and future research plans.

In the following discussion, the time-harmonic factor ejωt is assumed and suppressed
throughout the thesis.
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Chapter 2

Physical Optics Approximation for

Conducting Wedge

In the previous Introduction, we have reviewed over the surface equivalence theorem and
physical optics approximation method. In this chapter, a practical scattering problem
of electromagnetic scattering of electromagnetic wave by a perfectly conducting wedge
will be solved by applying PO approximation method. Based on PO approximation,
the PO current is determined on the illuminated surface of the wedge. The radiation
integrals obtained from the PO currents will be analyzed by the saddle point method.
The obtained scattering �eld will include as the re�ected and di�racted �elds. Study
on the electromagnetic scattering of the conducting wedge by PO approximation will be
presented in both TM and TE polarizations in this chapter.

2.1 Formulation of PO Approximation

According to the physical optics (PO) method, when a PEC object is illuminated by an
incident electromagnetic wave (Ei, H i), the scattering �eld (Es, Hs) outside the object
may be considered as the �eld radiated from the induced PO currents on the illuminated
surfaces. For the two-dimensional con�guration ( ∂

∂z
≡ 0), the scattering �eld (Es, Hs)

can be calculated by integrating the PO current JPO on the boundary S of the object
with the Green's function G as [15]

Es = −
∫
S

jωµ0J
PO(r′)G(r, r′)dl′, (2.1)

Hs =

∫
S

JPO(r′)×∇′G(r, r′)dl′, (2.2)

where ω and µ0 are the angular frequency and permeability, respectively. ∇′ indicates dif-
ferentiation with respect to the prime source coordinates, and G(r, r′) is Green's function,
which satis�es

(∇2 + k2)G(r, r′) = −δ(r − r′), (2.3)

where k = ω
√
ε0µ0 denotes the free space wave number. For two-dimensional problem,

one gets [36]

G(r, r′) =
1

4j
H

(2)
0 (k

√
(x− x′)2 + (y − y′)2), (2.4)
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where H
(2)
0 (k

√
(x− x′)2 + (y − y′)2) is the zero-th order Hankel function of the second

kind and can be represented as [15]

H
(2)
0 (k

√
(x− x′)2 + (y − y′)2) =

1

π

∫ ∞

−∞

e−jη(x−x′)−j
√

k2−η2|y−y′|√
k2 − η2

dη. (2.5)

If the scattering object is made by a large electric conductor, the PO current JPO can be
approximated on the object's surface as

JPO =

{
2n̂×H i on illuminated surface, (2.6a)

0 on shadowed surface, (2.6b)

where n̂ is a unit normal vector on the object's surface to the exterior observation region,
and H i denotes the magnetic �eld of incident wave. This PO current JPO can be a good
approximation as long as the scattering object is a �at perfectly electrical conducting
object and very large compared with the wavelength.
Now one considers a perfectly electrical conducting wedge as in Fig. 2.1, in which the

wedge angle is ϕw. Assuming that the wedge is illuminated by an electromagnetic incident
plane wave with incident angle ϕ0. Then, the scattering calculation may be separated into
two polarizations.
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Figure 2.1: PEC wedge: one-side illumination.

2.2 TM-Polarized Plane Wave

A TM-polarized incident plane wave can be given by:

H i=ejkx cosϕ0+jky sinϕ0 ẑ, (2.7)

Ei=

√
µ0

ε0
ejkx cosϕ0+jky sinϕ0(sinϕ0x̂−cosϕ0ŷ), (2.8)
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where k = ω
√
ε0µ0 is the wave number in free space. The illumination can be divided

into three cases depending on the direction of the incident wave. When ϕ0 < ϕw−π, only
surface OA is illuminated, then the scattering �eld can be calculated from the current
JPO
A on surface OA. On the other hand, if only surface OB is illuminated ( ϕ0 > π), the

scattering �eld is found from the corresponding PO current JPO
B . When the incident wave

illuminates both surfaces OA and OB (ϕw − π < ϕ0 < π), one may need the combination
of the two above currents. The PO current JPO

A can be found from the magnetic �eld of
the incident wave as:

JPO
A =2n̂A ×H i|y=0 = 2ejkx cosϕ0x̂. (2.9)

When surface OB is illuminated as in Fig. 2.2, the TM-polarized incident plane wave can
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Figure 2.2: PEC wedge: two-side illumination.

be rewritten by using the coordinate Ox1y1 as

H i
B =ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0)ẑ, (2.10)

Ei
B =−

√
µ0

ε0
ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0)

· [sin(ϕw − ϕ0)x̂1 + cos(ϕw − ϕ0)ŷ1] . (2.11)

Then the PO current JPO
B on surface OB can be found as:

JPO
B =2n̂B ×H i

B|y1=0 = −2ejkx1 cos(ϕw−ϕ0)x̂1. (2.12)

Then the scattering magnetic �elds can be obtained by integrating the PO currents JPO
A

and JPO
B with Green's function G as
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Figure 2.3: Integration contour for Eqs.(2.13) and (2.35) in the complex η plane.

Hs
A =

−j

4

∫
S

JPO
A

∂

∂y′
H

(2)
0 (k

√
(x− x′)2 + (y − y′)2)dS|y′=0

=
−j

4

∫ ∞

0

2ejkx
′ cosϕ0

(
±j

π

∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|dη

)
dx′ (y ≷ 0)

=
±1

2π

∫ ∞

0

∫ ∞

−∞
ejkx

′ cosϕ0e−jη(x−x′)−j
√

k2−η2|y|dηdx′ (y ≷ 0)

=
±1

2π

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)
e−jηx−j

√
k2−η2|y|dη (y ≷ 0)

=
±j

2π

∫ ∞

−∞

e−jηx−j
√

k2−η2|y|

k cosϕ0 + η
dη, (y ≷ 0) (2.13)

and

Hs
B =

−j

4

∫
S

JPO
B

∂

∂y′
H

(2)
0 (k

√
(x1 − x′

1)
2 + (y1 − y′1)

2)dS|y′1=0

=
j

4

∫ ∞

0

2ejkx
′
1 cos(ϕw−ϕ0)

(
±j

π

∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|dη

)
dx′

1 (y1 ≷ 0)

=
∓1

2π

∫ ∞

0

∫ ∞

−∞
ejkx

′
1 cos(ϕw−ϕ0)e−jη(x1−x′

1)−j
√

k2−η2|y1|dηdx′
1 (y1 ≷ 0)

=
∓1

2π

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)+jηx′

1dx′
)
e−jηx1−j

√
k2−η2|y1|dη (y1 ≷ 0)

=
∓j

2π

∫ ∞

−∞

e−jηx1−j
√

k2−η2|y1|

k cos(ϕw − ϕ0) + η
dη, (y1 ≷ 0) (2.14)

where the integration contour in η plane is given in Fig. 2.3 and Fig. 2.4. Convert to
complex plane of angle w using the transformation η = k sinw, with the cylindrical
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Figure 2.5: Integration contours C and SDP for Eqs.(2.15) and (2.16) in the complex
angular w plane: (a) ws>wp. (b) ws<wp.

coordinate (ρ, ϕ), Eq.(2.13) can be obtained as

Hs
A =

±j

2π

∫
C

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

k cosϕ0 + k sinw
d(k sinw) (ϕ ≶ π)

=
±j

2π

∫
C

cosw

cosϕ0 + sin w
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π) (2.15)

where the integration contour C runs in the complex w plane as in Fig. 2.5. Similarly, by
using the the cylindrical coordinate (ρ, ϕ′) with x1 = ρ cosϕ′ and y1 = ρ sinϕ′, Eq.(2.14)
can be obtained as

Hs
B =

∓j

2π

∫
C

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

k cos(ϕw − ϕ0) + k sinw
d(k sinw) (ϕ′ ≶ π)

=
∓j

2π

∫
C

cosw

cos(ϕw − ϕ0) + sin w
e−jkρ sin(w±ϕ′)dw, (ϕ′ ≶ π) (2.16)

where the contour C can be de�ned as in Fig. 2.5 with the di�erent position of the pole wp.
Since the above integrals in Eq.(2.15) and Eq.(2.16) cannot be analytically evaluated, the
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saddle point method and the uniform asymptotic solution may be used on the assumption
for a large k with respect to w variable. The integrals have saddle points ws and the poles
wp. By considering the location of these saddle pint and the pole, the z-component of the
scattering �elds Hs

A and Hs
B can then be obtained as

Hs
A = HA

d +HA
p , (2.17)

Hs
B = HB

d +HB
p , (2.18)

where HA
p and HB

p are the contributions from the poles, which exactly represent the
magnetic �elds of geometrical optics (GO) incident and re�ected waves, and can be given
by:

HA
p = ±ejkρ cos(ϕ0−π−|ϕ−π|)U(|ϕ−π|−ϕ0), (ϕ≶π), (2.19)

HB
p = ∓ejkρ cos(ϕw−ϕ0−π−|ϕ′−π|)U(|ϕ′ − π|−ϕw+ϕ0). (ϕ′≶π) (2.20)

HA
d and HB

d are di�racted �elds, which can be obtained by evaluating the integrals on the
SDP contour as:

HA
d =− C(kρ)

[
S−(ϕ+ ϕ0)U(π − ϕ) + S−(ϕ− ϕ0)U(ϕ− π) +

2 sinϕ

cosϕ+ cosϕ0

]
, (2.21)

HB
d =C(kρ)

[
S−(ϕ′ + ϕw − ϕ0)U(π − ϕ′) + S−(ϕ′ − ϕw + ϕ0)U(ϕ′ − π)

+
2 sinϕ′

cosϕ′ + cos(ϕw − ϕ0)

]
, (2.22)

where C(χ) = (8πχ)−1/2e−j(χ+π/4) represents the asymptotic formulation of the Green's
function in free space for the two-dimensional problem when χ is large. S±(α) is the
transition function and is de�ned as

S±(α) =
1√

πC(kρ)
ejkρ cosα sgn(π ± α)Q

[
(1 + j)

∣∣∣cos α
2

∣∣∣√kρ
]
− 1

cos(α/2)
, (2.23)

where Q(y) =
∫∞
y

e−x2
dx and sgn(x) are error function complement and sign function,

respectively. On the other hand, one has transformations:

2 sinϕ

cosϕ+ cosϕ0

=
sinϕ0 + sinϕ

cosϕ0 + cosϕ
+

sinϕ− sinϕ0

cosϕ+ cosϕ0

=
2 sin ϕ+ϕ0

2
cos ϕ−ϕ0

2

2 cos ϕ+ϕ0

2
cos ϕ−ϕ0

2

+
2 cos ϕ+ϕ0

2
sin ϕ−ϕ0

2

2 cos ϕ+ϕ0

2
cos ϕ−ϕ0

2

=
sin ϕ+ϕ0

2

cos ϕ+ϕ0

2

+
sin ϕ−ϕ0

2

cos ϕ−ϕ0

2

=
cos π−(ϕ+ϕ0)

2

sin π−(ϕ+ϕ0)
2

+
cos π−(ϕ−ϕ0)

2

sin π−(ϕ−ϕ0)
2

=cot
π − (ϕ+ ϕ0)

2
+ cot

π − (ϕ− ϕ0)

2
, (2.24)
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2 sinϕ′

cosϕ′ + cos(ϕw − ϕ0)
=
sin(ϕw − ϕ0) + sinϕ′

cos(ϕw − ϕ0) + cosϕ′ +
sinϕ′ − sin(ϕw − ϕ0)

cosϕ′ + cos(ϕw − ϕ0)

=
2 sin ϕ′+(ϕw−ϕ0)

2
cos ϕ′−(ϕw−ϕ0)

2

2 cos ϕ′+(ϕw−ϕ0)
2

cos ϕ′−(ϕw−ϕ0)
2

+
2 cos ϕ′+(ϕw−ϕ0)

2
sin ϕ′−ϕ0

2

2 cos ϕ′+ϕ0

2
cos ϕ′−(ϕw−ϕ0)

2

=
sin ϕ′+(ϕw−ϕ0)

2

cos ϕ′+(ϕw−ϕ0)
2

+
sin ϕ′−(ϕw−ϕ0)

2

cos ϕ′−(ϕw−ϕ0)
2

=
cos π−(ϕ′+ϕw−ϕ0)

2

sin π−(ϕ′+ϕw−ϕ0)
2

+
cos π−(ϕ′−ϕw+ϕ0)

2

sin π−(ϕ′−ϕw+ϕ0)
2

=cot
π − (ϕ′ + ϕw − ϕ0)

2
+ cot

π − (ϕ′ − ϕw + ϕ0)

2
. (2.25)

By using above transformations and converting ϕ′ = ϕ+2π−ϕw, the di�racted �elds HA
d

and HB
d can be rewritten as:

HA
d =− C(kρ)

[
cot

π − (ϕ− ϕ0)

2
+ S−(ϕ− ϕ0)U(ϕ− π)

+ cot
π − (ϕ+ ϕ0)

2
+ S−(ϕ+ ϕ0)U(π − ϕ)

]
, (2.26)

HB
d =− C(kρ)

[
cot

π + (ϕ− ϕ0)

2
+ S+(ϕ+ ϕ0)U(ϕw − π − ϕ)

+ cot
π + (ϕ+ ϕ0 − 2ϕw)

2
+ S+(ϕ+ ϕ0 − 2ϕw)U(ϕ+ π − ϕw)

]
.

(2.27)

The cotangent functions in Eqs.(2.26) and (2.27) have singularities, which have one-to-
one correspondences with the shadow boundaries of the incident and re�ected GO rays on
surface OA and OB, respectively. One notes that Eqs.(2.26) and (2.27) exist depending
on the incident direction. When the incident wave illuminates surface OA or OB only,
the di�racted given by only Eq.(2.26) or Eq.(2.27), respectively. On the other hand,
when both sides of wedge are illuminated, the di�raction can be calculated by the sum of
two second components in Eqs.(2.26) and (2.27). This means one need three equations to
describe exactly the behavior of di�racted �eld depending on incident direction. When the
incident direction changes, only suitable one of the three equations has to be selected to
describe the corresponding di�racted �eld behavior. This can sometimes be bothersome
for the calculation. Thus, by decomposing the contributions due to the PO currents
JPO
A and JPO

B , and by carefully rearranging the terms, a uni�ed expression containing
four cotangent functions for the di�racted �eld can be obtained. This uni�ed expression
provides valid �eld behavior for any incident direction and observation angle 0 < (ϕ, ϕ0) <
ϕw, and can be written as
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Hd = −C(kρ)

[
cot

π+(ϕ−ϕ0)

2
+S+(ϕ−ϕ0)U(ϕw−π−ϕ)U(ϕ0+π−ϕw)

+ cot
π−(ϕ−ϕ0)

2
+S−(ϕ−ϕ0)U(ϕ−π)U(π−ϕ0)

+ cot
|π−ϕ0|−ϕ

2
sgn(π−ϕ0)+S−(ϕ+ϕ0)U(π−ϕ)U(π−ϕ0)

+ cot
|π+ϕ0−ϕw|+ϕ−ϕw

2
sgn(π+ϕ0−ϕw)

+ S+(ϕ0+ϕ−2ϕw)U(ϕ+π−ϕw)U(ϕ0+π−ϕw)

]
. (2.28)

When the direction of incident wave ϕ0 changes, two of four cotangent functions in
Eq.(2.28) correspond to the non-physical rays and cancel out each other to show ex-
act behavior of the di�racted �elds. For example, when only surface OA is illuminated,
the �rst and fourth cotangent functions with their uniform expression are canceled. Then,
the remainder equations give us the contribution of di�racted due to incident and re�ected
waves from surface OA only. Same behavior also occur when only surface OB or both
sides of wedge are illuminated.
Similarly, the GO contributions in Eqs.(2.19) and (2.20) also can be rewritten with

transformation ϕ′ = ϕ+ 2π − ϕw and combined as:

Hp
z =ejkρ cos(ϕ+ϕ0)U(π − ϕ− ϕ0)U(π − ϕ0)− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0)U(π − ϕ0)

+ ejkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ π − 2ϕw + ϕ0)U(ϕ0 + π − ϕw)

− ejkρ cos(ϕ−ϕ0)U(ϕ0 − π − ϕ)U(ϕ0 + π − ϕw). (2.29)

2.3 TE-Polarized Plane Wave

For TE-polarization, the incident plane wave can be given by:

Ei =ejkx cosϕ0+jky sinϕ0 ẑ, (2.30)

H i =

√
ε0
µ0

ejkx cosϕ0+jky sinϕ0(− sinϕ0x̂+ cosϕ0ŷ). (2.31)

The TE-polarized incident wave also can be rewritten by using the coordinate Ox1y1 for
surface OB illumination as:

Ei
B =ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0)ẑ, (2.32)

H i
B =

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0)

· [sin(ϕw − ϕ0)x̂1 + cos(ϕw − ϕ0)ŷ1] . (2.33)

Then the corresponding PO currents JPO
A and JPO

B can be obtained as

JPO
A =2n̂B ×H i

A|y1=0 = 2

√
ε0
µ0

ejkx cosϕ0 sinϕ0ẑ,

JPO
B =2n̂B ×H i

B|y1=0 = 2

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)ẑ. (2.34)
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Then the scattering electric �elds can be obtained by integrating the PO currents JPO
A

and JPO
B with Green's function G as

Es
A =

−ωµ0

4

∫
S

JPO
A H

(2)
0 (k

√
(x− x′)2 + (y − y′)2)dS|y′=0

=
−ωµ0

4

∫ ∞

0

[
2

√
ε0
µ0

ejkx
′ cosϕ0 sinϕ0

1

π

∫ ∞

−∞

e−jη(x−x′)−j
√

k2−η2|y−y′|√
k2 − η2

dη

]
y′=0

dx′

=− k

2π
sinϕ0

∫ ∞

0

∫ ∞

−∞
ejkx

′ cosϕ0
e−jη(x−x′)−j

√
k2−η2|y|√

k2 − η2
dηdx′

=− k

2π
sinϕ0

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)

e−jηx−j
√

k2−η2|y|√
k2 − η2

dη

=− jk

2π
sinϕ0

∫ ∞

−∞

e−jηx−j
√

k2−η2|y|

(k cosϕ0 + η)
√
k2 − η2

dη, (2.35)

Es
B =

−ωµ0

4

∫
S

JPO
B H

(2)
0 (k

√
(x1 − x′

1)
2 + (y1 − y′1)

2)dS|y′1=0

=
−ωµ0

4

∫ ∞

0

[
2

√
ε0
µ0

ejkx
′
1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)

· 1
π

∫ ∞

−∞

e−jη(x1−x′
1)−j

√
k2−η2|y1−y′1|√

k2 − η2
dη

]
y′1=0

dx′
1

=− k

2π
sin(ϕw − ϕ0)

∫ ∞

0

∫ ∞

−∞
ejkx

′
1 cos(ϕω−ϕ0)

e−jη(x1−x′
1)−j

√
k2−η2|y1|√

k2 − η2
dηdx′

1

=− k

2π
sin(ϕw − ϕ0)

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕω−ϕ0)+jηx′

1dx′
1

)
e−jηx1−j

√
k2−η2|y1|√

k2 − η2
dη

=− jk

2π
sin(ϕw − ϕ0)

∫ ∞

−∞

e−jηx1−j
√

k2−η2|y1|

{k cos(ϕw − ϕ0) + η}
√
k2 − η2

dη. (2.36)

Converting to plane of complex angle w with the transformation η = k sinw, and using
the cylindrical coordinates (ρ, ϕ) and (ρ, ϕ′), Eqs.(2.35) and (2.36) can be rewritten as

Es
A =− j

2π
sinϕ0

∫
C

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

cosϕ0 + sinw
dw

=− j

2π
sinϕ0

∫
C

e−jkρ sin(w±ϕ)

cosϕ0 + sinw
dw. (2.37)

Es
B =− j

2π
sin(ϕw − ϕ0)

∫
C

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

cos(ϕw − ϕ0) + sinw
dw

=− j

2π
sin(ϕw − ϕ0)

∫
C

e−jkρ sin(w±ϕ′)

cos(ϕw − ϕ0) + sinw
dw, (2.38)

where the contour C can be de�ned as in Fig. 2.5. By the same manner as TM polar-
ization, the integrals in Eq.(2.37) and Eq.(2.38) can be solved by using the saddle point
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technique with respect to w variable. Then, the uniform asymptotic solutions of the
scattering electric �elds Es

A and Es
B can be obtained as

Es
A = EA

d + EA
p , (2.39)

Es
B = EB

d + EB
p , (2.40)

where EA
p and EB

p also represents the contribution of geometrical optics (GO) incident
and re�ected rays as:

EA
p =− ejkρ cos(ϕ0−π−|ϕ−π|)U(|ϕ− π| − ϕ0)

=− ejkρ cos(ϕ+ϕ0)U(π − ϕ− ϕ0)−−E0e
jkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0), (2.41)

EB
p =− ejkρ cos(ϕw−ϕ0−π−|ϕ′−π|)U(|ϕ′ − π| − ϕw + ϕ0)

= −ejkρ cos(ϕ−ϕ0|)U(ϕ0 − π − ϕ)− E0e
jkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ ϕ0 + π − 2ϕw), (2.42)

and EA
d and EB

d are di�racted �elds, which can be written as:

EA
d =− C(kρ)

[
S−(ϕ− ϕ0)U(ϕ− π)− S−(ϕ+ ϕ0)U(π − ϕ)− 2 sinϕ0

cosϕ+ cosϕ0

]
, (2.43)

EB
d =C(kρ)

[
S−(ϕ′ + ϕw − ϕ0)U(π − ϕ′)− S−(ϕ′ − ϕw + ϕ0)U(ϕ′ − π)

+
2 sin(ϕw − ϕ0)

cosϕ′ + cos(ϕw − ϕ0)

]
, (2.44)

One then has the following transformations:

−2 sinϕ0

cosϕ+ cosϕ0

=
− sinϕ0 + sinϕ

cosϕ0 + cosϕ
− sinϕ0 + sinϕ

cosϕ+ cosϕ0

=
2 cos ϕ+ϕ0

2
sin ϕ−ϕ0

2

2 cos ϕ+ϕ0

2
cos ϕ−ϕ0

2

−
2 sin ϕ+ϕ0

2
cos ϕ−ϕ0

2

2 cos ϕ+ϕ0

2
cos ϕ−ϕ0

2

=
sin ϕ−ϕ0

2

cos ϕ−ϕ0

2

−
sin ϕ+ϕ0

2

cos ϕ+ϕ0

2

=
cos π−(ϕ−ϕ0)

2

sin π−(ϕ−ϕ0)
2

−
cos π−(ϕ+ϕ0)

2

sin π−(ϕ+ϕ0)
2

=cot
π − (ϕ− ϕ0)

2
− cot

π − (ϕ+ ϕ0)

2
, (2.45)

2 sin(ϕw − ϕ0)

cosϕ′ + cos(ϕw − ϕ0)
=
sinϕ′ + sin(ϕw − ϕ0)

cosϕ′ + cos(ϕw − ϕ0)
− sinϕ′ − sin(ϕw − ϕ0)

cosϕ′ + cos(ϕw − ϕ0)

=
2 sin ϕ′+(ϕw−ϕ0)

2
cos ϕ′−(ϕw−ϕ0)

2

2 cos ϕ′+(ϕw−ϕ0)
2

cos ϕ′−(ϕw−ϕ0)
2

−
2 cos ϕ′+(ϕw−ϕ0)

2
sin ϕ′−ϕ0

2

2 cos ϕ′+ϕ0

2
cos ϕ′−(ϕw−ϕ0)

2

=
sin ϕ′+(ϕw−ϕ0)

2

cos ϕ′+(ϕw−ϕ0)
2

−
sin ϕ′−(ϕw−ϕ0)

2

cos ϕ′−(ϕw−ϕ0)
2

=
cos π−(ϕ′+ϕw−ϕ0)

2

sin π−(ϕ′+ϕw−ϕ0)
2

−
cos π−(ϕ′−ϕw+ϕ0)

2

sin π−(ϕ′−ϕw+ϕ0)
2

=cot
π − (ϕ′ + ϕw − ϕ0)

2
− cot

π − (ϕ′ − ϕw + ϕ0)

2
. (2.46)
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By using above transformations and converting ϕ′ = ϕ+2π−ϕw, the di�racted �elds EA
d

and EB
d can be rewritten as:

EA
d =− C(kρ)

[
cot

π − (ϕ− ϕ0)

2
+ S−(ϕ− ϕ0)U(ϕ− π)

− cot
π − (ϕ+ ϕ0)

2
− S−(ϕ+ ϕ0)U(π − ϕ)

]
, (2.47)

EB
d =− C(kρ)

[
cot

π + (ϕ− ϕ0)

2
+ S+(ϕ+ ϕ0)U(ϕw − π − ϕ)

− cot
π + (ϕ+ ϕ0 − 2ϕw)

2
− S+(ϕ+ ϕ0 − 2ϕw)U(ϕ+ π − ϕw)

]
.

(2.48)

As same as TM polarization case, the singularities of the cotangent functions in Eqs.(2.47)
and (2.48) correspond to the shadow boundaries of the incident and re�ected GO rays
on surface OA and OB, respectively. One also can see that the di�racted �eld of TE
polarization need three separate equation to describe the �eld behavior when the incident
direction changes. Then, by decomposing the contributions due to the PO currents JPO

A

and JPO
B , by carefully rearranging the terms, a uni�ed expression for the di�racted �eld

can be obtained as

Ed = −C(kρ)

[
cot

π+(ϕ−ϕ0)

2
+S+(ϕ−ϕ0)U(ϕw−π−ϕ)U(ϕ0+π−ϕw)

+ cot
π−(ϕ−ϕ0)

2
+S−(ϕ−ϕ0)U(ϕ−π)U(π−ϕ0)

− cot
|π−ϕ0|−ϕ

2
−S−(ϕ+ϕ0)U(π−ϕ)U(π−ϕ0)

− cot
|π+ϕ0−ϕw|+ϕ−ϕw

2

− S+(ϕ0+ϕ−2ϕw)U(ϕ+π−ϕw)U(ϕ0+π−ϕw)

]
. (2.49)

When the incident angle ϕ0 changes, the cancellation between two of four cotangent
functions also occurs to create exact behavior of di�racted �eld as TM polarization in
previous section. However, one can see that Eq.(2.49) doesn't need the sign functions to
have this cancellation as the formulation of TM-polarization. This is due to the di�erence
of phase between two polarizations. Similarly, the GO contributions also can then be
combined as:

Êp
z =− ejkρ cos(ϕ+ϕ0)U(π − ϕ− ϕ0)U(π − ϕ0)− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0)U(π − ϕ0)

− ejkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ π − 2ϕw + ϕ0)U(ϕ0 + π − ϕw)

− ejkρ cos(ϕ−ϕ0)U(ϕ0 − π − ϕ)U(ϕ0 + π − ϕw). (2.50)

Four terms in Eq.(2.50) are exactly equal to the electric �eld of the incident and re�ected
GO waves on surfaces OA and OB, respectively.
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Chapter 3

Extended Physical Optics

Approximation for Dielectric Wedge

In previous chapter, uniform asymptotic solution based on PO method have been pre-
sented for scattering problem of conducting wedge. Based on results of the conducting
wedge problem, an extended PO approximation for the scattering problem of dielectric
wedges is proposed in this chapter. In this dielectric wedge case, a rather �at-angle wedge
is selected to avoid the multiple internal re�ections of the transmitted. The radiation
�elds of dielectric wedges can be found from equivalent electric and magnetic currents,
which are found from electric and magnetic �elds of the GO incident, re�ected and trans-
mitted waves. Uniform asymptotic solutions of scattering �elds by dielectric wedges were
then obtained from the integrations for both TM and TE polarizations.

3.1 Extended PO Based on Equivalent Currents

As mentioned before, when the incident wave illuminates a dielectric wedge, it excites the
re�ected in the outside and transmitted waves in the inside. Accordingly, the PO currents
determined by the incident wave are not enough to solve scattering problem of penetrable
objects. In this case, the equivalent electric and magnetic currents can be utilized to
calculate the scattering �eld. These induced currents can be found from the total of GO
�elds as:

J = n̂×H , (3.1)

M = E × n̂. (3.2)

where H and E denote the magnetic and electric �elds, respectively. For the outside
region of wedge, the total �eld may be given by the sum of incident and re�ected waves,
while the internal �eld is determined by the transmitted wave. For two-dimensional
objects, the current density is distributed along the boundary length C of the object.
Then, the integrals of the scattering �elds (Es, Hs) in Eq.(1.7) and (1.8) can be rewritten
by integral along the length of the object as

Es = −
∫
C

[
jωµJ(r′)G(r, r′)+M(r′)×∇′G(r, r′)

]
dl′, (3.3)

Hs = −
∫
C

[
jωεM (r′)G(r, r′)−J(r′)×∇′G(r, r′)

]
dl′, (3.4)

20



where ω, ε and µ are the angular frequency, permittivity and permeability, respectively.
And two-dimensional Green's function G(r, r′) can be found in Eq.(2.4).
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Figure 3.1: Dielectric wedge.

Now, one considers a dielectric wedge of the dielectric constant εr and the wedge angle
is ϕw as in Fig. 3.1. Assuming that the dielectric wedge is illuminated by an incident
plane wave. Then, the equivalent electric and magnetic currents outside wedge can be
expressed as:

J ex =n̂A × (H i +Hr), (3.5)

M ex =(Ei +Er)× n̂A. (3.6)

Inside the wedge, the electric and magnetic currents may be given by:

J in =− n̂A ×Ht (3.7)

M in =Et × (−n̂A). (3.8)

From these equivalent currents, the scattering �eld can then be calculated separately in
two polarization cases as follows:

3.2 TM-Polarized Plane Wave

As represented before, a TM-polarized incident plane wave is given by:

H i=ejkx cosϕ0+jky sinϕ0 ẑ, (3.9)

Ei=

√
µ0

ε0
ejkx cosϕ0+jky sinϕ0(sinϕ0x̂−cosϕ0ŷ), (3.10)

When the incident illuminates surface OA of the dielectric wedge, it excites the scatter-
ing �elds in both exterior and interior regions of the dielectric wedge. Therefore, The
calculations can be performed sequentially as follows: the re�ected wave (Hr

A, E
r
A) in

the outside region and transmitted wave (Ht
A, E

t
A) in the inside region. Accordingly, the

external and internal �elds can be calculated sequentially as follows.
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Figure 3.2: Outside dielectric wedge: surface OA is illuminated.

3.2.1 Exterior Field

Outside the wedge, the incident wave excites the re�ected wave (Hr
A, E

r
A) as:

Hr
A=ΓAe

jkx cosϕ0−jky sinϕ0 ẑ, (3.11)

Er
A=−ΓA

√
µ0

ε0
ejkx cosϕ0−jky sinϕ0(sinϕ0x̂+cosϕ0ŷ), (3.12)

where ΓA is the corresponding re�ection coe�cient on surface OA and can be written as:

ΓA =
εr sinϕ0 −

√
εr − cos2 ϕ0

εr sinϕ0 +
√

εr − cos2 ϕ0

. (3.13)

Then, the external equivalent currents J ex
A and M ex

A can be found from the magnetic and
electric �elds of above GO rays. Accordingly, one may obtain the corresponding equivalent
electric and magnetic currents on surface OA from the formulations of the incident and
re�ected waves, respectively as:

J iA =n̂A ×H i|y=0 = ejkx cosϕ0x̂ (3.14)

M iA =Ei × n̂A|y=0 =

√
µ0

ε0
ejkx cosϕ0 sinϕ0ẑ (3.15)

J rA =n̂A ×Hr
A|y=0 = ΓAe

jkx cosϕ0x̂ (3.16)

M rA =Er
A × n̂A||y=0 = −ΓA

√
µ0

ε0
ejkx cosϕ0 sinϕ0ẑ. (3.17)

By substituting above equivalent currents into Eq.(3.4), the z-component of the scattering
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Figure 3.3: Integration contour for Eqs.(3.18) and (3.19) in the complex η plane.

�elds due to incident and re�ected waves on surface OA can be obtained as:

H iA
s =−

∫
C

[
jωε0M

iA(r′)G− J iA×∇′G

]
dl′

=

∫ ∞

0

ejkx
′ cosϕ0

(
− jk sinϕ0G+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

ejkx
′ cosϕ0

(
−k sinϕ0√
k2 − η2

± 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|dη

)
dx′ (y ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|ejkx

′ cosϕ0

(
−k sinϕ0√
k2 − η2

± 1

)
1

4π
dηdx′ (y ≷ 0)

=
1

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)(

−k sinϕ0√
k2 − η2

± 1

)
e−jηx−j

√
k2−η2|y|dη (y ≷ 0)

=
j

4π

∫ ∞

−∞

(
−k sinϕ0√
k2 − η2

±1

)
e−jηx−j

√
k2−η2|y|

(k cosϕ0+η)
dη, (y ≷ 0) (3.18)

HrA
s =−

∫
C

[
jωε0M

rA(r′)G− J rA×∇′G

]
dl′

=

∫ ∞

0

ΓAe
jkx′ cosϕ0

(
jk sinϕ0G+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

ΓAe
jkx′ cosϕ0

(
k sinϕ0√
k2 − η2

± 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|dη

)
dx′ (y ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
ΓAe

−jη(x−x′)−j
√

k2−η2|y|ejkx
′ cosϕ0

(
k sinϕ0√
k2 − η2

± 1

)
1

4π
dηdx′ (y ≷ 0)

=
ΓA

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)(

k sinϕ0√
k2 − η2

± 1

)
e−jηx−j

√
k2−η2|y|dη (y ≷ 0)

=
jΓA

4π

∫ ∞

−∞

(
k sinϕ0√
k2 − η2

±1

)
e−jηx−j

√
k2−η2|y|

(k cosϕ0+η)
dη (y ≷ 0) (3.19)
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Figure 3.4: Integration contours C and SDP for Eqs.(3.20) and (3.21) in the complex
angular w plane: (a) ws>wp. (b) ws<wp.

Convert to complex plane of angle w using the transformation η = k sinw, with the
cylindrical coordinate (ρ, ϕ), Eqs.(3.18) and (3.19) can be rewritten as:

H iA
s =

j

4π

∫
C

k(− sinϕ0±cosw)

k cosw

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

k(cosϕ0+sinw)
k coswdw (ϕ ≶ π)

=
j

4π

∫
C

− sinϕ0±cosw

cosϕ0+sinw
e−jkρ(sinw cosϕ±cosw sinϕ)dw (ϕ ≶ π)

=
±j

4π

∫
C

cot
π/2+w±ϕ0

2
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π) (3.20)

HrA
s =

jΓA

4π

∫
C

k(sinϕ0±cosw)

k cosw

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

k(cosϕ0+sinw)
k coswdw (ϕ ≶ π)

=
jΓA

4π

∫
C

sinϕ0±cosw

cosϕ0+sinw
e−jkρ(sinw cosϕ±cosw sinϕ)dw (ϕ ≶ π)

=
±jΓA

4π

∫
C

cot
π/2+w∓ϕ0

2
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π) (3.21)

where the contour C can be de�ned as in Fig. 3.4. By using saddle point technique in
the same manner of the PEC wedge case, uniform asymptotic solutions for H iA

s and HrA
s

can be obtained as:

H iA
s =H iA

d +H iA
p (3.22)

H iA
p =− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0) (3.23)

HrA
s =HrA

d +HrA
p (3.24)

HrA
p =ΓAe

jkρ cos(ϕ+ϕ0)U(π − ϕ0 − ϕ), (3.25)

where H iA
d and HrA

d present the di�racted �eld contributions and can be given by:

H iA
d =− C(kρ)

[
cot

π − (ϕ− ϕ0)

2
+S−(ϕ−ϕ0)U(ϕ− π)

]
(3.26)

HrA
d =− C(kρ)

[
ΓA cot

π−(ϕ+ϕ0)

2
+ ΓAS

−(ϕ+ϕ0)U(π−ϕ)

]
(3.27)
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When surface OB is illuminated, the corresponding re�ected wave (Hr
B, E

r
B) can be
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Figure 3.5: Outside dielectric wedge: surface OB is illuminated.

written in the coordinate Ox1y1 as:

Hr
B=ΓBe

jkx1 cos(ϕw−ϕ0)+jky1(ϕw−sinϕ0)ẑ, (3.28)

Er
B=ΓB

√
µ0

ε0
ejkx1 cos(ϕw−ϕ0)+jk1y sin(ϕw−ϕ0)[sin(ϕw − ϕ0)x̂−cos(ϕw − ϕ0)ŷ], (3.29)

where the re�ection coe�cient ΓB from surface OB is de�ned as:

ΓB =
εr sin(π + ϕ0 − ϕw)−

√
εr − cos2(π + ϕ0 − ϕw)

εr sin(π + ϕ0 − ϕw) +
√
εr − cos2(π + ϕ0 − ϕw)

, (3.30)

From the GO incident and re�ected rays on surface OB, one can de�ne external currents
J ex
B and M ex

B . The electric and magnetic currents due to the incident and re�ected waves
on surface OB then can be obtained separately as:

J iB =n̂B ×H i
B|y1=0 = −ejkx1 cos(ϕw−ϕ0)x̂1, (3.31)

M iB =Ei × n̂B|y1=0 =

√
µ0

ε0
ejkx1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)ẑ, (3.32)

J rB =n̂B ×Hr
B|y1=0 = −ΓBe

jkx1 cos(ϕw−ϕ0)x̂1, (3.33)

M rB =Er
B × n̂B||y1=0 = −ΓB

√
µ0

ε0
ejkx1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)ẑ. (3.34)

Then, the z-component of the scattering �elds due to incident and re�ected waves on
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Figure 3.6: Integration contour for Eqs.(3.35) and (3.36) in the complex η plane.

surface OB can also be obtained as:

H iB
s =−

∫
C

[
jωε0M

iB(r′)G− J iB×∇′G

]
dl′

=

∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)

(
− jk sin(ϕw − ϕ0)G− ∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|dη

)
dx′

1 (y1 ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|ejkx
′
1 cos(ϕw−ϕ0)

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π
dηdx′

1 (y1 ≷ 0)

=
1

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)+jηx′

1dx′
1

)(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
e−jηx1−j

√
k2−η2|y1|dη (y1 ≷ 0)

=
j

4π

∫ ∞

−∞

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓1

)
e−jηx1−j

√
k2−η2|y1|

k cos(ϕw − ϕ0)+η
dη (y1 ≷ 0) (3.35)

HrB
s =−

∫
C

[
jωε0M

rB(r′)G− J rB×∇′G

]
dl′

=

∫ ∞

0

ΓBe
jkx′

1 cos(ϕw−ϕ0)

(
jk sin(ϕw − ϕ0)G− ∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

ΓBe
jkx′

1 cos(ϕw−ϕ0)

(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|dη

)
dx′

1 (y1 ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
ΓBe

−jη(x1−x′
1)−j

√
k2−η2|y1|ejkx

′
1 cos(ϕw−ϕ0)

(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π
dηdx′

1 (y1 ≷ 0)

=
ΓB

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)+jηx′

1dx′
1

)(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
e−jηx1−j

√
k2−η2|y1|dη (y1 ≷ 0)

=
jΓB

4π

∫ ∞

−∞

(
k sin(ϕw − ϕ0)√

k2 − η2
∓1

)
e−jηx1−j

√
k2−η2|y1|

k cos(ϕw − ϕ0)+η
dη (y1 ≷ 0) (3.36)
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Convert to complex plane of angle w using the transformation η = k sinw, with the
cylindrical coordinate (ρ, ϕ′), Eqs.(3.35) and (3.36) can be rewritten as:

H iB
s =

j

4π

∫
C

k(− sin(ϕw − ϕ0)∓cosw)

k cosw

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

k(cos(ϕw − ϕ0)+sinw)
k coswdw (ϕ′ ≶ π)

=
j

4π

∫
C

− sin(ϕw − ϕ0)∓cosw

cos(ϕw − ϕ0)+sinw
e−jkρ(sinw cosϕ′±cosw sinϕ′)dw (ϕ′ ≶ π)

=
∓j

4π

∫
C

cot
π/2+w∓(ϕw − ϕ0)

2
e−jkρ sin(w±ϕ′)dw, (ϕ′ ≶ π) (3.37)

HrB
s =

jΓB

4π

∫
C

k(sin(ϕw − ϕ0)∓cosw)

k cosw

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

k(cos(ϕw − ϕ0)+sinw)
k coswdw (ϕ′ ≶ π)

=
jΓB

4π

∫
C

sin(ϕw − ϕ0)∓cosw

cos(ϕw − ϕ0)+sinw
e−jkρ(sinw cosϕ′±cosw sinϕ′)dw (ϕ′ ≶ π)

=
∓jΓB

4π

∫
C

cot
π/2+w±(ϕw − ϕ0)

2
e−jkρ sin(w±ϕ′)dw, (ϕ′ ≶ π) (3.38)

where the contour C can be de�ned similarly as in Fig. 3.4 with the di�erent position of
the pole wp. By using saddle point technique, uniform asymptotic solutions for H iB

s and
HrB

s can be obtained as:

H iB
s =H iB

d +H iB
p (3.39)

H iB
p =− ejkρ cos(ϕ

′+ϕw−ϕ0)U(π − ϕw + ϕ0 − ϕ′)

=− ejkρ cos(ϕ−ϕ0)Uϕ0 − π − ϕ), (3.40)

HrB
s =HrB

d +HrB
p (3.41)

HrB
p =ΓBe

jkρ cos(ϕ′−ϕw+ϕ0)U(ϕ′ − π − ϕw + ϕ0)

=ΓBe
jkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ ϕ0 + π − 2ϕw). (3.42)

where the di�racted �elds H iB
d and HrB

d can be given by:

H iB
d =− C(kρ)

[
− cot

π−(ϕ′+ ϕw −ϕ0)

2
−S−(ϕ′+ ϕw −ϕ0)U(π−ϕ′)

]
=− C(kρ)

[
cot

π+(ϕ−ϕ0)

2
+S+(ϕ−ϕ0)U(ϕw − π−ϕ)

]
(3.43)

HrB
d =− C(kρ)

[
− ΓB cot

π − (ϕ′ − ϕw + ϕ0)

2
− ΓBS

−(ϕ′− ϕw +ϕ0)U(ϕ′ − π)

]
=− C(kρ)

[
ΓB cot

π + (ϕ0 + ϕ− 2ϕw)

2
+ ΓBS

+(ϕ0 + ϕ− 2ϕw)U(π + ϕ− ϕw)

]
.

(3.44)
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by considering the incident direction, one has the uni�ed formulation of di�racted �eld
outside the wedge as:

HOut
d = −C(kρ)

[
cot

π − (ϕ− ϕ0)

2
U(ϕw − π−ϕ0) +S−(ϕ−ϕ0)U(ϕ− π)U(ϕw − π−ϕ0)

+ cot
π+(ϕ−ϕ0)

2
U(ϕ0 − π) +S+(ϕ−ϕ0)U(ϕw − π−ϕ)U(ϕ0 − π)

+ ΓA cot
π−(ϕ+ϕ0)

2
U(π − ϕ0) + ΓAS

−(ϕ+ϕ0)U(π−ϕ)U(π − ϕ0)

+ ΓB cot
π + (ϕ0 + ϕ− 2ϕw)

2
U(π + ϕ0 − ϕw) + ΓBS

+(ϕ0 + ϕ− 2ϕw)

· U(π + ϕ− ϕw)U(π + ϕ0 − ϕw)

]
. (3.45)

Similarly, one can also obtain uni�ed formulation for GO contribution as:

HOut
p =− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0)U(ϕw − π−ϕ0)

− ejkρ cos(ϕ−ϕ0)Uϕ0 − π − ϕ)U(ϕ0 − π)

+ ΓAe
jkρ cos(ϕ+ϕ0)U(π − ϕ0 − ϕ)U(π − ϕ0)

+ ΓBe
jkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ ϕ0 + π − 2ϕw)U(ϕ0 + π − ϕw). (3.46)

When the dielectric constant εr tends to in�nity (the dielectric wedge become a PEC
wedge), the re�ection coe�cients ΓA and ΓB become a unit. Accordingly, the resulting
di�racted �eld HOut

d in Eqs.(3.45) becomes exactly the same as the one formulated by the
PO formulation.

3.2.2 Interior Field
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Figure 3.7: Inside dielectric wedge: surface OA is illuminated.

Inside the dielectric wedge, the transmitted wave (Ht
A, E

t
A) excited by the incident
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Figure 3.8: Integration contour for Eq.(3.53) in the complex η plane.

wave from surface OA can be given by:

Ht
A=TAe

−jk1x cosϕt
A−jk1y sinϕt

Aẑ, (3.47)

Et
A=TA

√
µ0

εrε0
e−jk1x cosϕt

A−jk1y sinϕt
A(−sinϕt

Ax̂+cosϕt
Aŷ), (3.48)

with k1 (= ω
√
εrε0µ0) is the wave number inside dielectric wedge. ϕt

A (⩾ π) is the
transmitted angle and is de�ned as:

ϕt
A = π + arccos(

cosϕ0√
εr

) (3.49)

TA is the transmission coe�cient from surface OA and given by:

TA = 1 + ΓA =
2εr sinϕ0

εr sinϕ0 +
√
εr − cos2 ϕ0

. (3.50)

Then the corresponding internal magnetic and electric currents due to transmitted wave
(Ht

A, E
t
A) can be obtained as:

J in
A =J tA = (−n̂A)×Ht

A|y=0 = −TAe
−jk1x cosϕt

Ax̂ (3.51)

M in
A =M tA = Et

A × (−n̂A)||y=0 = TA

√
µ0

εrε0
e−jk1x cosϕt

A sinϕt
Aẑ. (3.52)

Then, the scattering magnetic �eld excited by the transmitted wave (Ht
A, E

t
A) can be
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represented as:

HtA
s =−

∫
C

[
jωεrε0M

tA(r′)G− J tA×∇′G

]
dl′

=

∫ ∞

0

−TAe
−jk1x′ cosϕt

A

(
jk1 sinϕ

t
AG+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

−TAe
−jk1x′ cosϕt

A

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k21−η2|y|dη

)
dx′

=

∫ ∞

0

∫ ∞

−∞
−TAe

−jη(x−x′)−j
√

k21−η2|y|e−jk1x′ cosϕt
A

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
1

4π
dηdx′

=
−TA

4π

∫ ∞

−∞

(∫ ∞

0

e−jk1x′ cosϕt
A+jηx′

dx′
)(

k1 sinϕ
t
A√

k2
1 − η2

− 1

)
e−jηx−j

√
k21−η2|y|dη

=
−jTA

4π

∫ ∞

−∞

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
e−jηx−j

√
k21−η2|y|

−k1 cosϕt
A+η

dη. (3.53)

Convert to complex plane of angle w using the transformation η = k1 sinw, with the
cylindrical coordinate (ρ, ϕ), Eq.(3.53) can be rewritten as:

HtA
s =

−jTA

4π

∫
C

k1(sinϕ
t
A − cosw)

k1 cosw

e−jk1ρ sinw cosϕ+jk1ρ cosw sinϕ

k1(− cosϕt
A+sinw)

k1 coswdw

=
−jTA

4π

∫
C

sinϕt
A − cosw

− cosϕt
A + sinw

e−jk1ρ(sinw cosϕ−cosw sinϕ)dw

=
−jΓA

4π

∫
C

cot
ϕt
A − w + π/2

2
e−jk1ρ sin(w−ϕ)dw. (3.54)

The contour C can be de�ned similarly as in Fig. 3.4, where the position of the pole
wp changes depending on the transmitted angle ϕt

A. By using saddle point technique,
uniform asymptotic solution for HtA

s can be obtained as:

HtA
s =HtA

d +HtA
p (3.55)

HtA
p =TAe

−jk1ρ cos(ϕ−ϕt
A)U(ϕ− ϕt

A), (3.56)

where HtA
d represents the di�racted �eld contributions, and can be given by:

HtA
d =− C(k1ρ)

[
TA cot

ϕ−ϕt
A

2
−TAS

−(π−ϕt
A+ϕ)U(ϕ−ϕw)

]
. (3.57)

The contribution from HtA
p is exactly equal to the magnetic �eld of transmitted wave

from surface OA.
When surface OB is illuminated, one may also have transmitted wave (Ht

B, E
t
B) from

surface OB, which can be written in the coordinate system Ox1y1 as:

Ht
B=TBe

−jk1x1 cos(ϕt
B−ϕw)−jk1y1 sinϕt

Aẑ, (3.58)

Et
B=TB

√
µ0

εrε0
e−jk1x1 cos(ϕt

B−ϕw)−jk1y1 sin(ϕt
B−ϕw)[−sin(ϕt

B − ϕw)x̂1+cos(ϕt
B − ϕw)ŷ1], (3.59)
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Figure 3.9: Inside dielectric wedge: surface OB is illuminated.

where the transmitted angle ϕt
B and the transmission coe�cient TB are de�ned as:

ϕt
B =ϕw + arccos

cos(π + ϕ0 − ϕw)√
εr

(3.60)

TB =1 + ΓB =
2εr sin(π + ϕ0 − ϕw)

εr sin(π + ϕ0 − ϕw) +
√
εr − cos2(π + ϕ0 − ϕw)

. (3.61)

Then, the internal equivalent currents J in
B and M in

B can be derived as:

J in
B =J tB = (−n̂B)×Ht

B|y1=0 = TBe
−jk1x1 cos(ϕt

B−ϕw)x̂1 (3.62)

M in
B =M tB = Et

B × (−n̂B)||y1=0 = −TB

√
µ0

εrε0
e−jk1x1 cos(ϕt

B−ϕw) sin(ϕt
B − ϕw)ẑ. (3.63)

Then, one has the z-component of the scattering �elds due to the transmitted wave on
surface OB as:

HtB
s =−

∫
C

[
jωεrε0M

tB(r′)G− J tB×∇′G

]
dl′

=

∫ ∞

0

TBe
−jk1x′

1 cos(ϕ
t
B−ϕw)

(
jk1 sin(ϕ

t
B − ϕw)G+

∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

TBe
−jk1x′

1 cos(ϕ
t
B−ϕw)

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k21−η2|y1|dη

)
dx′

1

=

∫ ∞

0

∫ ∞

−∞
TBe

−jη(x1−x′
1)−j

√
k21−η2y1e−jk1x′

1 cos(ϕ
t
B−ϕw)

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
1

4π
dηdx′

1

=
TB

4π

∫ ∞

−∞

(∫ ∞

0

e−jk1x′
1 cos(ϕ

t
B−ϕw)+jηx′

1dx′
1

)(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
e−jηx1−j

√
k21−η2y1dη

=
jTB

4π

∫ ∞

−∞

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
e−jηx1−j

√
k21−η2y1

−k1 cos(ϕt
B − ϕw)+η

dη. (3.64)
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Convert to complex plane of angle w using the transformation η = k1 sinw, with the
cylindrical coordinate (ρ, ϕ′), Eq.(3.64) can be rewritten as:

HtB
s =

jTB

4π

∫
C

k1(sin(ϕ
t
B − ϕw) + cosw)

k1 cosw

e−jk1ρ sinw cosϕ′−jk1ρ cosw sinϕ′

k1(− cos(ϕt
B − ϕw)+sinw)

k1 coswdw

=
jTB

4π

∫
C

sin(ϕt
B − ϕw) + cosw

− cos(ϕt
B − ϕw) + sinw

e−jk1ρ(sinw cosϕ′+cosw sinϕ′)dw

=
jΓB

4π

∫
C

cot
ϕt
B − ϕw + w − π/2

2
e−jk1ρ sin(w+ϕ′)dw, (3.65)

where the contour C can be de�ned similarly as in Fig. 3.4, and the position of the
pole wp depends on the transmitted angle ϕt

B. By using saddle point technique, uniform
asymptotic solution for HtB

s can be obtained as:

HtB
s =HtB

d +HtB
p (3.66)

HtB
p =TBe

−jk1ρ cos(ϕ′−ϕt
B+ϕw)U(ϕt

B − ϕw − ϕ′), (3.67)

where HtB
d represents the di�racted �eld contributions, and can be given by:

HtB
d =− C(k1ρ)

[
− TB cot

ϕ′ − ϕt
B + ϕw

2
+TBS

−(π− ϕt
B + ϕw +ϕ′)U(2π −ϕw − ϕ′)U(ϕ′)

]
.

(3.68)

By converting ϕ′ = ϕ− ϕw, H
tB
p and HtB

d can be rewritten as:

HtB
p =TBe

−jk1ρ cos(ϕ−ϕt
B)U(ϕt

B − ϕ), (3.69)

HtB
d =− C(k1ρ)

[
− TB cot

ϕ− ϕt
B

2
+TBS

−(π− ϕt
B + ϕ)U(ϕ−ϕw)

]
. (3.70)

The contribution from HtB
p in Eq.(3.69) is exactly equal to the magnetic �eld of trans-

mitted wave from surface OB. By combining the contributions from surfaces OA and OB
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with considering the incident direction, a general uni�ed formulation of the internal �elds
can be obtained as:

H in
p =TAe

−jk1ρ cos(ϕ−ϕt
A)U(ϕ− ϕt

A)U(π − ϕ0)

+ TBe
−jk1ρ cos(ϕ−ϕt

B)U(ϕt
B − ϕ)U(ϕ0 + π − ϕw), (3.71)

H in
d =− C(k1ρ)

[
TA cot

ϕ−ϕt
A

2
U(π − ϕ0)−TAS

−(π−ϕt
A+ϕ)U(ϕ−ϕw)U(π − ϕ0)

− TB cot
ϕ− ϕt

B

2
U(ϕ0 + π − ϕw)+TBS

−(π− ϕt
B + ϕ)U(ϕ−ϕw)

· U(ϕ0 + π − ϕw)

]
. (3.72)

3.3 TE-Polarized Plane Wave

For TE-polarization, the incident plane wave can be given by:

Ei =ejkx cosϕ0+jky sinϕ0 ẑ, (3.73)

H i =

√
ε0
µ0

ejkx cosϕ0+jky sinϕ0(− sinϕ0x̂+ cosϕ0ŷ). (3.74)

The TE-polarized incident wave also can be rewritten by using the coordinate Ox1y1 for
surface OB illumination as:

Ei
B =ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0)ẑ, (3.75)

H i
B =

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0)−jky1 sin(ϕw−ϕ0) [sin(ϕw − ϕ0)x̂1 + cos(ϕw − ϕ0)ŷ1] . (3.76)

As same as the TM-polarization, the TE-polarized incident wave excites the re�ected
and transmitted waves outside and inside the dielectric wedge, respectively. Then, the
scattering problem can be solved in each region as follows:

3.3.1 Exterior Field

Outside the wedge, the re�ected �eld excited from surface OA can be written as:

Er
A =Γ̄Ae

jkx cosϕ0−jky sinϕ0 ẑ, (3.77)

Hr
A =Γ̄A

√
ε0
µ0

ejkx cosϕ0+jky sinϕ0(sinϕ0x̂+ cosϕ0ŷ). (3.78)

where Γ̄A is the corresponding re�ection coe�cient on surface OA and can be written as:

Γ̄A =
sinϕ0 −

√
εr − cos2 ϕ0

sinϕ0 +
√
εr − cos2 ϕ0

. (3.79)

When surface OB is illuminated, the corresponding re�ected wave (Er
B, Hr

B) can be
written in the coordinate Ox1y1 as:

Er
B =Γ̄Be

jkx1 cos(ϕw−ϕ0)+jky1(ϕw−sinϕ0)ẑ, (3.80)

Hr
B =Γ̄B

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0)+jky1 sin(ϕw−ϕ0) [− sin(ϕw − ϕ0)x̂1 + cos(ϕw − ϕ0)ŷ1] , (3.81)
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where the re�ection coe�cient Γ̄B from surface OB is de�ned as:

Γ̄B =
sin(ϕ0 + π − ϕw)−

√
εr − cos2(ϕ0 + π − ϕw)

sin(ϕ0 + π − ϕw) +
√

εr − cos2(ϕ0 + π − ϕw)
, (3.82)

From the formulations of the incident and re�ected waves, one may obtain the corre-
sponding equivalent electric and magnetic currents on surface OA as:

J iA =n̂A ×H i|y=0 =

√
ε0
µ0

ejkx cosϕ0 sinϕ0ẑ (3.83)

M iA =Ei × n̂A|y=0 = −ejkx cosϕ0x̂ (3.84)

J rA =n̂A ×Hr
A|y=0 = −Γ̄A

√
ε0
µ0

ejkx cosϕ0 sinϕ0ẑ (3.85)

M rA =Er
A × n̂A||y=0 = −Γ̄Ae

jkx cosϕ0x̂. (3.86)

By substituting above equivalent currents into Eq.(3.3), the z-component of the scattering
�elds due to incident and re�ected waves on surface OA can be obtained as:

EiA
s =−

∫
C

[
jωµ0J

iAG+M iA×∇′G

]
dl′

=

∫ ∞

0

ejkx
′ cosϕ0

(
− jk sinϕ0G+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

ejkx
′ cosϕ0

(
−k sinϕ0√
k2 − η2

± 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|dη

)
dx′ (y ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|ejkx

′ cosϕ0

(
−k sinϕ0√
k2 − η2

± 1

)
1

4π
dηdx′ (y ≷ 0)

=
1

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)(

−k sinϕ0√
k2 − η2

± 1

)
e−jηx−j

√
k2−η2|y|dη (y ≷ 0)

=
j

4π

∫ ∞

−∞

(
−k sinϕ0√
k2 − η2

±1

)
e−jηx−j

√
k2−η2|y|

(k cosϕ0+η)
dη (y ≷ 0) (3.87)

ErA
s =−

∫
C

[
jωε0J

rA(r′)G+M rA×∇′G

]
dl′

=

∫ ∞

0

Γ̄Ae
jkx′ cosϕ0

(
jk sinϕ0G+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

Γ̄Ae
jkx′ cosϕ0

(
k sinϕ0√
k2 − η2

± 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k2−η2|y|dη

)
dx′ (y ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
Γ̄Ae

−jη(x−x′)−j
√

k2−η2|y|ejkx
′ cosϕ0

(
k sinϕ0√
k2 − η2

± 1

)
1

4π
dηdx′ (y ≷ 0)

=
Γ̄A

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′ cosϕ0+jηx′

dx′
)(

k sinϕ0√
k2 − η2

± 1

)
e−jηx−j

√
k2−η2|y|dη (y ≷ 0)

=
jΓ̄A

4π

∫ ∞

−∞

(
k sinϕ0√
k2 − η2

±1

)
e−jηx−j

√
k2−η2|y|

(k cosϕ0+η)
dη (y ≷ 0) (3.88)
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Convert to complex plane of angle w using the transformation η = k sinw, with the
cylindrical coordinate (ρ, ϕ), Eqs.(3.87) and (3.88) can be rewritten as:

EiA
s =

j

4π

∫
C

k(− sinϕ0±cosw)

k cosw

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

k(cosϕ0+sinw)
k coswdw (ϕ ≶ π)

=
j

4π

∫
C

− sinϕ0±cosw

cosϕ0+sinw
e−jkρ(sinw cosϕ±cosw sinϕ)dw (ϕ ≶ π)

=
±j

4π

∫
C

cot
π/2+w±ϕ0

2
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π) (3.89)

ErA
s =

jΓ̄A

4π

∫
C

k(sinϕ0±cosw)

k cosw

e−jkρ sinw cosϕ∓jkρ cosw sinϕ

k(cosϕ0+sinw)
k coswdw (ϕ ≶ π)

=
jΓ̄A

4π

∫
C

sinϕ0±cosw

cosϕ0+sinw
e−jkρ(sinw cosϕ±cosw sinϕ)dw (ϕ ≶ π)

=
±jΓ̄A

4π

∫
C

cot
π/2+w∓ϕ0

2
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π) (3.90)

where the contour C can be de�ned as in Fig. 3.4. By using saddle point technique,
uniform asymptotic solutions for EiA

s and ErA
s can be obtained as:

EiA
s =EiA

d + EiA
p (3.91)

EiA
p =− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0) (3.92)

ErA
s =ErA

d + ErA
p (3.93)

ErA
p =Γ̄Ae

jkρ cos(ϕ+ϕ0)U(π − ϕ0 − ϕ), (3.94)

where EiA
d and ErA

d present the di�racted �eld contributions and can be given by:

EiA
d =− C(kρ)

[
cot

π − (ϕ− ϕ0)

2
+S−(ϕ−ϕ0)U(ϕ− π)

]
(3.95)

ErA
d =− C(kρ)

[
Γ̄A cot

π−(ϕ+ϕ0)

2
+ Γ̄AS

−(ϕ+ϕ0)U(π−ϕ)

]
(3.96)

Similarly, one can obtain the electric and magnetic currents due to the incident and
re�ected waves on surface OB as:

J iB =n̂B ×H i
B|y1=0 =

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)ẑ, (3.97)

M iB =Ei × n̂B|y1=0 = ejkx1 cos(ϕw−ϕ0)x̂1, (3.98)

J rB =n̂B ×Hr
B|y1=0 = −Γ̄B

√
ε0
µ0

ejkx1 cos(ϕw−ϕ0) sin(ϕw − ϕ0)ẑ, (3.99)

M rB =Er
B × n̂B||y1=0 = Γ̄Be

jkx1 cos(ϕw−ϕ0)x̂1. (3.100)
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Then, the z-component of the scattering �elds due to incident and re�ected waves on
surface OB can also be obtained as:

EiB
s =−

∫
C

[
jωµ0J

iBG+M iB×∇′G

]
dl′

=

∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)

(
− jk sin(ϕw − ϕ0)G− ∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|dη

)
dx′

1 (y1 ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|ejkx
′
1 cos(ϕw−ϕ0)

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π
dηdx′

1 (y1 ≷ 0)

=
1

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)+jηx′

1dx′
1

)(
−k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
e−jηx1−j

√
k2−η2|y1|dη (y1 ≷ 0)

=
j

4π

∫ ∞

−∞

(
−k sin(ϕw − ϕ0)√

k2 − η2
∓1

)
e−jηx1−j

√
k2−η2|y1|

k cos(ϕw − ϕ0)+η
dη, (y1 ≷ 0) (3.101)

ErB
s =−

∫
C

[
jωε0J

rBG+M rB×∇′G

]
dl′

=

∫ ∞

0

Γ̄Be
jkx′

1 cos(ϕw−ϕ0)

(
jk sin(ϕw − ϕ0)G− ∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

Γ̄Be
jkx′

1 cos(ϕw−ϕ0)

(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k2−η2|y1|dη

)
dx′

1 (y1 ≷ 0)

=

∫ ∞

0

∫ ∞

−∞
Γ̄Be

−jη(x1−x′
1)−j

√
k2−η2|y1|ejkx

′
1 cos(ϕw−ϕ0)

(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
1

4π
dηdx′

1 (y1 ≷ 0)

=
Γ̄B

4π

∫ ∞

−∞

(∫ ∞

0

ejkx
′
1 cos(ϕw−ϕ0)+jηx′

1dx′
1

)(
k sin(ϕw − ϕ0)√

k2 − η2
∓ 1

)
e−jηx1−j

√
k2−η2|y1|dη (y1 ≷ 0)

=
jΓ̄B

4π

∫ ∞

−∞

(
k sin(ϕw − ϕ0)√

k2 − η2
∓1

)
e−jηx1−j

√
k2−η2|y1|

k cos(ϕw − ϕ0)+η
dη. (y1 ≷ 0) (3.102)

Convert to complex plane of angle w using the transformation η = k sinw, with the
cylindrical coordinate (ρ, ϕ′), Eqs.(3.101) and (3.102) can be rewritten as:

EiB
s =

j

4π

∫
C

k(− sin(ϕw − ϕ0)∓cosw)

k cosw

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

k(cos(ϕw − ϕ0)+sinw)
k coswdw (ϕ′ ≶ π)

=
j

4π

∫
C

− sin(ϕw − ϕ0)∓cosw

cos(ϕw − ϕ0)+sinw
e−jkρ(sinw cosϕ′±cosw sinϕ′)dw (ϕ′ ≶ π)

=
∓j

4π

∫
C

cot
π/2+w∓(ϕw − ϕ0)

2
e−jkρ sin(w±ϕ′)dw, (ϕ′ ≶ π) (3.103)

ErB
s =

jΓ̄B

4π

∫
C

k(sin(ϕw − ϕ0)∓cosw)

k cosw

e−jkρ sinw cosϕ′∓jkρ cosw sinϕ′

k(cos(ϕw − ϕ0)+sinw)
k coswdw (ϕ′ ≶ π)

=
jΓ̄B

4π

∫
C

sin(ϕw − ϕ0)∓cosw

cos(ϕw − ϕ0)+sinw
e−jkρ(sinw cosϕ′±cosw sinϕ′)dw (ϕ′ ≶ π)

=
∓jΓ̄B

4π

∫
C

cot
π/2+w±(ϕw − ϕ0)

2
e−jkρ sin(w±ϕ′)dw, (ϕ′ ≶ π) (3.104)
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where the contour C can be de�ned similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solutions for EiB

s and ErB
s can be obtained as:

EiB
s =EiB

d + EiB
p (3.105)

EiB
p =− ejkρ cos(ϕ

′+ϕw−ϕ0)U(π − ϕw + ϕ0 − ϕ′)

=− ejkρ cos(ϕ−ϕ0)Uϕ0 − π − ϕ), (3.106)

ErB
s =ErB

d + ErB
p (3.107)

ErB
p =Γ̄Be

jkρ cos(ϕ′−ϕw+ϕ0)U(ϕ′ − π − ϕw + ϕ0)

=Γ̄Be
jkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ ϕ0 + π − 2ϕw). (3.108)

The di�racted �elds EiB
d and ErB

d can be written as:

EiB
d =− C(kρ)

[
− cot

π−(ϕ′+ ϕw −ϕ0)

2
−S−(ϕ′+ ϕw −ϕ0)U(π−ϕ′)

]
=− C(kρ)

[
cot

π+(ϕ−ϕ0)

2
+S+(ϕ−ϕ0)U(ϕw − π−ϕ)

]
(3.109)

ErB
d =− C(kρ)

[
− Γ̄B cot

π − (ϕ′ − ϕw + ϕ0)

2
− Γ̄BS

−(ϕ′− ϕw +ϕ0)U(ϕ′ − π)

]
=− C(kρ)

[
Γ̄B cot

π + (ϕ0 + ϕ− 2ϕw)

2
+ Γ̄BS

+(ϕ0 + ϕ− 2ϕw)U(π + ϕ− ϕw)

]
.

(3.110)

By considering the incident direction, one has the uni�ed formulation of di�racted �eld
outside the wedge as:

EOut
d = −C(kρ)

[
cot

π − (ϕ− ϕ0)

2
U(ϕw − π−ϕ0) +S−(ϕ−ϕ0)U(ϕ− π)U(ϕw − π−ϕ0)

+ cot
π+(ϕ−ϕ0)

2
U(ϕ0 − π) +S+(ϕ−ϕ0)U(ϕw − π−ϕ)U(ϕ0 − π)

+ Γ̄A cot
π−(ϕ+ϕ0)

2
U(π − ϕ0) + Γ̄AS

−(ϕ+ϕ0)U(π−ϕ)U(π − ϕ0)

+ Γ̄B cot
π + (ϕ0 + ϕ− 2ϕw)

2
U(π + ϕ0 − ϕw) + Γ̄BS

+(ϕ0 + ϕ− 2ϕw)

· U(π + ϕ− ϕw)U(π + ϕ0 − ϕw)

]
. (3.111)

Similarly, one can also obtain uni�ed formulation for GO contribution as:

EOut
p =− ejkρ cos(ϕ−ϕ0)U(ϕ− π − ϕ0)U(ϕw − π−ϕ0)

− ejkρ cos(ϕ−ϕ0)Uϕ0 − π − ϕ)U(ϕ0 − π)

+ Γ̄Ae
jkρ cos(ϕ+ϕ0)U(π − ϕ0 − ϕ)U(π − ϕ0)

+ Γ̄Be
jkρ cos(ϕ+ϕ0−2ϕw)U(ϕ+ ϕ0 + π − 2ϕw)U(ϕ0 + π − ϕw). (3.112)
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3.3.2 Interior Field

Inside the dielectric wedge, the transmitted wave (Et
A, Ht

A) excited by TE-polarized
incident wave from surface OA can be written as:

Et
A=T̄Ae

−jk1x cosϕt
A−jk1y sinϕt

Aẑ, (3.113)

Ht
A=T̄A

√
εrε0
µ0

e−jk1x cosϕt
A−jk1y sinϕt

A(sinϕt
Ax̂−cosϕt

Aŷ), (3.114)

where the transmission coe�cient T̄A is given by:

T̄A = 1 + Γ̄A =
2 sinϕ0

sinϕ0 +
√

εr − cos2 ϕ0

. (3.115)

Then the corresponding magnetic and electric currents due to transmitted wave (Et
A, H

t
A)

can be obtained as:

J tA =(−n̂A)×Ht
A|y=0 = T̄A

√
εrε0
µ0

e−jk1x cosϕt
A sinϕt

Aẑ, (3.116)

M tA =Et
A × (−n̂A)||y=0 = T̄Ae

−jk1x cosϕt
Ax̂. (3.117)

Then, the scattering electric �eld excited by the transmitted wave (Ht
A, E

t
A)) can be

represented as:

EtA
s =−

∫
C

[
jωµ0J

tAG+M tA×∇′G

]
dl′

=

∫ ∞

0

−T̄Ae
−jk1x′ cosϕt

A

(
jk1 sinϕ

t
AG+

∂G

∂y′

)
y′=0

dx′

=

∫ ∞

0

−T̄Ae
−jk1x′ cosϕt

A

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
1

4π

(∫ ∞

−∞
e−jη(x−x′)−j

√
k21−η2|y|dη

)
dx′

=

∫ ∞

0

∫ ∞

−∞
−T̄Ae

−jη(x−x′)−j
√

k21−η2|y|e−jk1x′ cosϕt
A

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
1

4π
dηdx′

=
−T̄A

4π

∫ ∞

−∞

(∫ ∞

0

e−jk1x′ cosϕt
A+jηx′

dx′
)(

k1 sinϕ
t
A√

k2
1 − η2

− 1

)
e−jηx−j

√
k21−η2|y|dη

=
−jT̄A

4π

∫ ∞

−∞

(
k1 sinϕ

t
A√

k2
1 − η2

− 1

)
e−jηx−j

√
k21−η2|y|

−k1 cosϕt
A+η

dη. (3.118)

Convert to complex plane of angle w using the transformation η = k1 sinw, with the
cylindrical coordinate (ρ, ϕ), Eq.(3.118) can be rewritten as:

EtA
s =

−jT̄A

4π

∫
C

k1(sinϕ
t
A − cosw)

k1 cosw

e−jk1ρ sinw cosϕ+jk1ρ cosw sinϕ

k1(− cosϕt
A+sinw)

k1 coswdw

=
−jT̄A

4π

∫
C

sinϕt
A − cosw

− cosϕt
A + sinw

e−jk1ρ(sinw cosϕ−cosw sinϕ)dw

=
−jT̄A

4π

∫
C

cot
ϕt
A − w + π/2

2
e−jk1ρ sin(w−ϕ)dw, (3.119)
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where the contour C can be de�ned similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solution for EtA

s can be obtained as:

EtA
s =EtA

d + EtA
p (3.120)

EtA
p =T̄Ae

−jk1ρ cos(ϕ−ϕt
A)U(ϕ− ϕt

A), (3.121)

where EtA
d represents the di�racted �eld contributions, and can be given by:

EtA
d =− C(k1ρ)

[
T̄A cot

ϕ−ϕt
A

2
−T̄AS

−(π−ϕt
A+ϕ)U(ϕ−ϕw)

]
. (3.122)

The contribution from EtA
p is exactly equal to the magnetic �eld of transmitted wave from

surface OA. When surface OB is illuminated, one may also have transmitted wave (Et
B,

Ht
B) from surface OB, which can be written in coordinate system Ox1y1 as:

Et
B=T̄Be

−jk1x1 cos(ϕt
B−ϕw)−jk1y1 sinϕt

A ẑ, (3.123)

Ht
B=T̄B

√
εrε0
µ0

e−jk1x1 cos(ϕt
B−ϕw)−jk1y1 sin(ϕt

B−ϕw)[sin(ϕt
B − ϕw)x̂1−cos(ϕt

B − ϕw)ŷ1], (3.124)

where the transmission coe�cient T̄B is de�ned as:

T̄B =1 + Γ̄B =
2 sin(π + ϕ0 − ϕw)

sin(π + ϕ0 − ϕw) +
√

εr − cos2(π + ϕ0 − ϕw)
. (3.125)

Then, the corresponding equivalent currents J tB and M tB can be derived as:

J tB =(−n̂B)×Ht
B|y1=0 = −TB

√
εrε0
µ0

e−jk1x1 cos(ϕt
B−ϕw) sin(ϕt

B − ϕw)ẑ, (3.126)

M tB =Et
B × (−n̂B)||y1=0 = −TBe

−jk1x1 cos(ϕt
B−ϕw)x̂1. (3.127)

Then, one has the z-component of the scattering �elds due to the transmitted wave on
surface OB as:

EtB
s =−

∫
C

[
jωεrε0J

tBG+M tB×∇′G

]
dl′

=

∫ ∞

0

T̄Be
−jk1x′

1 cos(ϕ
t
B−ϕw)

(
jk1 sin(ϕ

t
B − ϕw)G+

∂G

∂y′1

)
y′1=0

dx′
1

=

∫ ∞

0

T̄Be
−jk1x′

1 cos(ϕ
t
B−ϕw)

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
1

4π

(∫ ∞

−∞
e−jη(x1−x′

1)−j
√

k21−η2|y1|dη

)
dx′

1

=

∫ ∞

0

∫ ∞

−∞
T̄Be

−jη(x1−x′
1)−j

√
k21−η2y1e−jk1x′

1 cos(ϕ
t
B−ϕw)

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
1

4π
dηdx′

1

=
T̄B

4π

∫ ∞

−∞

(∫ ∞

0

e−jk1x′
1 cos(ϕ

t
B−ϕw)+jηx′

1dx′
1

)(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
e−jηx1−j

√
k21−η2y1dη

=
jT̄B

4π

∫ ∞

−∞

(
k1 sin(ϕ

t
B − ϕw)√

k2
1 − η2

+ 1

)
e−jηx1−j

√
k21−η2y1

−k1 cos(ϕt
B − ϕw)+η

dη. (3.128)
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Convert to complex plane of angle w using the transformation η = k1 sinw, with the
cylindrical coordinate (ρ, ϕ′), Eq.(3.128) can be rewritten as:

EtB
s =

jT̄B

4π

∫
C

k1(sin(ϕ
t
B − ϕw) + cosw)

k1 cosw

e−jk1ρ sinw cosϕ′−jk1ρ cosw sinϕ′

k1(− cos(ϕt
B − ϕw)+sinw)

k1 coswdw

=
jT̄B

4π

∫
C

sin(ϕt
B − ϕw) + cosw

− cos(ϕt
B − ϕw) + sinw

e−jk1ρ(sinw cosϕ′+cosw sinϕ′)dw

=
jT̄B

4π

∫
C

cot
ϕt
B − ϕw + w − π/2

2
e−jk1ρ sin(w+ϕ′)dw, (3.129)

where the contour C can be de�ned similarly as in Fig. 3.4. By using saddle point
technique, uniform asymptotic solution for EtB

s can be obtained as:

EtB
s =EtB

d + EtB
p (3.130)

EtB
p =T̄Be

−jk1ρ cos(ϕ′−ϕt
B+ϕw)U(ϕt

B − ϕw − ϕ′), (3.131)

where EtB
d represents the di�racted �eld contributions, and can be given by:

EtB
d =− C(k1ρ)

[
− T̄B cot

ϕ′ − ϕt
B + ϕw

2
+T̄BS

−(π− ϕt
B + ϕw +ϕ′)U(2π −ϕw − ϕ′)U(ϕ′)

]
.

(3.132)

By converting ϕ′ = ϕ− ϕw, E
tB
p and EtB

d can be rewritten as:

EtB
p =T̄Be

−jk1ρ cos(ϕ−ϕt
B)U(ϕt

B − ϕ), (3.133)

EtB
d =− C(k1ρ)

[
− T̄B cot

ϕ− ϕt
B

2
+TBS

−(π− ϕt
B + ϕ)U(ϕ−ϕw)

]
. (3.134)

The contribution from EtB
p in Eq.(3.133) is exactly equal to the magnetic �eld of trans-

mitted wave from surface OB. By combining the contributions from surfaces OA and OB
with considering the incident direction, a general uni�ed formulation of the internal �elds
can be obtained as:

Ein
p =T̄Ae

−jk1ρ cos(ϕ−ϕt
A)U(ϕ− ϕt

A)U(π − ϕ0)

+ T̄Be
−jk1ρ cos(ϕ−ϕt

B)U(ϕt
B − ϕ)U(ϕ0 + π − ϕw), (3.135)

Ein
d =− C(k1ρ)

[
T̄A cot

ϕ−ϕt
A

2
U(π − ϕ0)−T̄AS

−(π−ϕt
A+ϕ)U(ϕ−ϕw)U(π − ϕ0)

− T̄B cot
ϕ− ϕt

B

2
U(ϕ0 + π − ϕw)+T̄BS

−(π− ϕt
B + ϕ)U(ϕ−ϕw)

· U(ϕ0 + π − ϕw)

]
. (3.136)

40



Chapter 4

Numerical Results Comparison and

Discussion

In this chapter, the accuracy of extended PO (EPO) is evaluated by comparing the nu-
merical results with those obtained from reference methods such as HRD (hidden ray of
di�raction) and FDTD simulation. As mentioned in Chapter 1, the scattering problem of
wedges may also be calculated using the UAPO solution. However, UAPO doesn't provide
signi�cant di�erences, which are created by the contribution of hidden rays as in the HRD
solution. Thus, the results of UAPO are not shown in this chapter for comparison with
our EPO. While the results EPO are derived from formulations in Chapter 2 and Chapter
3, those by HRD can be found from formulations in Appendix A. On the other hand,
the �eld patterns of FDTD are obtained by linear interpolation of the �eld distribution,
which can be directly obtained from the simulation. The computational processing of
the FDTD method is relatively simple, but it consumes a lot of time and memory. The
execution time and memory consumption of FDTD are many times larger than those of
the EPO and HRD approximation methods. If the object size exceeds a certain value, the
computer memory may not be enough to handle the calculation processing of FDTD. In
addition, the size of the simulated objects in FDTD is limited, while the wedge body cur-
rently analyzed is in�nite. Therefore, a suitable wave propagation time must be carefully
selected to avoid the unexpected di�raction e�ect caused by the absorbing boundaries.
The numerical comparisons can then be represented separately for PEC and dielectric
cases as follows.

4.1 PEC wedge

In this section, the numerical results comparison is made for the PEC wedge case. In
this case, one notes that the results of EPO are equal to the conventional PO. Thus, the
EPO formulation can be applied to calculate numerical results for the PEC wedge case
by setting corresponding re�ection and transmission coe�cients. In addition, to obtain
reliable FDTD simulation results, the simulation parameters are selected for PEC wedges
as in Table. 4.1. As shown in Fig. 4.1, when the incident wave illuminates wedge surfaces,
it excites the GO re�ected �elds and edge di�racted �eld. Therefore, the scattering �eld
can be considered as the sum of these contributions. Figure 4.2(a) shows the map of the
total �eld contribution, which can be obtained directly from the FDTD simulation. In
this case, the incident wave illuminates both surfaces of the wedge with incident angle
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Figure 4.1: GO and di�racted rays by PEC wedge.

ϕ0 = 115◦. and the wedge angle is selected as ϕw = 225◦. Then, the incident wave
excites the GO re�ected �elds and edge di�racted �elds from both surfaces OA and OB.
Accordingly, the total �eld outside the PEC wedge is the sum of the incident, re�ected
and di�racted �elds, while the internal is equal to zero. Then by subtracting GO re�ected
�elds, one can obtain the distribution of di�racted �elds as in Fig. 4.2(b). It can be seen
that the di�racted distributes mainly near the areas, which correspond to the direction of
re�ected GO rays. From the above �eld distributions, the circular graph of the total and
di�racted �eld can be obtained by linear interpolation technique to compare with EPO
and HRD solutions.
Figure 4.3 shows the comparison of the total �elds of the PEC wedge among three

solutions: EPO, HRD, and FDTD. The numerical results were shown for both TM and
TE-polarization cases. The �eld patterns are taken at the observation distance ρ = 3λ
from the total �eld distribution in Fig. 4.2(a). As shown in Figs. 4.3(a) and 4.3(b), the
�eld patterns of the three solutions match pretty well in all directions for both TM and
TE-polarization. One can also see the di�erent behaviors of the total �elds between two
polarizations, in which the total �elds of TE tend to zero near the interface while the other
of TM doesn't. This is due to the di�erence in boundary conditions of two polarizations.
Figure 4.4 shows the comparison of di�racted �elds of three solutions for TM and TE-

polarizations. While the di�racted �elds of EPO and HRD can be obtained by evaluating
the radiation integrals on the SDP contour, those of FDTD simulation are the results
of subtracting the GO �elds from the total �eld. One can see that all patterns of the
three solutions have two peaks, which correspond to the shadow boundary direction of
re�ected waves from surfaces OA and OB. One also observes that the di�racted �eld
is very small compared with the GO �elds, and distributes mainly in the regions that
are near the shadow boundaries SBr of the GO re�ected �elds. The contribution of the
di�racted �elds can compensate for the abrupt transitional behavior of the GO �elds
at the shadow boundaries. From the comparison, one also can observe that the HRD
and FDTD results are almost identical, and have some di�erences from the EPO result.
The di�erences become more apparent when the observation point approaches the wedge
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Table 4.1: Parameters of FDTD simulation for PEC wedge.

Parameter Incident angle ϕ0 = 115◦ Incident angle ϕ0 = 30◦

Frequency 6 GHz 6 GHz

Wave length 50 mm 50 mm

Max iteration number 45000 50000

Convergence 10−6 10−6

Time step 10−13 10−13

Calculation region 600 mm × 600 mm 700 mm × 700 mm

Yee cell size 0.25 mm × 0.25 mm 0.25 mm × 0.25 mm

surface. As mentioned above, the di�racted �eld is small compared with the GO rays,
so one may not see the di�erence between HRD and EPO in the comparison of the total
�eld. The di�erences can be explained by the fact that the di�racted �eld of the PO
approximation doesn't satisfy the boundary and edge conditions. On the other hand, the
HRD solution can satisfy the boundary condition thanks to the additional contribution of
hidden di�racted rays in the non-physical region, which can be explained by the behavior
of the cotangent functions. In addition, the angular period of the cotangent functions
of HRD are modi�ed based on the edge condition. Accordingly, the results of the HRD
solution are exactly the same as those of the UTD solution in the perfectly conducting
wedge case.
Figure 4.5 shows the cotangent functions of EPO and HRD solutions for TE-polarization

in the two-side illumination case. These cotangent functions have singularity behaviors
at the shadow boundaries of GO incident and re�ected rays. When both surfaces are
illuminated, one only has two shadow boundaries of GO re�ected waves in the physical
domain. Accordingly, the shadow boundaries of incident waves exist in the non-physical
domain. As mentioned in Chapter 2, two of four cotangent functions in EPO formulation
correspond to hidden incident rays and cancel out each other. Therefore, the EPO formu-
lation only has two cotangent functions corresponding to GO rays in the physical domain
as shown in Fig. 4.5(a). These two remainder cotangent functions can not cancel when
ϕ = 0 or ϕw, and this leads to the electric �eld of EPO not equal to zero at the interface
of the wedge. On the other hand, the formulation of HRD always has four cotangent
functions for any incident direction. And two cotangent functions of hidden incident rays
in the non-physical domain can cancel two cotangent functions of re�ected rays when
ϕ = 0 or ϕw as shown in Fig. 4.5(b). Accordingly, the electric �eld of HRD tends to zero
at the interface to satisfy the boundary condition. A similar di�erence in cotangent func-
tions between EPO and HRD can also observed for TM-polarization as shown in Fig. 4.6.
However, in the TM-polarization case, four cotangent functions of HRD don't cancel out
each other to give us zero magnetic �elds at the wedge interface. Instead, the angular
derivative of cotangent functions has cancellation at the interfaces, and this gives us the
correct behavior of the di�racted �eld by HRD: the angular derivative of the di�racted
�eld (Hz) becomes zero at the PEC boundary.
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When the incident angle is selected as 30◦, one has the comparisons of total and
di�racted �elds as in Fig. 4.7 and Fig. 4.8, respectively. In this case, the incident only
illuminated the upper surface of the wedge. One can see that the di�erences of EPO
compared with HRD and FDTD become bigger than those in the two-side illumination
case. The di�erence can be observed more clearly when the observation point moves to
the shadow regions. This shows that the error of EPO is more signi�cant for the shadow
region of the one-side illumination.
In Fig. 4.9 and Fig. 4.10, one has the comparisons among three solutions when the

wedge is sharper (ϕw = 315◦), and the incident wave illuminates both surfaces of the
wedge. Compared to the case of wedge angle ϕw = 225◦, the di�erences from EPO also
become more apparent. On the other hand, unlike the �at-angle wedge, these di�erences
are improved when the incident angle is selected as 30◦. These behaviors show that the
error of EPO in terms of boundary condition depends on the wedge angle and incident
direction.
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Figure 4.2: Field distribution of PEC wedge (FDTD calculation): ϕw = 225◦, ϕ0 = 115◦.
(a) Total �eld. (b) Di�racted �eld.
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Figure 4.3: Total �eld of PEC wedge: ϕw = 225◦, ϕ0 = 115◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.4: Di�racted �eld of PEC wedge: ϕw = 225◦, ϕ0 = 115◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.5: Cotangent functions of EPO and HRD (TE polarization): ϕw = 225◦ and
ϕ0 = 60◦. (a) EPO. (b) HRD.
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Figure 4.6: Cotangent functions of EPO and HRD (TM polarization): ϕw = 225◦ and
ϕ0 = 120◦. (a) EPO. (b) HRD.
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Figure 4.7: Total �eld of PEC wedge: ϕw = 225◦, ϕ0 = 30◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.8: Di�racted �eld of PEC wedge: ϕw = 225◦, ϕ0 = 30◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.9: Total �eld of PEC wedge: ϕw = 315◦, ϕ0 = 160◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.10: Di�racted �eld of PEC wedge: ϕw = 315◦, ϕ0 = 160◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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Figure 4.11: Total �eld of PEC wedge: ϕw = 315◦, ϕ0 = 30◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.

54



 0  0.5  1

180
o

270
o

90
o

SBr

SBi

EPO
FDTD
HRD

[A/m]

Inc

PEC 

30
o

(a)

 0  0.5  1

180
o

270
o

90
o

SBr

SBi

[A/m]

Inc

EPO
FDTD
HRD

PEC 

30
o

(b)

Figure 4.12: Di�racted �eld of PEC wedge: ϕw = 315◦, ϕ0 = 30◦ and ρ = 3λ. (a) TM
polarization. (b) TE polarization.
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4.2 Dielectric wedge
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Figure 4.13: GO and di�racted rays by dielectric wedge.

When the PEC wedge is replaced by a dielectric wedge, one may have more transmitted
waves from surfaces OA and OB. Therefore, the external scattering �elds include the GO
re�ected and di�racted �elds, while the internal �elds are the sum of GO transmitted
and di�racted �elds as shown in Fig. 4.13. As same as the PEC wedge case, the FDTD
simulation results of the dielectric wedge also have the spurious di�raction e�ect from
the absorbing boundaries. In addition, unexpected multiple re�ections may occur inside
the �nite dielectric wedge of FDTD. Thus, to avoid the multiple internal re�ections of
the transmitted rays inside the dielectric wedge, only a �at-angle wedge is selected for
the numerical example in this dielectric case. This requires us to select an appropriate
transient time carefully. In the following numerical comparisons, the numerical results are
calculated for the wedge of wedge angle ϕw = 225◦ and dielectric constant εr = 6. The
simulation parameters of FDTD for dielectric wedges are shown in Table. 4.2.
Figure 4.14 shows the total �eld distribution of the dielectric wedge for both TM and

TE polarizations. It can be see that the total �eld of the TM polarization is stronger than
that of the TE polarization. One also notes that an appropriate transient time has been
selected so that the transmitted �eld doesn't excite the multiple re�ections inside the
wedge. By subtracting the GO re�ected and transmitted �elds based on the wavefronts,
one obtains the di�racted �eld distribution as shown in Fig. 4.15. A di�erence in the
magnitude of the internal di�racted �eld between TM and TE polarizations can also be
observed. For more detailed comparisons, the �eld patterns were then derived from the
�eld distribution at the observation distance ρ = 3λ.
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Table 4.2: Parameters of FDTD simulation for dielectric wedge.

Parameter Incident angle ϕ0 = 115◦ Incident angle ϕ0 = 30◦

Frequency 6 GHz 6 GHz

Wave length 50 mm 50 mm

Max iteration number 50000 55000

Convergence 10−6 10−6

Time step 10−13 10−13

Calculation region 600 mm × 600 mm 750 mm × 750 mm

Yee cell size 0.25 mm × 0.25 mm 0.25 mm × 0.25 mm

Dielectric constant εr = 6 εr = 6

Figure 4.16 shows the comparison of the total �elds when the incident wave illuminates
the dielectric wedge with incident angle ϕ0 = 115◦ for both TE and TM polarizations.
In this case, the incident wave illuminates both sides of the dielectric wedge and excites
the re�ected and transmitted waves in the outside and inside regions, respectively. As
shown in Figs. 4.16(a) and 4.16(b), the total �elds of the three solutions match well for
both TE and TM polarizations. It can be seen that the scattering �eld in the outside
region has quite similar behavior to those of the PEC wedge case in Fig. 4.3. Inside the
dielectric wedge, one can observe a main scattering lobe near the direction of the incident
wave. The two biggest sidelobes correspond to the direction of the two transmitted waves
from surfaces OA and OB. These �eld behaviors are nearly similar between TM and TE
polarizations with di�erent amplitudes due to the di�erences in re�ection and di�racted
coe�cients.
Figure 4.17 shows the comparison of the di�racted �elds of three solutions. In the

outside region, one can see that the di�racted �elds of EPO and FDTD have a good
agreement, and have some di�erences with those of the HRD solution. This is di�erent
from the above PEC wedge case, in which HRD has better agreement with the FDTD
simulation than EPO. So far, we have not been able to explain exactly why the EPO
solution becomes better than the HRD solution when applied to the dielectric wedge.
This change in the accuracy of EPO and HRD between PEC and dielectric cases may be
due to the edge condition. Inside the dielectric wedge, all three solutions yield twin peaks
at the shadow boundaries SBt of the transmitted waves. While the di�racted �elds of
EPO and HRD in Fig. 4.17 exhibit the same behavior, those of the FDTD simulation show
some di�erences. These di�erences are apparent in the areas near the shadow boundary
directions of two transmitted waves from surfaces OA and OB. It can be observed that,
in the wedge dielectric case, the di�racted �elds of both EPO and HRD don't satisfy the
boundary condition. This reminds us that some signi�cant contributions at the boundary
of two media may be missed, and need to be considered.
When one selects the incident angle ϕ0 as 30

◦, the incident wave only illuminates surface
OA and the comparison of the corresponding total �elds is shown in Fig. 4.18. In this

57



case, the incident wave excites only one re�ected wave and one transmitted wave from
the illuminated surface OB. One observes that all three results match well in the exterior
region for both TM and TE polarizations, while there are some di�erences in the interior
region. To know what causes these di�erences, a comparison of the di�racted �elds has
been made and shown in Fig. 4.19 for both TM and TE polarizations. Similar to the one-
side illumination case, the outer �eld of EPO and FDTD have a good agreement and have
some di�erences with the HRD solution. However, the di�racted �eld has two large peaks
corresponding to the shadow boundaries of the incident and transmitted wave compared
with the direction of the re�ected wave. Inside the wedge, the di�erence has been found
in the di�racted �eld, in which additional �eld constituent seems to radiate in the interior
region. One can see that the signi�cant di�erences in the internal di�racted �elds are the
main reason for the di�erence in the �eld inside the wedge. These di�erences are bigger
than those of the two-side illumination case in Fig. 4.17.
Figure 4.20 shows the behavior of cotangent functions corresponding to the outside

region of the wedge for the one-side illumination. As the same as the PEC case, two
cotangent functions have singularity behaviors in the physical domain, while two remain-
der functions have singularities in the non-physical domain. However, these cotangent
functions of the dielectric case don't have any cancellation behavior at the interface of the
wedge as PEC case. This is due to the change of re�ection coe�cients, which relates to
the dielectric constant εr. Similarly, one has a cotangent function corresponding to trans-
mitted waves inside the wedge as in Fig. 4.21. Here, one also sees that two cotangent
functions have two corresponding singularity behaviors in physical and non-physical do-
mains, respectively. The location of these behaviors corresponds to the shadow boundaries
of transmitted rays.
In Fig. 4.22, one can see the remainder �eld of FDTD, which was obtained by subtract-

ing the di�racted �eld of EPO from the di�racted �eld of FDTD in Fig. 4.19(a). The
corresponding result for ϕ0 = 40◦ is also plotted in Fig. 4.22. It can be seen that the
remainder �eld is distributed mainly in the areas near shadowed surface OB, where the
surface di�racted wave is bigger than one on surface OA. When the incident angle changes
to 40◦, the remainder �eld becomes bigger, but keeps the same oscillation behavior as in
the case of ϕ0 = 30◦. These observation results remind us of the concept of lateral wave,
which relates to the boundary condition of edge di�racted �eld. One knows that the
GO �elds satisfy the boundary condition, in which the sum of the external incident and
re�ected �eld is equal to the internal transmitted �eld at the boundary of two media.
On the other hand, the edge di�racted �eld excited by the incident wave at the wedge
tip doesn't satisfy this boundary condition. This is due to the di�erence in the wave
propagation speed of the edge di�racted �eld between the exterior and interior regions of
the dielectric wedge. To compensate for this di�erence, one needs to consider the con-
tribution of the lateral waves that are excited in the dielectric medium inside the wedge.
The model of the lateral wave may be outlined sketch as in Figure 4.23. Here, the lateral
waves are considered as the radiation �eld excited by a line source that is located at the
boundary between two media. The wavefronts of these lateral waves create an angle of
θc = 1/

√
εr with the surfaces of the wedge. One notices that the excitation of the lateral

waves depends on the surface �elds. As shown in Fig. 4.19, it can be observed that the
di�racted �eld at the surface of ϕ = 225◦ is stronger than the one at the surface of ϕ = 0◦.
Accordingly, the lateral waves in the vicinity of surface OB are also stronger than those
of surface OA.
The contribution of these lateral waves may be found from the two-media problem, in
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which the radiation due to a current source in the denser medium can be derived from
free-space Green's function and a static Green's function Gs. This Green's function Gs

has saddle points and branch points. Then the contribution from the branch points may
describe the behavior of the lateral wave. The formulation of these branch points can be
found in Appendix A. Figure 4.24 shows the total �eld distribution of FDTD for both
TM and TE polarizations in the one-side illumination case (ϕ0 = 30◦). One can see that
the total �elds of TM polarization are mainly distributed in the interior region, while
those of TE polarization are almost distributed in the exterior region. Subtracting the
incident �eld and the GO re�ected �eld from surface OA in the outside, one then has
the corresponding di�racted �eld distribution of TM and TE polarization as in Fig. 4.25.
As mentioned before, the di�racted �eld is mainly distributed in the region around the
direction of the GO re�ected and transmitted waves. Figures 4.26 and 4.27 show the
distribution of the remainder �eld of FDTD and possible lateral wave excited inside
the dielectric wedge, in which the FDTD remainder �eld is obtained by subtracting the
di�racted �eld from Fig. 4.25. One can see the same behavior between the remainder
�eld of FDTD and the lateral waves. However, the amplitudes of the two results are
di�erent, and the lateral wave tends to in�nity near the shadow boundary. This is due
to the singularity behavior of the non-uniform solution when the branch point is near the
saddle point. One also can observe the same behaviors of the wavefront of the FDTD
remainder �eld and possible lateral wave inside the wedge as shown in Fig. 4.28. So far,
it is still being investigated to apply the contribution of the lateral waves to our EPO
solution.
Figure 4.29 and Figure 4.30 show the �eld behaviors of the dielectric wedge for wedge

angle ϕw is selected as 330◦. In Fig. 4.29, one can see a big di�erence between TM
and TE polarization for both total and di�racted �elds. While the internal �elds of
TM polarization are very small compared with those of TE polarization, an opposite
phenomenon can be seen for the external region. One can see that the di�erences between
TM and TE occur in the region containing the GO re�ected and transmitted rays. This
is due to the di�erence in the re�ection and transmission coe�cients between TM and TE
polarizations. For the two-side illumination as in Fig. 4.29(a), the di�erence in the outer
region is more apparent in small areas near two surfaces that are occupied by the re�ected
waves. A similar behavior can also be observed when the incident wave illuminates one
side of the wedge with wedge angle ϕ0 = 30◦ as in Fig. 4.30(a), in which the external total
�eld of TE has weaker oscillation than TM polarization. In this one-side illumination, the
di�erence in the re�ected waves between TM and TE is bigger and occurs over a larger
area than in the case of two-side illumination. Inside the wedge, the total �eld of TE
behaves stronger than TM polarization. This change also occurs for the di�racted �elds
in the direction of re�ected and transmitted waves as in Fig. 4.30(b).
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Figure 4.14: Total �eld distribution of dielectric wedge: ϕw = 225◦, ϕ0 = 115◦, εr = 6.
(a) TM polarization. (b) TE polarization.
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Figure 4.15: Di�racted �eld distribution of dielectric wedge: ϕw = 225◦, ϕ0 = 115◦, εr = 6.
(a) TM polarization. (b) TE polarization.
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Figure 4.16: Total �eld of dielectric wedge: ϕw = 225◦, ϕ0 = 115◦, εr = 6 and ρ = 3λ. (a)
TM polarization. (b) TE polarization.
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Figure 4.17: Di�racted �eld of dielectric wedge: ϕw = 225◦, ϕ0 = 115◦, εr = 6 and ρ = 3λ.
(a) TM polarization. (b) TE polarization.
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Figure 4.18: Total �eld of dielectric wedge: ϕw = 225◦, ϕ0 = 30◦, εr = 6 and ρ = 3λ. (a)
TM polarization. (b) TE polarization.
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Figure 4.19: Di�racted �eld of dielectric wedge: ϕw = 225◦, ϕ0 = 30◦, εr = 6 and ρ = 3λ.
(a) TM polarization. (b) TE polarization.
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Figure 4.20: Cotangent functions outside dielectric wedge: ϕw = 225◦, ϕ0 = 30◦ and
εr = 6. (a) TE polarization. (b) TM polarization.
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Figure 4.21: Cotangent functions inside dielectric wedge: ϕw = 225◦, ϕ0 = 30◦ and εr = 6.
(a) TE polarization. (b) TM polarization.
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Figure 4.22: Remainder �eld of FDTD (TM polarization): ϕw = 225◦, εr = 6 and ρ = 3λ.
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Figure 4.23: Possible lateral waves excited by edge di�racted surface waves.
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Figure 4.24: Total �eld distribution of dielectric wedge (FDTD): ϕw = 225◦, ϕ0 = 30◦

and εr = 6. (a) TM polarization. (b) TE polarization.
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Figure 4.25: Di�racted �eld distribution of dielectric wedge (FDTD): ϕw = 225◦, ϕ0 = 30◦

and εr = 6. (a) TM polarization. (b) TE polarization.
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Figure 4.26: Distribution of FDTD remainder �eld and possible lateral wave (TM polar-
ization): ϕw = 225◦, ϕ0 = 30◦, εr = 6. (a) FDTD remainder �eld. (b) Lateral wave.
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Figure 4.27: Distribution of FDTD remainder �eld and possible lateral wave (TE polar-
ization): ϕw = 225◦, ϕ0 = 30◦, εr = 6. (a) FDTD remainder �eld. (b) Lateral wave.
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Figure 4.28: Wavefront of FDTD remainder �eld and possible lateral wave: ϕw = 225◦,
ϕ0 = 30◦, εr = 6. (a) FDTD remainder �eld. (b) Lateral wave.
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Figure 4.29: Total and di�racted �elds of dielectric wedge: ϕw = 330◦, ϕ0 = 165◦, εr = 6
and ρ = 3λ. (a) Total �eld. (b) Di�racted �eld.
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Figure 4.30: Total and di�racted �elds of dielectric wedge: ϕw = 330◦, ϕ0 = 30◦, εr = 6
and ρ = 3λ. (a) Total �eld. (b) Di�racted �eld.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, the approximation solutions have been constructed based on the surface
equivalence theorem for the scattering problem of the electromagnetic waves by wedges.
The scattering �elds by wedges can be calculated as the �eld radiated from the induced
currents on the surfaces of the wedges.
For the PEC wedge cases, the induced currents can be approximated by the PO ap-

proximation method. Then the scattering �elds can be obtained by integrating the PO
currents on the illuminated surface with the two-dimensional Green's function. The ob-
tained radiation integrals can then be solved by using the saddle point technique. The
uniform asymptotic solution of the di�racted �eld was then expressed by di�erent equa-
tions depending on the incident direction. To solve this calculation complication, a uni�ed
expression including four cotangent functions has been proposed. This solution is valid
for all incident and observation angles.
For the scattering problem of dielectric wedge cases, an extended PO solution has

been proposed by utilizing the equivalent electric and magnetic currents on the wedge's
surface. These currents can be simply determined from the GO incident, re�ected, and
transmitted rays. The uniform asymptotic solutions were then found and represented in
terms of cotangent functions.
The accuracy of EPO was then evaluated by comparing the numerical results with other

reference methods. EPO has a better comparison with FDTD than HRD in the outer
region of the dielectric wedge. In the inside region of the wedge, the di�racted �elds of
EPO and HRD yield almost the same behavior. Accordingly, EPO may be suitable for
the scattering problem of the dielectric wedge without the nonphysical additional terms
of HRD, and requires signi�cantly less computational resources than FDTD. From the
di�erence with FDTD, the lateral wave needs to be considered to enhance the accuracy
of EPO and HRD inside the wedge. The accuracy change of the EPO and HRD solutions
between the PEC and dielectric cases also reminds an additional consideration for the
edge condition. These aspects are motivations for the next research in the future.

5.2 Future work

In order to improve the research, there are various things to do in the coming year.
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� Firstly, it is necessary to �nd out the exact contribution of lateral wave to improve
the accuracy of EPO solution for the internal �eld of dielectric wedge.

� On the other hand, the current calculations are performed for the lossless dielectric
wedge. Thus, we need to extend the investigation for lossy materials following the
same calculation process, but more complicated.

� Finally, I will extend the analytical calculation result for the other geometric shapes
and the 3D scattering problems.
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Appendix

A.1 Uniform Asymptotic Evaluation for Radiation In-

tegral

A.1.1 TM polarization

In this section, the uniform asymptotic evaluation of the integral on SDP contour for
TM polarization case is derived for example. As presented in Chapter 2, the di�racted
magnetic �eld due to surface OA can be represented as integral on the SDP contour as

HA
d =

±j

2π

∫
SDP

cosw

cosϕ0 + sinw
e−jkρ sin(w±ϕ)dw, (ϕ ≶ π). (A�1)

Now, consider the integral U(kρ) on the SDP contour:

U(kρ) =

∫
SDP

p(w)eΩg(w)dw, (A�2)

where

g(w) = −j sin(w ± ϕ), (A�3)

p(w) =
cosw

cosϕ0 + sinw
, (A�4)

Ω = kρ. (A�5)

.
The function p(w) has a simple pole singularity at w = w0. In can be found from

cosϕ0 + sinw0 = 0

as w0 = ϕ0 −
π

2
± 2nπ (n ∈ N). (A�6)

Then w0 = ϕ0 − π/2 is the pole singularity of function p(w) which satis�es the condition
−π/2 < w0 < π/2. The function g(w) has the �rst order saddle point ws so that

g′(ws) = 0

as − j cos(ws ± ϕ) = 0, (ϕ ≶ π)

as ws = |ϕ− π| − π

2
± 2nπ (n ∈ N). (A�7)

Then ws = |ϕ−π|−π/2 is the saddle point which satis�es the condition −π/2 < ws < π/2.
If the pole w0 is near the saddle point ws, the asymptotic approximation of the integral
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U(kρ), valid uniformly as w0 → ws, is given by

U(kρ) ∼ eΩg(ws)

{
±j2c

√
πe−Ωd2Q(∓jd

√
Ω) +

√
π

Ω
R(0)

}
, Im(d) ≷ 0, (A�8)

where

R(0) =vf(ws) +
c

d
, (A�9)

Q(y) =

∫ ∞

y

e−x2

dx, (A�10)

and

c = lim
w→w0

[(w − w0)f(w)] = lim
w→w0

cosw(w − w0)

cosϕ0 + sinw

= lim
w→w0

cosw(w − w0)

sinw − sinw0

=
cosw0

lim
w→w0

sinw − sinw0

w − w0

=
cosw0

cosw0

= 1. (A�11)

one also has

d =
√
g(ws)− g(w0) =

√
−j + j sin(ϕ0 − π/2± ϕ)

=
√
−j − j cos(|ϕ|+ ϕ0) =

√
−j2 cos2 {(ϕ0 ± ϕ)/2}

=±
√
2

∣∣∣∣cos ϕ0 ± ϕ

2

∣∣∣∣ e−jπ/4, (ϕ ≶ π) (A�12)

and

v =

√
−2

g′′(ws)
=

√
−2

j
=

√
2ejπ/4. (A�13)

The Arg(d) is de�ned so that d → (w0 − ws)/v as w0 → ws. Then, one has two cases:
When w0 − ws ⩾ 0 or ϕ0 ⩾ |ϕ− π|,

cos
ϕ0 ± ϕ

2
⩽ 0

as d = −
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4, (A�14)

and when w0 − ws < 0 or ϕ0 < |ϕ− π|,

cos
ϕ0 ± ϕ

2
> 0

as d = −
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4. (A�15)

Finally, one gets

d =−
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4 (ϕ0 ≷ |ϕ− π|)

=(−1 + j) cos

{
ϕ0 ± ϕ

2

}
. (ϕ ≶ π) (A�16)
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From Eq.(A�16), ℑm(d) ≷ 0 ⇔ ϕ0 ≶ |ϕ − π|. Then the function Q(∓jb
√
Ω) can be

represented as

Q(∓jd
√
Ω) =Q

[
∓j(−1 + j) cos

{
ϕ0 ± ϕ

2

}√
Ω

]
, (ϕ0 ≶ |ϕ− π|)

=Q

[
±(1 + j) cos

{
ϕ0 ± ϕ

2

}√
Ω

]
, (ϕ0 ≶ |ϕ− π|)

=Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√Ω

]
, (ϕ0 ≶ |ϕ− π|). (A�17)

From Eqs.(A�11), (A�13), (A�16) and (A�17), the asymptotic approximation of the in-
tegral U(kρ) can be derived as

U(kρ) ∼± e−jkρj2
√
πejkρ+jkρ cos(ϕ0±ϕ)Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√kρ

]
+ e−jkρ

√
π

kρ

(√
2ejπ/4 sin |ϕ− π|
cosϕ0 + cosϕ

− ejπ/4√
2 cos {(ϕ0 ± ϕ)/2}

)
, (ϕ0 ≶ |ϕ− π|),

=sgn(π − ϕ0 ∓ ϕ)2j
√
πejkρ cos(ϕ0±ϕ)Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√kρ

]
+ e−jkρ+jπ/4

√
2π

kρ

(
sin |ϕ− π|

cosϕ0 + cosϕ
− 1

2 cos {(ϕ0 ± ϕ)/2}

)
. (A�18)

Then from Eq.(A�18) and Eq.(A�1), one obtains

Hd =
±j

2π
U(kρ), (ϕ ≶ π)

∼∓ 1√
π
ejkρ cos(ϕ0±ϕ) sgn(π − ϕ0 ∓ ϕ)Q

[
(1 + j)

∣∣∣∣cos {ϕ0 ± ϕ

2
}
∣∣∣∣√kρ

]
∓ e−jkρ−jπ/4

√
1

8πkρ

(
2 sin |ϕ− π|
cosϕ+ cosϕ0

− 1

cos {(ϕ0 ± ϕ)/2}

)
, (ϕ ≶ π)

=∓ 1√
π
ejkρ cos(ϕ0±ϕ) sgn(π − ϕ0 ∓ ϕ)Q

[
(1 + j)

∣∣∣∣cos {ϕ0 ± ϕ

2
}
∣∣∣∣√kρ

]
− C(kρ)

(
2 sinϕ

cosϕ+ cosϕ0

∓ 1

cos {(ϕ0 ± ϕ)/2}

)
, (ϕ ≶ π). (A�19)

The complementary error-function Q in Eq.(A�19) can be expressed in term of the well-
tabulated Fresnel integrals C(x) ans S(x) as

Q[(1 + j)ξ] =

√
π

2
−
√

π

2

[
C

(
2ξ√
π

)
− jS

(
2ξ√
π

)]
, (A�20)

where

C(x) =

∫ x

0

cos
(π
2
t2
)
dt, S(x) =

∫ x

0

sin
(π
2
t2
)
dt. (A�21)
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A.2 TE polarization

For TE polarization, the di�racted electric �eld can be represented as

EA
d = − j

2π
sinϕ0

∫
SDP

e−jkρ sin(w±ϕ)

cosϕ0 + sinw
dw, (A�22)

Now, consider the integral I(kρ) on the SDP contour:

I(kρ) =

∫
SDP

f(w)eΩq(w)dw, (A�23)

where

q(w) = −j sin(w ± ϕ), (A�24)

f(w) =
1

cosϕ0 + sinw
, (A�25)

Ω = kρ. (A�26)

.
The function f(w) has a simple pole singularity at w = w0. It can be found from

cosϕ0 + sinw0 = 0

as w0 = ϕ0 −
π

2
± 2nπ (n ∈ N). (A�27)

Then w0 = ϕ0 − π/2 is the pole singularity of function f(w) which satis�es the condition
−π/2 < w0 < π/2. The function q(w) has the �rst order saddle point ws so that

q′(ws) = 0

as − j cos(ws ± ϕ) = 0

as ws = |ϕ− π| − π

2
± 2nπ (n ∈ N). (A�28)

Then ws = |ϕ−π|−π/2 is the saddle point which satis�es the condition −π/2 < ws < π/2.
If the pole w0 is near the saddle point ws, the asymptotic approximation of the integral
I(kρ), valid uniformly as w0 → ws, is given by

I(kρ) ∼ eΩq(ws)

{
±j2a

√
πe−Ωb2Q(∓jb

√
Ω) +

√
π

Ω
T (0)

}
, Im(b) ≷ 0, (A�29)

where

T (0) =hf(ws) +
a

b
, (A�30)

Q(y) =

∫ ∞

y

e−x2

dx, (A�31)

and

a = lim
w→w0

[(w − w0)f(w)] = lim
w→w0

w − w0

cosϕ0 + sinw

= lim
w→w0

w − w0

sinw − sinw0

=
1

lim
w→w0

sinw − sinw0

w − w0

=
1

cosw0

=
1

sinϕ0

. (A�32)
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One also has

b =
√

q(ws)− q(w0) =
√
−j + j sin(ϕ0 − π/2± ϕ)

=
√

−j − j cos(|ϕ|+ ϕ0) =
√

−j2 cos2 {(ϕ0 ± ϕ)/2}

=±
√
2

∣∣∣∣cos ϕ0 ± ϕ

2

∣∣∣∣ e−jπ/4, (ϕ ≶ π) (A�33)

and

h =

√
−2

q′′(ws)
=

√
−2

j
=

√
2ejπ/4. (A�34)

The Arg(b) is de�ned so that b → (w0 − ws)/h as w0 → ws. Then one has two cases:
When w0 − ws ⩾ 0 or ϕ0 ⩾ |ϕ− π|,

cos
ϕ0 ± ϕ

2
⩽ 0

as d = −
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4, (A�35)

and when w0 − ws < 0 or ϕ0 < |ϕ− π|,

cos
ϕ0 ± ϕ

2
> 0

as d = −
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4. (A�36)

Finally, one gets

b =−
√
2 cos

{
ϕ0 ± ϕ

2

}
e−jπ/4 (ϕ0 ≷ |ϕ− π|)

=(−1 + j) cos

{
ϕ0 ± ϕ

2

}
. (ϕ ≶ π) (A�37)

From Eq.(A�37), ℑm(d) ≷ 0 ⇔ ϕ0 ≶ |ϕ − π|. Then the function Q(∓jb
√
Ω) can be

represented as

Q(∓jb
√
Ω) =Q

[
∓j(−1 + j) cos

{
ϕ0 ± ϕ

2

}√
Ω

]
, (ϕ0 ≶ |ϕ− π|)

=Q

[
±(1 + j) cos

{
ϕ0 ± ϕ

2

}√
Ω

]
, (ϕ0 ≶ |ϕ− π|)

=Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√Ω

]
, (ϕ0 ≶ |ϕ− π|). (A�38)

From Eqs.(A�32), (A�34), (A�37) and (A�38), the asymptotic approximation of the in-
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tegral I(kρ) can be derived as

I(kρ) ∼± e−jkρj
2
√
π

sinϕ0

ejkρ+jkρ cos(ϕ0±ϕ)Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√kρ

]
+ e−jkρ

√
π

kρ

( √
2ejπ/4

cosϕ0 + cosϕ
− ejπ/4√

2 sinϕ0 cos {(ϕ0 ± ϕ)/2}

)
, (ϕ0 ≶ |ϕ− π|),

=sgn(π − ϕ0 ∓ ϕ)
2j
√
π

sinϕ0

ejkρ cos(ϕ0±ϕ)Q

[
(1 + j)

∣∣∣∣cos{ϕ0 ± ϕ

2

}∣∣∣∣√kρ

]
+ e−jkρ+jπ/4

√
2π

kρ

(
1

cosϕ0 + cosϕ
− 1

2 sinϕ0 cos {(ϕ0 ± ϕ)/2}

)
. (A�39)

Then from Eq.(A�39) and Eq.(A�22), one obtains

Ed =− j

2π
sinϕ0I(kρ)

∼ 1√
π
ejkρ cos(ϕ0±ϕ) sgn(π − ϕ0 ∓ ϕ)Q

[
(1 + j)

∣∣∣∣cos {ϕ0 ± ϕ

2
}
∣∣∣∣√kρ

]
+ e−jkρ−jπ/4

√
1

8πkρ

(
2 sinϕ0

cosϕ+ cosϕ0

− 1

cos {(ϕ0 ± ϕ)/2}

)
(ϕ ≶ π)

=
1√
π
ejkρ cos(ϕ0±ϕ) sgn(π − ϕ0 ∓ ϕ)Q

[
(1 + j)

∣∣∣∣cos {ϕ0 ± ϕ

2
}
∣∣∣∣√kρ

]
+ C(kρ)

(
2 sinϕ0

cosϕ+ cosϕ0

− 1

cos {(ϕ0 ± ϕ)/2}

)
. (ϕ ≶ π) (A�40)

A.3 Hidden Rays of Di�raction

It is well known that the di�racted �eld of the PO approximation method doesn't satisfy
the boundary and edge conditions. To correct the error of PO, the HRD solution was then
proposed to satisfy the boundary and edge conditions for the PEC wedge cases. In this
solution, additional hidden di�racted rays have been traced in the non-physical domain.
The contribution of these rays can compensate for the shortcoming of PO at the boundary
of the wedge. For TM polarization, the HRD solution of di�racted �elds in the outer and
inner regions of a two-dimensional dielectric wedge can be represented as:

H̄+ =− C(kρ)

·

[
1

n
cot

π−(ϕ−ϕ0)

2n
+S−(ϕ−ϕ0)U(ϕ−π)

+
1

n
cot

π+(ϕ−ϕ0)

2n
+S+(ϕ−ϕ0)U(ϕw−π−ϕ)

+
Γ′
A

n
cot

π − (ϕ+ ϕ0)

2n
+ Γ′

AS
−(ϕ+ϕ0)U(π−ϕ)

+
Γ′
B

n
cot

π+(ϕ+ϕ0−2ϕw)

2n
+Γ′

BS
+(ϕ0+ϕ−2ϕw)

· U(ϕ+π−ϕw)

]
, (A�41)
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H̄− =− C(k1ρ)

·

[
T′

A

n
cot

ϕ− ϕt
A

2n
− T′

AS
−(π − ϕt

A + ϕ)U(ϕ− ϕw)

−T′
B

n
cot

ϕ− ϕt
B

2n
− T′

BS
−(ϕt

B + π − ϕ)U(ϕ− ϕw)

]
, (A�42)

where the corresponding re�ection coe�cients Γ′
A and Γ′

B of surfaces OA and OB are
given by

Γ′
A =

εr| sinϕ0| −
√

εr − cos2 ϕ0

εr| sinϕ0|+
√
εr − cos2 ϕ0

(A�43)

Γ′
B =

εr| sin(ϕ0 + π − ϕw)| −
√
εr − cos2(ϕ0 + π − ϕw)

εr| sin(ϕ0 + π − ϕw)|+
√
εr − cos2(ϕ0 + π − ϕw)

. (A�44)

T′
A = 1 + Γ′

A and T′
B = 1 + Γ′

B are corresponding transmission coe�cients from surfaces
OA and OB, respectively. Based on the edge condition, the angular period of cotangent
functions has been modi�ed, in which the parameter n is selected as the minimum positive
value that satis�es:

εr tan
−ϕw

n
= tan

2π − ϕw

n
. (A�45)

For the PO solution, modifying the angular period based on the edge condition does not
provide a signi�cant correction to the �eld behavior as HRD. The formulations of HRD
solution in Eqs.(A�41) and (A�42) are applicable for all directions of the incident wave.
One may also need the contribution of the additional multiple di�racted �elds depending
on the particular cases of the wedge and incident angles.
For TE-polarized plane incident wave, the external and internal di�racted �elds can

also be found from Eqs.(A�41) and (A�42), in which the re�ection and transmission
coe�cients of the TM polarization are replaced by the corresponding coe�cients as:

Γ̄′
A =

| sinϕ0| −
√

εr − cos2 ϕ0

| sinϕ0|+
√

εr − cos2 ϕ0

(A�46)

Γ̄′
B =

| sin(ϕ0 + π − ϕw)| −
√

εr − cos2(ϕ0 + π − ϕw)

| sin(ϕ0 + π − ϕw)|+
√
εr − cos2(ϕ0 + π − ϕw)

(A�47)

T̄′
A = 1 + Γ′

A (A�48)

T̄′
B = 1 + Γ′

B. (A�49)

A.4 Possible Lateral Wave

Consider two-media problem with a current source located in denser media 1 as in
Fig. A�1. The radiation �elds excited by the current source can be derived from the
two-dimensional Green's functions. The problem can then be considered in two case
polarizations as follows [15].
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Figure A�1: Lateral wave.

A.4.1 TE polarization

For TE polarization, the radiation �elds excited by the current source can be derived from
the two-dimensional Green's functions, which satisfy:(

∇2 + k2
1

)
G1(ρ,ρ

′) = −δ(ρ− ρ′) (y < 0)(
∇2 + k2

2

)
G2(ρ,ρ

′) = 0 (y > 0), (A�50)

where k1 = ω
√
µε1 and k2 = ω

√
µε2 (ε1 = ε0εr, ε2 = ε0). Then the solution is given

by: Subject to a radiation condition at in�nity in both regions, and to the continuity
requirements at y = 0:

G1 = G2,
∂G1

∂y
=

∂G2

∂y
at y = 0, (A�51)

Then the solution is given by:
For y < 0 (media 1):
The radiation �eld can be found from Green's function G1, which is given by:

G1(ρ̂, ρ̂
′) = Gf1(ρ̂, ρ̂

′) +Gs(ρ̂, ρ̂
′), (A�52)
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Figure A�2: Integration contours for Gf1 integral in Eq.(A�53).

where Gf1 is the two-dimensional free-space Green's function given by:

Gf1(x, y) =
−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21−ξ2|y−y′|√
k2
1 − ξ2

dξ (A�53)

Gs(ρ̂, ρ̂
′) contains the interface e�ect and can be given by:

Gs(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)+j
√

k21−ξ2(y+y′)√
k2
1 − ξ2

Γ(ξ)dξ, (A�54)

where

Γ(ξ) =

√
k2
1 − ξ2 −

√
k2
1n− ξ2√

k2
1 − ξ2 +

√
k2
1n− ξ2

(A�55)

with n = ε2/ε1 = 1/εr.
For y > 0 (media 2): The radiation �eld can be found from Green's function G2:

G2(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21n−ξ2y+j
√

k21−ξ2y′√
k2
1 − ξ2

T(ξ)dξ, (A�56)

where T(ξ) = 1 + Γ(ξ). Now let us consider Green's functions in media 1 as follows:
1) Evaluation of Gf1(ρ̂, ρ̂

′):

Gf1(x, y) =
−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21−ξ2|y−y′|√
k2
1 − ξ2

dξ. (A�57)

By using transformation ξ = k1 sinw and coordinate system (ρ1, θ1) with x−x′ = ρ1 sin θ1
and |y − y′| = ρ1 cos θ1, the integral can be rewritten as:

Gf1 =
−j

4π

∫
P̄

e−jk1ρ1 cos(w−θ1)dw (A�58)
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Figure A�3: Integration contours for Gf1 integral in Eq.(A�58).

The integral in Eq.(A�58) has saddle point ws = θ1. By saddle point technique, the
integral in Eq.(A�58) can then be given by:

Gf1 ≈
−j

4π

√
−2π

k1ρ1| cos(ws − θ1)|
e−jk1ρ1 cos(ws−θ1)−jπ/4

=
1√

8πk1ρ1
e−jk1ρ1−jπ/4 (A�59)

2) Evaluation of Gs(ρ̂, ρ̂
′):

Gs(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)+j
√

k21−ξ2(y+y′)√
k2
1 − ξ2

Γ(ξ)dξ. (A�60)

Similarly, by using transformation ξ = k1 sinw and coordinate system (ρ, θ) with
x− x′ = ρ sin θ and y + y′ = −ρ cos θ, one has:

Gs(ρ̂, ρ̂
′) =

−j

4π

∫
P̄

e−jk1ρ cos(w−θ)Γ(k1 sinw)dw, (A�61)

where

Γ(k1 sinw) =
cosw −

√
n− sin2w

cosw +
√

n− sin2 w
(A�62)

The integral in Eq.(A�61) has saddle point ws = θ exists on the integration contour.
And one may also have branch point wb = Arcsin

√
n = θ̄ exist on the positive imagine
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Figure A�4: Integration contours for Gs integral in Eq.(A�54).

domain. We may have the contribution from the branch point wb when ws > wb (θ > θ̄)
as in Fig. A�5. Then Gs can be given by:

Gs = Gsd +GsbU(ws − wb) = Gsd +GsbU(θ − θ̄), (A�63)

where Gsd is the contribution from the integral on the steepest-descent path P given by:

Gsd ≈
cos θ −

√
n− sin2 θ

cos θ +
√
n− sin2 θ

1√
8πk1ρ

e−jk1ρ−jπ/4, (A�64)

and Gsb is the banch point contribution given by:

Gsb =
−j

4π

∫
Pb

e−jk1ρ cos(w−θ)Γ(k1 sinw)dw

=
−j

4π

∫
Pb

e−jk1ρ cos(w−θ)f(w)dw, (A�65)

where f(w) = Γ(k1 sinw).
Now, let us consider the integral:

Ib =

∫
Pb

f(w)eΩq(w)dw (A�66)

where

q(w) = −j cos(w − θ) (A�67)

Ω = k1ρ, (A�68)

and Pb is contour encircling the branch cut. In typical problem, f(w) behaves like:

f(w) ∼= a+ b
√
w − wb, (A�69)

near wb, where a and b are constants. Then we have:

f ′(w) =
1

2
√
w − wb

b|wb

as b = 2[
√
w − wbf

′(w)]wb
(A�70)
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Figure A�5: Integration contours for Gs integral in Eq.(A�61).

We change variable to s (s = 0 when w = wb) as:

s2 = q(wb)− q(w)

as s2 = −q(w)− q(wb)

w − wb

(w − wb)

as s2 = −q′(wb)(w − wb)

as s =
√
−q′(wb)

√
(w − wb)

as
√
(w − wb) =

s√
−q′(wb)

(A�71)

and we have

dw

ds
=

2s

−q′(wb)
(A�72)

so we have:

f(w) = a+
bs√

−q′(wb)
(A�73)

Then Eq.A�66 can be rewritten as:

Ib =eΩq(wb)

∫ ∞

−∞
f(w)

dw

ds
e−Ωs2ds

=eΩq(wb)

∫ ∞

−∞

(
2as

−q′(wb)
+

2bs2

[−q′(wb)]3/2

)
e−Ωs2ds

=eΩq(wb)

∫ ∞

−∞
G(s)e−Ωs2ds (A�74)
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Since G(s) is regular at s = 0, it can be expanded into a power series as:

G(s) = G(0) +G′(0)s+G′′(0)
s2

2!
+ · · ·+Gm(0)

sm

m!
+ · · · (A�75)

Ib then can be written as:

Ib = eΩq(wb)

∞∑
m=0

Gm(0)

m!
Im(Ω), (A�76)

where Im(Ω) = 0 can be evaluated in terms of the gamma function Γ(x), in which Im(Ω) =
0 when m is odd, and

Im(Ω) =

∫ ∞

−∞
sme−Ωs2ds =

Γ[(1 +m)/2]

Ω(1+m)/2
(A�77)

when m is even. So, we have:

Ib = eΩq(wb)
G′′(0)

2!

Γ(3/2)

Ω3/2
(A�78)

On the other hand Γ(3/2) =
√
π/2, so we have:

Ib =eΩq(wb)

√
π4b

4[−q′(wb)]3/2
1

Ω3/2

=eΩq(wb)
b
√
π

[−Ωq′(wb)]3/2

=eΩq(wb)
2
√
π

[−Ωq′(wb)]3/2
[
√
w − wbf

′(w)]|wb

=
2
√
π

[Ω|q′(wb)|]3/2
[
√
w − wbf

′(w)]|wb
eΩq(wb)−j 3

2
arg[−q′(wb)] (A�79)
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Then, one has the approximation of Gsb as

Gsb ≈
−j

4π

2
√
π

[k1ρ sin(θ − wb)]3/2

[√
w − wb

df(w)

dw

]
wb

e−jk1ρ cos(wb−θ)ej3π/4 (A�80)

on the other hand, one has:

df(w)

dw
=

−2 sinw(n− sin2w) + 2 sinw cos2w√
n− sin2 w

(
cosw +

√
n− sin2w

)2 (A�81)

Then, one has[√
w − wb

df(w)

dw

]
wb

= lim
w→wb

{ √
w − wb√

n− sin2 w

−2 sinw(n− sin2 w) + 2 sinw cos2 w(
cosw +

√
n− sin2 w

)2

}

=
2 sinwb cos

2wb

cos2 wb

e−jπ/2 lim
w→wb

√
w − wb√

sin2 w − sin2 wb

=2 sinwbe
−jπ/2

√√√√√ 1

lim
w→wb

sin2 w − sin2wb

w − wb

=
2 sinwbe

−jπ/2

√
2 sinwb coswb

=

√
2
√
sinwbe

−jπ/2

√
coswb

=
√
2e−jπ/2

(
n

1− n

)1/4

(A�82)
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Figure A�7: Lateral wave when y′ = 0.
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Then, the lateral wave contribution from branch point can be written as:

Gsb ≈
−j

4π

2
√
π[

k1ρ sin(θ − θ̄)
]3/2√2e−jπ/2

(
n

1− n

)1/4

e−jk1ρ cos(θ−θ̄)ej3π/4

=
1√
2π

e−jk1ρ cos(θ−θ̄)e−jπ/4[
k1ρ sin(θ − θ̄)

]3/2 ( n

1− n

)1/4

=
1√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2
√
sin θ̄

cos2 θ̄

=
1√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2 n1/4

1− n
(A�83)

where θ̄ = arcsin
√
n = arcsin (1/

√
εr)

When the current source is located at the origin as in Fig. A�7, one has L1 = 0, ρ1 = ρ.
Then, the contributions from Gf1 and Gs can be written as

Gf1 =
1√

8πk1ρ
e−jk1ρ−jπ/4, (A�84)

Gs =
cos θ −

√
n− sin2 θ

cos θ +
√

n− sin2 θ

1√
8πk1ρ

e−jk1ρ−jπ/4 +GsbU(θ − θ̄), (A�85)

Gsb =
1√
2π

e−jk1ρ cos(θ−θ̄)e−jπ/4[
k1ρ sin(θ − θ̄)

]3/2 ( n

1− n

)1/4

=
1√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2 n1/4

1− n
. (A�86)

3) Evaluation of G2(ρ̂, ρ̂
′):
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One has:

G2(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21n−ξ2(−y)+j
√

k21−ξ2y′√
k2
1 − ξ2

T (ξ)dξ (A�87)

By using transformation ξ = k1 sinw, we have:

G2(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jk1 sinw(x−x′)−jk1

√
n−sin2 w(−y)+jk1 coswy′

k1 cosw
T (k1 sinw)k1 coswdw

=
−j

4π

∫
P̄

e−jk1[sinw(x−x′)+
√

n−sin2 w(−y)−coswy′]T (k1 sinw)dw

=
−j

4π

∫
P̄

ejk1q2(w)f2(w)dw. (A�88)

where

q2(w) =− [sinw(x− x′) +
√

n− sin2w(−y)− coswy′] (A�89)

f2(w) =T (k1 sinw) =
2 cosw

cosw +
√

n− sin2 w
(A�90)

The integral in Eq.(A�88) may have saddle points ws satisfy:

q′2(ws) = 0

(A�91)

Then, one has

cosws(x− x′)− (n− sin2ws)
−1/2 sinws cosws(−y) + sinwsy

′ = 0 (A�92)

On other hand, one has:

x− x′ = L4 sin θ4 + L5 sin θ5,

−y = L5 cos θ5,

y′ = −L4 cos θ4. (A�93)

So, Eq.(A�92) can rewritten as:

cosws(L4 sin θ4 + L5 sin θ5)− (n− sin2 ws)
−1/2 sinws coswsL5 cos θ5 − sinwsL4 cos θ4 = 0

or L4(cosws sin θ4 − sinws cos θ4) + L5[cosws sin θ5 − (n− sin2 ws)
−1/2 sinws cosws cos θ5] = 0

(A�94)

Eq.(A�94) satisfy ∀L4 and L5 when

cosws sin θ4 = sinws cos θ4

cosws sin θ5 = (n− sin2ws)
−1/2 sinws cosws cos θ5

or cosws sin θ4 = sinws cos θ1
cosws sin θ4√
n− sin2 θ4

=
cosws sinws√
n− sin2 ws

(A�95)
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So we have ws = θ4± 2mπ (m ∈ N) and we choose the saddle point ws = θ4 exists on the
integration contour.
The integral in Eq.(A�88) also has a branch point wb = arcsin

√
n = θ̄. Because ws < wb

(θ4 < θ̄), we might not need the contribution from the branch point wb.
So we have:

G2 = G2s (A�96)

where G2s is the contribution from the integral on the steepest-descent path P given by:

G2s ≈
−j

4π

√
−2π

k1|q′′2(ws)|
f2(ws)e

jk1q2(ws)−jπ/4

(A�97)

On other hand, we have:

q′′2(ws) =
cos2 θ4
sin θ4

(
L4 sin θ4
cos2 θ4

+
L5 sin θ5
cos2 θ5

)
(A�98)

q2(ws) =− (L4 + L5

√
n) (A�99)

then we have:

G2 = G2s ≈
−j

4π

√√√√√ −2π

k1
cos2 θ4
sin θ4

(
L4 sin θ4
cos2 θ4

+ L5 sin θ5
cos2 θ5

) 2 cos θ4

cos θ4 +
√
n− sin2 θ4

e−jk1(L4+L5
√
n)−jπ/4

=
2e−jk1(L4+L5

√
n)−jπ/4

√
8πk1

√
sin θ4

cos θ4 +
√
n− sin2 θ4

1√
L4 sin θ4
cos2 θ4

+ L5 sin θ5
cos2 θ5

(A�100)

When ws > wb (θ4 > θ̄) G2b is the banch point contribution given by:

G2b ≈
−j

4π

2
√
π

[k1|jq′2(wb)|]3/2

[√
w − wb

df2(w)

dw

]
wb

ejk1q2(wb)+j 3
2
arg[−jq′2(ws)] (A�101)

On the other hand, we have:

q′2(wb) = − cos θ̄ + (n− sin2 θ̄)−1/2 sin θ̄ cos θ̄y − sin θ̄y′ (A�102)

Because sin θ̄ =
√
n, q′2(wb) → ∞. so we have G2b → 0

A.4.2 TM polarization

For the TM polarization, the radiation �eld excited by current source can also be derived
from the two-dimensional Green's functions in Eqs.(A�53), (A�54) and (A�56) with the
coe�cients Γ(ξ) and T(ξ) are replaced by

Γ̄(ξ) =
n
√

k2
1 − ξ2 −

√
k2
1n− ξ2

n
√
k2
1 − ξ2 +

√
k2
1n− ξ2

(A�103)

T̄(ξ) = 1 + Γ̄(ξ) (A�104)
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Now let us consider Green's functions in media 1 as follows:
1) Evaluation of Gf1(ρ̂, ρ̂

′):

Gf1(x, y) =
−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21−ξ2|y−y′|√
k2
1 − ξ2

dξ. (A�105)

By using transformation ξ = k1 sinw and coordinate system (ρ1, θ1) with x−x′ = ρ1 sin θ1
and |y − y′| = ρ1 cos θ1, the integral can be rewritten as:

Gf1 =
−j

4π

∫
P̄

e−jk1ρ1 cos(w−θ1)dw (A�106)

The integral in Eq.(A�106) has saddle point ws = θ1. By saddle point technique, the
integral in Eq.(A�106) can then be given by:

Gf1 ≈
−j

4π

√
−2π

k1ρ1| cos(ws − θ1)|
e−jk1ρ1 cos(ws−θ1)−jπ/4

=
1√

8πk1ρ1
e−jk1ρ1−jπ/4 (A�107)

2) Evaluation of Gs(ρ̂, ρ̂
′):

Gs(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)+j
√

k21−ξ2(y+y′)√
k2
1 − ξ2

Γ̄(ξ)dξ. (A�108)

Similarly, by using transformation ξ = k1 sinw and coordinate system (ρ, θ) with x−x′ =
ρ sin θ and y + y′ = −ρ cos θ, one has:

Gs(ρ̂, ρ̂
′) =

−j

4π

∫
P̄

e−jk1ρ cos(w−θ)Γ̄(k1 sinw)dw, (A�109)

where

Γ̄(k1 sinw) =
n cosw −

√
n− sin2w

n cosw +
√

n− sin2 w
(A�110)

The integral in Eq.(A�109) has saddle point ws = θ exists on the integration contour.
And one may also have branch point wb = Arcsin

√
n = θ̄ exist on the positive imagine

domain. We may have the contribution from the branch point wb when ws > wb (θ > θ̄)
as in Fig. A�5. Then Gs can be given by:

Gs = Gsd +GsbU(ws − wb) = Gsd +GsbU(θ − θ̄), (A�111)

where Gsd is the contribution from the integral on the steepest-descent path P given by:

Gsd ≈
n cos θ −

√
n− sin2 θ

n cos θ +
√
n− sin2 θ

1√
8πk1ρ

e−jk1ρ−jπ/4, (A�112)
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and Gsb is the banch point contribution given by:

Gsb =
−j

4π

∫
Pb

e−jk1ρ cos(w−θ)Γ̄(k1 sinw)dw

=
−j

4π

∫
Pb

e−jk1ρ cos(w−θ)f(w)dw, (A�113)

where f(w) = Γ̄(k1 sinw). One has the approximation of Gsb as

Gsb ≈
−j

4π

2
√
π

[k1ρ sin(θ − wb)]3/2

[√
w − wb

df(w)

dw

]
wb

e−jk1ρ cos(wb−θ)ej3π/4 (A�114)

on the other hand, one has:

df(w)

dw
=
−2n sinw(n− sin2w) + 2n sinw cos2 w√
n− sin2w

(
n cosw +

√
n− sin2 w

)2 (A�115)

Then, one has

→
[√

w − wb
df(w)

dw

]
wb

= lim
w→wb

{ √
w − wb√

n− sin2 w

−2n sinw(n− sin2w) + 2n sinw cos2w(
n cosw +

√
n− sin2w

)2

}

=
2n sinwb cos

2 wb

n2 cos2wb

e−jπ/2 lim
w→wb

√
w − wb√

sin2w − sin2wb

=
2 sinwb

n
e−jπ/2

√√√√√ 1

lim
w→wb

sin2 w − sin2wb

w − wb

=
2 sinwbe

−jπ/2

n
√
2 sinwb coswb

=

√
2
√
sinwbe

−jπ/2

n
√
coswb

=

√
2

n
e−jπ/2

(
n

1− n

)1/4

(A�116)

Then, the lateral wave contribution from branch point can be written as:

Gsb ≈
−j

4π

2
√
π[

k1ρ sin(θ − θ̄)
]3/2

√
2

n
e−jπ/2

(
n

1− n

)1/4

e−jk1ρ cos(θ−θ̄)ej3π/4

=
1

n
√
2π

e−jk1ρ cos(θ−θ̄)e−jπ/4[
k1ρ sin(θ − θ̄)

]3/2 ( n

1− n

)1/4

=
1

n
√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2
√
sin θ̄

cos2 θ̄

=
1

n
√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2 n1/4

1− n
(A�117)

where θ̄ = arcsin
√
n = arcsin (1/

√
εr)
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When the current source is located at the origin as in Fig. A�7, one has L1 = 0, ρ1 = ρ.
Then, the contributions from Gf1 and Gs can be written as

Gf1 =
1√

8πk1ρ
e−jk1ρ−jπ/4, (A�118)

Gs =
n cos θ −

√
n− sin2 θ

n cos θ +
√

n− sin2 θ

1√
8πk1ρ

e−jk1ρ−jπ/4 +GsbU(θ − θ̄), (A�119)

Gsb =
1

n
√
2π

e−jk1ρ cos(θ−θ̄)e−jπ/4[
k1ρ sin(θ − θ̄)

]3/2 ( n

1− n

)1/4

=
1

n
√
2π

e−j(k1L1+k2L2+k1L3)e−jπ/4[
k1L2

]3/2 n1/4

1− n
. (A�120)

3) Evaluation of G2(ρ̂, ρ̂
′):

One has:

G2(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jξ(x−x′)−j
√

k21n−ξ2(−y)+j
√

k21−ξ2y′√
k2
1 − ξ2

T (ξ)dξ (A�121)

By using transformation ξ = k1 sinw, we have:

G2(ρ̂, ρ̂
′) =

−j

4π

∫ ∞

−∞

e−jk1 sinw(x−x′)−jk1

√
n−sin2 w(−y)+jk1 coswy′

k1 cosw
T (k1 sinw)k1 coswdw

=
−j

4π

∫
P̄

e−jk1[sinw(x−x′)+
√

n−sin2 w(−y)−coswy′]T (k1 sinw)dw

=
−j

4π

∫
P̄

ejk1q2(w)f2(w)dw. (A�122)

where

q2(w) =− [sinw(x− x′) +
√

n− sin2w(−y)− coswy′] (A�123)

f2(w) =T (k1 sinw) =
2n cosw

n cosw +
√
n− sin2 w

(A�124)

The integral in Eq.(A�122) may have saddle points ws satisfy:

q′2(ws) = 0

(A�125)

Then, one has

cosws(x− x′)− (n− sin2ws)
−1/2 sinws cosws(−y) + sinwsy

′ = 0 (A�126)

On other hand, one has:

x− x′ = L4 sin θ4 + L5 sin θ5,

−y = L5 cos θ5,

y′ = −L4 cos θ4. (A�127)

97



So, Eq.(A�126) can rewritten as:

cosws(L4 sin θ4 + L5 sin θ5)− (n− sin2 ws)
−1/2 sinws coswsL5 cos θ5 − sinwsL4 cos θ4 = 0

or L4(cosws sin θ4 − sinws cos θ4) + L5[cosws sin θ5 − (n− sin2 ws)
−1/2 sinws cosws cos θ5] = 0

(A�128)

Eq.(A�128) satisfy ∀L4 and L5 when

cosws sin θ4 = sinws cos θ4

cosws sin θ5 = (n− sin2ws)
−1/2 sinws cosws cos θ5

or cosws sin θ4 = sinws cos θ1
cosws sin θ4√
n− sin2 θ4

=
cosws sinws√
n− sin2 ws

(A�129)

So we have ws = θ4± 2mπ (m ∈ N) and we choose the saddle point ws = θ4 exists on the
integration contour.
The integral in Eq.(A�122) also has a branch point wb = arcsin

√
n = θ̄. Because

ws < wb (θ4 < θ̄), we might not need the contribution from the branch point wb.
So we have:

G2 = G2s (A�130)

where G2s is the contribution from the integral on the steepest-descent path P given by:

G2s ≈
−j

4π

√
−2π

k1|q′′2(ws)|
f2(ws)e

jk1q2(ws)−jπ/4

(A�131)

On other hand, we have:

q′′2(ws) =
cos2 θ4
sin θ4

(
L4 sin θ4
cos2 θ4

+
L5 sin θ5
cos2 θ5

)
(A�132)

q2(ws) =− (L4 + L5

√
n) (A�133)

then we have:

G2 = G2s ≈
−j

4π

√√√√√ −2π

k1
cos2 θ4
sin θ4

(
L4 sin θ4
cos2 θ4

+ L5 sin θ5
cos2 θ5

) 2n cos θ4

n cos θ4 +
√
n− sin2 θ4

e−jk1(L4+L5
√
n)−jπ/4

=
2e−jk1(L4+L5

√
n)−jπ/4

√
8πk1

n
√
sin θ4

n cos θ4 +
√
n− sin2 θ4

1√
L4 sin θ4
cos2 θ4

+ L5 sin θ5
cos2 θ5

(A�134)

When ws > wb (θ4 > θ̄) G2b is the banch point contribution given by:

G2b ≈
−j

4π

2
√
π

[k1|jq′2(wb)|]3/2

[√
w − wb

df2(w)

dw

]
wb

ejk1q2(wb)+j 3
2
arg[−jq′2(ws)] (A�135)

On the other hand, we have:

q′2(wb) = − cos θ̄ + (n− sin2 θ̄)−1/2 sin θ̄ cos θ̄y − sin θ̄y′ (A�136)

Because sin θ̄ =
√
n, q′2(wb) → ∞. so we have G2b → 0
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