
GEOMETRIC ASPECTS OF THE ADDITION ALGORITHM
ON THE PICARD GROUP OF A Cab CURVE

SHINJI MIURA AND TSUTOMU SEKIGUCHI*)

Abstract. In the previous paper [3], we proposed to use the Picard

group of the plane model, which is so-called Cab model admitting singu-

larities, of a curve of any genus for realizing a faster addition algorithm

on the Jacobian group of the curve. In the paper, we present the explicit

addition algorithm on the Picard group of a Cab curve from the geomet-

ric view point, which will give a generalization of Cantor’s algorithm on

the Jacobian group of a hyperelliptic curves and a supplement of the

argument given in [4].

1. Introduction

Throughout the paper, we denote by p a prime integer, and k a finite

field Fq of q = pe elements. Moreover, we denote by K a one-dimentional

function field over k of genus g. Let C be a Cab affine plane model (cf. §2 for

details) of K (in general, it has some singularities), and C be the projective

closure of C. Then C \ C consists of one point P∞, which is at most cusp

singularity of C. We denote by C
∗ the curve obtained by desingularizing

C only at the point P∞. Moreover let π : C̃ → C
∗ be the normalization of

C
∗. Then the Jacobian group J(C̃) of C̃ is nothing but the Picard group

Pic0(C̃), and as is explaned in the previous paper [3], we have the canonical

isomorphism

Pic(C) ∼= Pic0(C∗)

and an exact sequence

0 −−−→ H −−−→ Pic(C) ∼= Pic0(C∗) π∗−−−→ Pic0(C̃) −−−→ 0,
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where H is the group consisting of k-rational points of the affine group

scheme appearing as the singularities of C. Note that H is negligible for

application to cryptography. Therefore we devote ourselves to consider the

addition algorithm on Pic0(C) instead of on Pic(C̃).

The Picard group Pic(C) is nothing but the ideal class group of the co-

ordinate ring R = Γ(C,OC) of C, and for giving explicitly the addition

algorithm on Pic(C), we need to settle the following three problems:

(1) To give the best way for representing a given ideal of R by which we

can insist easily a computer to recognize it.

(2) To give the explicit multiplication algorithm of ideals of R.

(3) To give an efficient algorithm for fixing the special representative

(so-called reduced ideal) of a given ideal class of R.

An explicit algorithm of these items for any non-singular CA curves was given

first by Arita [1, 2] by using Gröbner bases. But the algorithm of Gröbner

bases is rather heavy. For the coordinate ring of any CA curve, even it has

some singularities, any invertible ideal is generated by two elements, and

for an affine Cab curve, it would be very easy to decide the two generators

of any invertible ideal, and to write the algorithm of the above items by

using such generators of the ideals as discussed by [4]. In fact, by [4], Basiri,

Enge, Faugère and Gürel give a precise algorithm for the above items for

most of ideals, but not all ideals, for non-singular cubic curves. In the paper,

we give algorithms of the above items for any invertible ideals without any

exceptions for any affine Cab curves by using suitable two generators of the

ideals.

In §2, we give a review of Miura’s affine Cab plane model of a curve, and

next §3, in the coordinate ring R, we discuss the generators of invertible

ideals and the multiplications of invertible ideals. In §4, we give an algorithm

of the reduced representative of an ideal class of R.

2. Review of Miura’s Cab model of a curve

We will recall here the method how to give an affine model of a curve,

which is called Miura’s Cab model of a curve, from [3].
2
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Under the notations in Introduction, let ℘ be a fixed k-rational place of K,

and v be the corresponding valuation of K. We define the subring L(∞℘)

of K by

L(∞℘) := {f ∈ K | ℘′(f) �= ∞ for any place ℘′ �= ℘}.

We choose two functions f, g ∈ L(∞℘) with v(f) = −a, v(g) = −b, 0 < a <

b and (a, b) = 1. Then the k-algebra R = k[f, g] generated by f , g gives an

affine plane model C = SpecR of K, that is to say, K = f.f.R (the filed of

fractions of R). This kind of models of a curve have been studied deeply by

S. Miura mainly for constructing the algebraic geometric code theory. We

call C an affine plane Cababab model of K, and the projective closure C ⊂ P
2
k

of C a projective plane Cababab model of K. As in Introduction, C \C consits

of only one point P∞ corresponding to ℘. Let C
∗ be the curve obtained by

desingularizing C only at the point P∞, and

ϕ : k[X, Y ] → R

be the k-algebra homomorphim defined by ϕ(X) = f and ϕ(Y ) = g. We

define the so-called Cab order Ψ on k[X, Y ] by Ψ(X�Y m) := �a+mb. Then

the relation of f , g is given by a polynomial F of type

F (X, Y ) = Y a +
∑

�a+mb<ab

a�,mX�Y m + Xb,

and KerΨ = (F ) ⊂ k[X, Y ]. Namely we have

R ∼= k[X, Y ]/(F ).

Hereafter, we identify R with k[X,Y ]/(F ). The arithmetic genus ga of C
∗

is given by

ga = dim H1(C∗
,OC

∗) =
(a − 1)(b − 1)

2
.

For later use, we introduce the following notations.

Let

u(X, Y ) = u0(X)Y � + u1(X)Y �−1 + . . . + u�(X)

v(X, Y ) = v0(X)Y m + v1(X)Y m−1 + . . . + vm(X)
∈ k[X, Y ].
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We define the content of u in Y by

contY (u) := (u0(X), u1(X), . . . , u�(X)) ∈ k[X].

We denote by (u, v)Y the polynomial in X obtained by eliminating the

variable Y from u and v. Moreover, we denote by RY (u, v) the resultant of

u an v:

RY (u, v) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0 u1 · · · u�

u0 u1 · · · u�

. . . . . . · · · . . .

u0 u1 · · · u�

v0 v1 · · · vm

. . . . . . · · · . . .

v0 v1 · · · vm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

m

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�

∈ k[X].

Let u(X,Y ) = u0(X)
∏�

i=1(Y − αi) be the factorization of u(X, Y ) as a

polynomial in Y over an algebraic closure of the rational function field k(X).

Then the following is a well-known formula:

RY (u, v) = um
0

�∏
i=1

v(X, αi). (1)

3. Representation of ideals

3.1. As in the previous section, C = SpecR with R = k[X, Y ]/(F (X, Y ))

is a Cab affine model of K and we use the same notations. Hereafter, we

consider C as the covering C = SpecR → Speck[X]. Let k be an algebraic

closure of k, R = R ⊗k k, and Cgeom = C ×Speck Speck = SpecR. Next we

will start our argument by the following well-known fact.

Lemma 3.1. Let a be a non-principal invertible ideal in R. For any chosen

non-zero element u of a, there exists an element v ∈ a such that a = (u, v).

(e.g. cf.[3, Lemma 2.1])

As is well-known also, any ideal in R is characterised locally by the following

fact.
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Lemma 3.2. Let R be an integral domain. Then for any ideal a of R, we

have

a = ∩maRm,

where the intersection is taken in the field of fractions of R, and m runs

over all maximal ideals of R.

Next is a direct consequence of this lemma.

Corollary 3.3. Let a and b be ideals in R. If Rma = Rmb for any maximal

ideals m of R, then a = b.

Hereafter, we denote by am the localized ideal Rma.

3.2.

Definition 3.1. For an invertivle ideal a of R, we put V (a) = Spec(R/a) ⊂
Cgeom. When the support of V (a) is Sup(V (a)) = {P1, P2, . . . ,Pr}, we de-

note the set of X-coordinates of Pi’s by X(a) := {X(P1), X(P2), . . . , X(Pr)}.
For a point P ∈ Cgeom, we define the multiplicity mP(a) by

mP(a) := dimk (RP/aRP) .

For a non-singular point P ∈ Cgeom, we define a number nP(a) by

nP(a) :=

⎧⎨
⎩

mP(a) if C/Speck[X] ramifies at P

1 otherwise.

For α ∈ X(a) with no singular point in V (a) ∩ V (X − α), we put

n(α) = n(α; a) :=
r∑
1

nPi(a),

and n(a) := Max{n(α) | α ∈ X(a)}. Note that if none of points of V (a) ∩
V (X − α) is a ramification point over Speck[X], then

n(α) = �
(
Sup

(
V (a)

) ∩ Sup
(
V (X − α)

))
.

For a point P ∈ Sup(V (a)) with X(P) = α, we define the number e(a : P)

by

e(P; a) = the smallest positive integer e such that (X − α)e ∈ aRP.
5
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When aRP = (fP), we can easily see the following:

e(P; a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vP(fP) = I(V (a) ∩ C; P) if P is not a ramification point

of Cgeom/Speck[X],⌈
I(V (a)∩C;P)

I(V (X−a)∩C;P)

⌉
if P is a ramification simple

point of C,

where I(A ∩ B; P) is the intersection number at P of curves A and B.

For α ∈ X(a), we set

e(α; a) := Max
{
e(P; a) | P ∈ Sup(V (a)) ∩ Sup(V (X − α))

}
,

and

e(a) := Max {e(α; a) | α ∈ X(a)} .

Then we can easily see the equality:

(u, F )Y =
∏

α∈X(u)

(X − α)e(α;u),

for a polynomial u(X,Y ).

For any invertible ideal a in R, we put

a∗ := a ∩ k[X].

Lemma 3.4. Let

u(X, Y ) = u0(X)Y � + u1(X)Y �−1 + · · · + u�(X) ∈ R,

with 1 ≤ � ≤ a − 1. Then the ideal (u)∗ = (u) ∩ k[X] is given by

(u)∗ =
(
Nmk(X)(u)/k(X)(u)

)
= ((u, F )Y ) ,

where Nmk(X)(u)/k(X) means the norm of the extension k(X)(u)/k(X). In

particular, if a is a prime number, then by noting (1), we have

(u)∗ = (RY (F, u)).

Next is easy from a geometric viewpoint.

Lemma 3.5. For an invertible ideal a in R, we have

a∗ =
∏

a∈X(a)

(X − a)e(a;a).
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Lemma 3.6. Let a = (u, v) be a non-principal ideal of R with 1 ≤ degY u, degY v ≤
a−1. Let f(X) := (u, v)Y . We choose c ∈ k\{0} so that the ideal (f2, cu−v)

contains u. The probability of choosing such c is at least (q − (deg f)a) /q.

Then we have

a = (f, cu − v).

Proof. We choose a constant c so that for any point P ∈ V (f), if u(P) �= 0

then cu(P) − v(P) �= 0, and if u(P) = 0 and v(P) = 0 then aRP = (cu − v).

Therefore ovbiously V (a) = V ((f, cu − v)), and for any point P ∈ V (a),

aRP = (cu − v). Therefore we have our assertion. �

Definition 3.2. If a pair of generators (f(X), u(X,Y )) of an invertible

ideal a satisfies that a∗ = (f) and a = (f2, u), we call the pair of generaters

(f(X), u(X, Y )) a P-basis of a. The second condition of a P-basis is nothing

but that u is a local generator of the ideal a at each point.

For a given non-principal ideal, a P-basis can be given in the following

way.

Proposition 3.7. Let a = (u, v) be a non-principal ideal of R with 1 ≤
degY u, degY v ≤ a−1. Now we choose c ∈ k\{0} so that for P ∈ V ((u, F )Y ),

if u(P) �= 0 then cf(P) �= u(P), and if u(P) = 0 and v(P) = 0 then aRP =

(cu − v). This condition on c is checked by the above lemma. When we put

h(X) := ((u, F )Y , (cu − v, F )Y ), then we have

a∗ = (h), and a = (h, cu − v).

Proof. . By Lemma 3.5, we have

a∗ =
∏

α∈X(a)

(X − α)e(α;a).

On the other hand, obviously f(X) := (u, F )Y and g(X) := (cu − v, F )Y

are contained in a∗, and f(X) = 0 (resp. g(X) = 0) gives all X-coordinates

of the points of V (u) (resp. of the points of V (cu − v)); that is to say,

f(X) = g(X) = 0 gives the whole X-coordinates of the points P ∈ V (a).
7
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Therefor, we have

((u, F )Y , (cu − v, F )Y ) =
∏

α∈X(a)

(X − α)Min{e(P;u),e(P;cu−v)}.

By our choice of c, we have

e(α; a) = MaxP∈V (X−α) {Min{e(P;u), e(P; cu − v)}}
= MaxP∈V (X−α){e(P; cu − v)}

(since e(P;u) ≥ e(P; cu − v) for any P ∈ V (X − α),)

= Min
{

MaxP∈V (X−α){e(P;u)}, MaxP∈V (X−α){e(P; cu − v)}
}

= Min{e(α; u), e(α; cu − v)},

and we get a∗ = (h). Moreover, by our choice of c, Sup
(
V (h, cu − v)

)
=

Sup(V (a)) and a = (h, cu−v). The condition on the constant c is equivalent

to that V (a) = V (u, cu − v) and aP = (cu − v) at each point P ∈ V (a).

Therefore this condition on c is equivalent to a = (u2, cu − v) since V (a) =

V (u2, cu − v). �

Proposition 3.8. Let a = (f(X), v(X,Y )) be an invertible ideal in R. Then

we have a∗ = (f(X), (v, F )Y ).

3.3. We can easily see the following.

Lemma 3.9. Let a = (f(X), v(X, Y )) be an ideal of R. If f(X) = f1(X)f2(X)

with (f1, f2) = 1, then a = (f1, v)(f2, v).

Conversely we have the following.

Proposition 3.10. Let ai = (fi(X), ui(X,Y )) (i = 1, 2) be invertible ideals

of R with monic polynmials ui in Y :

ui = Y �i + ui1(X)Y �i−1 + · · · + ui�i
(X) (i = 1, 2).

8
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Suppose that 1 ≤ �1 ≤ �2. We assume that (f1(X), f2(X)) = 1. Then when

we take αi(X,Y ) ∈ k[X, Y ] (i = 1, 2) such that V (αi, fi) = ∅, we have

a1a2 = (f1f2, α2f1u2 + α1f2u1).

In particular, we take polynomials c(x), d(x) ∈ k[X] such that c(X)f1(X) +

d(X)f2(X) = 1. Furthermore, let β ∈ k be an element such that V ((f1(X), Y �2−�1−
β)) = ∅. Then we have

a1a2 = (f1(X)f2(X), u(X,Y )) ,

where u(X, Y ) is the monic polynomial in Y defined by

u(X,Y ) = c(X)f1(X)u2(X) + d(X)f2(X)(Y �2−�1 − β)u1(X).

Proof. Since, by our assumption, at each point of V (f1(X)), α1f2 is in-

vertible, and also at each point of V (f2(X)), α2f1 is invertible, we have our

requiring equation. �

Lemma 3.11. Let a ⊂ R be an invertible non-principal ideal with no sin-

gular point in V (a). Suppose that a∗ = (f(X)e) with irreducible monic

polynomial f(X) ∈ k[X] and e ≥ 1. Then a = (f(X)e, u(X,Y )), with

u(X, Y ) = Y n(a) + u1(X)Y n(a)−1 + · · · + un(a)(X).

In this case, if V (a) has no ramification points, and v(X, Y ) ∈ a and 1 ≤
degY v(X, Y ) = e < n(a), then v(X,Y ) is divisible by f(X),

Proof. Let a = (f(X)e, v(X, Y )), α ∈ k be a solution of f(X) = 0, and σ

be the Frobenius automorphism of k/k defined by xσ = xq for any x ∈ k.

Then

f(X) =
d−1∏
i=0

(X − ασi
),

where d = degf . By Lemma 3.9

a := aR =
d−1∏
i=0

aσi

0

with

a0 := ((X − α)e, v) ⊂ R.
9
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For each point P ∈ V (X − α) ∩ V (a), if P is not a ramification point over

Speck[X], there exists a polynomial fP(X) such that I(V (Y − fP(X)) ∩
Calg; P) = mP(a), and in this case we put uP(X,Y ) = Y − fP(X). If P is a

ramification point, then we put uP(X, Y ) := (Y − Y (P))mP(a). We define

uα(X,Y ) :=
∏
P

uP(X, Y ),

where P runs over V (X − α) ∩ V (a),

fi(X) := f(X)/(X − ασi
) for each 0 ≤ i ≤ d − 1,

and

u(X, Y ) :=
d−1∑
i=0

fi(X)euσi

α (X,Y ).

Then obviously we have

a0 = ((X − α)e, uα(X,Y )) ,

and by Prop. 3.10

a =
d−1∏
i=0

aσi

0 = (f(X)e, u(X,Y )) .

Since f(X) ∈ k[X] and u(X, Y ) ∈ k[X, Y ], we have

a = (f(X)e, u(X, Y )) .

Here obviously the degrees in Y of uα(X,Y ) and of u(X, Y ) are n(a), and

the coefficient of Y n(a) is
∑d−1

i=1 (fσ
α (X))e, which we denote by �(X). Since

�(X) is coprime to f(X)e, there exist polynomials g(X), h(X) ∈ k[X] such

that g(X)f(X)e + h(X)�(X) = 1. Then a = (f(X)e, h(X)u(X, Y )), and

h(X)u(X,Y ) is equivalent to a monic polynomial in Y modulo f(X)e.

Moreover if V (a) has no ramification points, then n(a) is the number

�
(
V (X − α) ∩ V (a)

)
. Therefore for v(X, Y ) ∈ a if degY v(X,Y ) < n(a),

since v(α, Y ) = 0 has zeros of number n(a), we have v(α, Y ) = 0. Therefore

we have (X − α)|v(X, Y ) and f(X)|v(X, Y ). �
10
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Proposition 3.12. Let a = (f(X), u(X, Y )) ⊂ R be an invertible non-

principal ideal. Then we can choose, in probavility of at least q/�V (a), a

constant c ∈ k satisfying the condition:

(1) aP = (u(X, Y ) + cf(X)) for each point P ∈ V (a).

Moreover, the condition (1) is equivalent to each of the following conditions:

(2) f(X) ∈ (f(X)2, u(X, Y ) + cf(X)).

(3) a = (f(X)2, u(X, Y ) + cf(X)).

Proof. In fact, at each point P ∈ V (a), aP is generated by f(X) or u(X,Y ).

Therefore we can choose a constant c ∈ k so that it is generated by u(X, Y )+

cf(X). Moreover, if (2) is satisfied, then a = (f(X)2, u(X,Y ) + cf(X)) and

the condition (1) is obvious. Conversely, if (1) is satisfied, then since V (a) =

V ((f(X)2, u(X, Y ) + cf(X)), we have the equality a = (f(X)2, u(X,Y ) +

cf(X)). �

Proposition 3.13. Let a1 = (f1(X), v1(X,Y )), a2 = (f2(X), v2(X,Y )) be

invertible ideals in R. Assume that
√

(f1) =
√

(f2) and for each point

P ∈ V (ai), aiP = (vi(X, Y )) for i = 1, 2. Then we have

a1a2 = (f1(X)f2(X), v1(X, Y )v2(X, Y )).

In fact, since V (a1a2) = V (f1(X)f2(X), v1(X, Y )v2(X, Y )), we have our

assertion.

The following is useful to make an algorithm of computing a power of

ideals.

Proposition 3.14. For an ivertible ideal a = (f(X), u(X, Y )), we have

an = (f(X)n, u(X, Y )n)

for any positive integer n,

Summarlizing above arguments, we obtain the following.
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Theorem 3.15. Let ai = (fi(X), vi(X, Y )) (i = 1, 2) be invertible ideals

with monic polynomials vi in Y . Suppose that m = degY v1 ≥ n = degY v2.

For each i = 1, 2, we set fi = fi1(X)fi2(X) so that

(fi1, fi2) = 1 and
√

(f1, f2) =
√

(f12) =
√

(f22).

Let a1(X), a2(X) and b1(X), b2(X) be the polynomials such that

a1f11 + a2f21 = 1 and b1f11f21 + b2f12f22 = 1.

We choose α, β, c1, c2 ∈ k so that for any (γ1, γ2) ∈ V (f21, F ), γm−n
2 �= α;

for any (δ1, δ2) ∈ V (f11f22, F ), δn
2 �= β ; and for each i = 1, 2 and any P

∈ V (fi2, v2), (fi2, vi)P = (vi + cifi2). We put

u := a2f21(Y m−n − α)v1 + a1f11v2,

w := b2f12f22(Y n − β)u + b1f11f21(v1 + c1f12)(v2 + c2f22).

Then we have

a1a2 = (f1f2, w).

Remark. Note that the generators of type f(X) and u(X, Y ) for an invert-

ible ideal a are not unique for a, and if we want to recognize an invertible

ideal uniquely, we need to take the Gröbner basis of it.

4. Reduced Ideal

To establish an addition algorithm of ideal classes, we must specify a

special element uniquely for a given ideal class, which we call the reduced

ideal for the ideal class. Here we recall the definition of the reduced ideal

for an invertible ideal.

Let a be an invertible ideal in R, and let

h ∈ 1 :K a = a−1

be a non-zero element of a−1 with smallest minus order −ordP(h). Here we

mean by a :K b for ivertible ideals a, b the fractional ideal (a :K b) := {f ∈
K | fb ⊂ a}. Then we define the reduced ideal a∗ of a by

a∗ := h · a ⊂ R.
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Note that the reduced ideal a∗ is uniquely determined for the ideal class [a]

represented by a (cf. [3, Lem. 4.1].)

For an invertible ideal a = (f(X), u(X, Y )) in R = k[X, Y ]/(F (X, Y )),

its reduced ideal a∗ is given explicitly as in [3] in the following way:

Take an element h ∈ ((f) : a) with smallest Ψ-order Ψ(h).

Next take the element g ∈ R such that hu = fg. Then we

have a∗ = (h, g).

For the invertible ideal a = (f(X), u(X, Y )), the reduced ideal a∗ = (h, g)

are given by the following algorithm:

e := Ψ(f),

h :=
∑

0≤j≤a−1, 0≤i
ai+bj≤e−1

bijX
iY j ,

dividing hu by F as polynomials in Y

hu ≡
∑

0≤�≤a−1

P�(X)Y � (mod F ),

R�(X) :≡ P�(X) (mod f).

Then the coefficients of R�(X)’s are linear combinations of bij ’s, and we

solve the equations in bij ’s so that h has the smallest Ψ-order:

R�(X) = 0 for 0 ≤ � ≤ a − 1,

and we set

g :=
∑

0≤�≤a−1

(P�(X)/f(X))Y �.

If solutions are bij = 0 only, then we set

h = f(X) and g = u.

5. Explicit algorithms

As before, let F (X, Y ) be a Cab curve and R = k[X,Y ]/F be the coordi-

nate ring of the affine model.
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5.1. Algorithm La. Let a = (u, v) (u = u(X,Y ), v = v(X,Y )) be an

invertible ideal in R. Next is an algorithm to give the generators of lexico-

graphic order of a starting from u, v.

Algorithm La

1. La := a

2. f(X) := (u2, F )Y

3. vo := v

4.

�(X,Y ) := �0(X)Y a−1 + �1(X)Y a−2 + . . . + �a(X) (deg �i(X) ≤ deg f(X) − 1)

m(X,Y ) := m0(X)Y a−1 + m1(X)Y a2
+ . . . + ma(X) (deg mi(X) ≤ deg f(X) − 1)

5. while u ≡ �u2 + mv0 (mod (F, f)) has no roots �,m, do

6. random number c ∈ k

7. v0 := cu − v0

8. h := ((u, F )Y , (v0, F )Y )

9. La := (h, v0)

5.2. Algorithm Ra. Let a = (f(X), u(X, Y )) be an invertible ideal.

Algorithm Ra

1. Ra := a

2. e := Ψ(f)

3. h :=
∑

0≤j≤a−1
0≤i

ai+bj≤e−1

bijX
iY j

4.
∑

0≤�≤a−1

Pi(X)Y � := hu (mod F )

5. Ri(X) := Pi(X) (mod f)

6. If there is a non-tribial solution of the equations in bij ’s:

Ri(X) = 0 for 0 ≤ i ≤ a − 1,
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we choose the solution bo
ij ’s so that h has the smallest Ψ-order.

7.

g :=
∑

0≤�≤a−1

(P�(X)/f(X))Y �,

h := h with replaced bij ’s by bo
ij ’s

8. Ra := L(h, g)

9. else

Ra := a

5.3. Algorithm M(a · b). 　　　　　　　　　　　　　

Algorithm M0(a1 · a2)

Let a1 = (f1(X), u1(X, Y )), a2 = (f2(X), u2(X,Y )) be invertible ideals

where ui’s are monic polynomials in Y . Assume (f1, f2) = 1.

1. M0f := f1f2

M0u := 1

M0(a1 · a2) := (M0f,M0u)

�1 := degY u1

�2 := degY u2

2. choose a(X), b(X) such that

a(X)f1(X) + b(X)f2(X) = 1

3. if �1 = �2,

M0u := b(X)f2(X)u1 + a(X)f2(X)u2

4. if �1 > �2,

while
(
f1, (Y �1−�2 + c, F )Y

) �= 1, do

c := random number ∈ k

5. M0u := b(X)f2(X)u1 + a(X)f1(X)(Y �1−�2 + c)u2

6. if �2 > �1,

while
(
f2, (Y �2−�1 + c, F )Y

) �= 1, do

c := random number ∈ k

7. M0u := b(X)f2(X)(Y �2−�1 + c)u1 + a(X)f1(X)u2
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8. M0(a1 · a2) := (M0f,M0u).

Algorithm M1(a1 · a2)

Let a1 = (f1(X), u1(X, Y )), a2 = (f2(X), u2(X,Y )) be invertible ideals

where ui’s are monic polynomials in Y . Assume
√

(f1) =
√

(f2).

1. M1f :=
f1f2

(f1, f2)
c := 0

d := 0

U1 := u1 + cf1

U2 := u2 + df2

M1u := U1U2

2. g1 := (U1, F )Y (mod f2
1 )

g2 := (U2, F )Y (mod f2
2 )

3. while f1 (mod g1) �= 0, do

c := random number ∈ k

4. while f2 (mod g2) �= 0, do

d := random number ∈ k

5. M1(a1 · a2) := (M1f,M1u)

Algorithm M(a1 · a2) (cf. 3.15)

Let a1 = (f1(X), u1(X, Y )), a2 = (f2(X), u2(X,Y )) be invertible ideals

where ui’s are monic polynomials in Y .

1. �1 := degY f1

�2 := degY f2

d(X) := (f1, f2)

f12 := (f1, d
�1)

f22 := (f2, d
�2)

f11 :=
f1

f12

f21 :=
f2

f22
2. (g1, v1) := M0 ((f11, u1) · (f21, u2))

(g2, v2) := M1 ((f12, u1) · (f22, u2))
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3. M(a1 · a2) := M0 ((g1, v1) · (g2, v2))

6. Conclusion and Forthcoming Problem

The heaviest part of the addition algorithm on Pic0(C) is to compute

the powers of a given element a ∈ Pic0(C). As above, our proposal on

the algorithm is to use the generaters of a based on the plane coordinates

(which we called a P-basis of a). Of course, those P-basis are not determined

uniquely for a given a, but we insist that the algorithm using P-basis is faster

than that using Gröbner basis.

To estimate our algorithm by some real examples is a very important

task, which will appear in the near future.
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