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Let M̃n+p(c) be an (n+ p)-dimensional complete, connected and simply
connected Riemannian manifold with constant sectional curvature c. We
call it a space form. A space form M̃n+p(c) is one of the following:

(i) If c > 0, then M̃n+p(c) is a Euclidean sphere Sn+p(c);

(ii) If c = 0, then M̃n+p(c) is a Euclidean space Rn+p;

(iii) If c < 0, then M̃n+p(c) is a hyperbolic space Hn+p(c).

Let Mn be an n-dimensional, connected and orientable submanifold iso-
metrically immersed in M̃n+p(c). Denote by hα

ij the local component of the
second fundamental form for each i, j, α (1 ≤ i, j ≤ n, n+1 ≤ α ≤ n+p).
We set

S :=
n+p∑

α=n+1

n∑
i,j=1

(hα
ij)

2 and H :=
1

n

√√√√ n+p∑
α=n+1

( n∑
i=1

hα
ii

)2
be the squared norm of the second fundamental form and the mean cur-
vature of Mn in M̃n+p(c), respectively. Mn is called minimal if the mean
curvature H of Mn is equal to zero.

Now, we denote by Aα the n × n matrix of hα
ij with respect to indices

i, j. Define linear maps ϕα : TxM → TxM by

⟨ϕαX, Y ⟩ := 1

n
trace Aα⟨X, Y ⟩ − ⟨AαX,Y ⟩ for n+ 1 ≤ α ≤ n+ p,

where ⟨ , ⟩ is the Riemannian metric of Mn. Moreover, we define the
bilinear map ϕ : TxM × TxM → TxM

⊥ by

ϕ(X, Y ) =
n+p∑

α=n+1

⟨ϕαX, Y ⟩eα,

where {en+1, . . . , en+p} denotes an orthonormal basis. It is easy to check
that trace ϕ = 0 and that

|ϕ|2 :=
n+p∑

α=n+1

trace ϕ2
α = S − nH2.

Let

PH(x) = x2 +
n(n− 2)√
n(n− 1)

Hx− n(H2 + c)
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and

QH(x) =
3

2
x2 +

n(n− 2)√
n(n− 1)

Hx− n(H2 + c)

be the polynomials for each real number H ∈ R. We put AH the square of
the positive root of PH(x) = 0 and BH one of QH(x) = 0.

Besides, in the case of p = 1, we denote by hij the local component
of the second fundamental form for each i, j (1 ≤ i, j ≤ n) and by A
the n × n matrix of hij with respect to indices i, j. We choose a local
orthonormal frame field {e1, . . . , en} such that hij = λiδij. Then we have

H =
1

n

∣∣∣ n∑
i=1

λi

∣∣∣ and S =
n∑

i=1

λ2
i . In the hypersurface we may put ϕ = ϕn+1.

Then ϕ : TxM → TxM satisfies

⟨ϕX, Y ⟩ := 1

n
trace A⟨X, Y ⟩ − ⟨AX, Y ⟩.

It easily check that trace ϕ = 0 and that

|ϕ|2 := trace ϕ2 =
1

2n

n∑
i,j=1

(λi − λj)
2.

Hence we get that |ϕ|2 = 0 if and only if Mn is totally umbilic.

We study generalizations of the results of the following theorems. More-
over, we also study in the case of c = −1.

Theorem 0.1 (see Alencar and do Carmo [1]). Let Mn be a compact and
orientable hypersurface with constant mean curvature H in Sn+1(1). As-
sume that |ϕ|2 ≤ AH for all x ∈ M . Then

(i) either |ϕ|2 ≡ 0 and Mn is totally umbilic or |ϕ|2 ≡ AH .

(ii) |ϕ|2 ≡ AH if and only if

(A) H = 0 and Mn is a Clifford torus in Sn+1(1), i.e., Mn is a product
of spheres Sn1(r1)× Sn2(r2), n1 + n2 = n, of appropriate radii.

(B) H ̸= 0, n ≥ 3, and Mn = Sn−1(1) × S1(
√
1− r2) ⊂ Sn+1(1), where

r2 < n−1
n
.

(C) H ̸= 0, n = 2, and M2 = S1(1) × S1(
√
1− r2) ⊂ S3(1), where

r2 ̸= 1
2
.

Theorem 0.2 (see Uchida and Matsuyama [10]). Let Mn be a complete,
connected and orientable submanifold with nonzero constant mean curva-
ture H in Sn+2(c). If |ϕ| satisfies |ϕ|2 ≤ AH for all x ∈ Mn, then Mn lies
in a totally geodesic hypersurface Sn+1(c) of Sn+2(c) and

(i) either |ϕ|2 ≡ 0 and Mn is totally umbilic or |ϕ|2 ≡ AH .
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(ii) |ϕ|2 ≡ AH if and only if

(B) n ≥ 3 and Mn = Sn−1(r1)×S1(r2) ⊂ Sn+1(c), where r21 + r22 = 1
c

and r21 <
n−1
nc

.

(C) n = 2 and M2 = S1(r1) × S1(r2) ⊂ S3(c), where r21 + r22 = 1
c
and

r21 ̸= 1
2c
.

The purpose of this paper is to prove the following theorems:

Theorem 1. Let Mn be a complete, connected and orientable submanifold
with nonzero constant mean curvature H in Sn+p(c) (p ≥ 3). If |ϕ| satisfies
|ϕ|2 ≤ BH for all x ∈ Mn, then Mn lies in a totally geodesic submanifold
Sn+1(c) of Sn+p(c), and |ϕ|2 ≡ 0 and Mn is totally umbilic.

Theorem 2.1. Let Mn be a complete, connected and orientable hyper-
surface with constant mean curvature H > 1 in Hn+1(−1). Assume that
|ϕ|2 ≤ AH for all x ∈ Mn. Then

(i) either |ϕ|2 ≡ 0 and Mn is totally umbilic or |ϕ|2 ≡ AH .

(ii) |ϕ|2 ≡ AH if and only if Mn is isometric to Sn−1(r) × H1 (− 1
r2+1

)
for some r > 0.

Theorem 2.2. Let Mn be a complete, connected and orientable subman-
ifold with constant mean curvature H > 1 in Hn+2(−1). If |ϕ| satisfies
|ϕ|2 ≤ AH for all x ∈ Mn, then Mn lies in a totally geodesic hypersurface
Hn+1(−1) of Hn+2(−1) and

(i) either |ϕ|2 ≡ 0 and Mn is totally umbilic or |ϕ|2 ≡ AH .

(ii) |ϕ|2 ≡ AH if and only if Mn is isometric to Sn−1(r) × H1 (− 1
r2+1

)
for some r > 0.

Theorem 2.3. Let Mn be a complete, connected and orientable subman-
ifold with constant mean curvature H > 1 in Hn+p(−1) (p ≥ 3). If |ϕ|
satisfies |ϕ|2 ≤ BH for all x ∈ Mn, then Mn lies in a totally geodesic sub-
manifold Hn+1(−1) of Hn+p(−1), and |ϕ|2 ≡ 0 and Mn is totally umbilic.

The following generalized maximum principle due to Omori [8] and Yau
[11] will be used in order to prove our theorems:

Generalized Maximum Principle (see Omori [8] and Yau [11]). Let Mn

be a complete Riemannian manifold whose Ricci curvature is bounded from
the below and f ∈ C2(M) a function bounded from the above on Mn. Then,
for any ϵ > 0, there exists a point p ∈ Mn such that

f(p) ≥ sup f − ϵ, ∥grad f∥(p) < ϵ and ∆f(p) < ϵ.
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