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In this paper we deal with the high dimensional data such as micro array data, finance
data, and image data. Moreover, on some multivariate analyses we need the condition
of independence. We analyze the tests of independence in high-dimension. Let us write
population correlation matrix as P , and we consider the hypothesis H01 : P = Im.

Let x1, · · · ,xN be independently and identically distributed as a m-dimensional
random vector x which is distributed as multivariate normal with mean vector µ and
covariance matrix Σ, denoted, x ∼ Np(µ,Σ). Let x̄ and S denote the sample mean
vector and the sample covariance matrix respectively, defined as

x̄ =
1
N

N∑
α=1

xα, N = n + 1,

and

S ≡ 1
n

V =
1
n

N∑
α=1

(xα − x̄)(xα − x̄)′

respectively. If the (i, j)th element of S is sij, the sample correlation coefficient between
two components of x, say, xi and xj , is

rij =
sij√
siisjj

.

The sample correlation matrix, R, is composed of rij . Let P denote the population
matrix. the (i, j)th element of P is ρij .

In the tests of independence, there are the inference procedures based on some asymp-
totic theories. We compare the some procedures by simulation study. Firstly, we look at
the likelihood ratio test and Hsu(1949) based on asymptotic theory which has a sample
size of up to infinity, while the number of variables is fixed. When we consider the
hypothesis H01 : P = Im, the statistic of likelihood ratio test,

wnm = −(n − 2m + 5
6

) log |R|,

converges in χ2 distribution with m(m−1)/2 degrees of freedom. Crearly, this procedure
is no valid for high-dimensional data since |R| = 0 whenever m > n. Moreover, when
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n is less than eight times of m, we can not keep 5 percent point of the chi-squared
distribution.

Let us consider the hypothesis H01 : P = Im, then the statistic of test on Hsu(1949)
is as follows,

vnm =
n

∑m
i<j r2

ij − q√
2q

, q =
m(m − 1)

2
,

which converges to a normal random variable with mean 0 and variance 1. The normal
approximation is over significance levels when m > n and m is around n, because this
test is based on asymptotic theory which the number of variables is fixed.

Next, we discuss the statistic of Srivastava(2005) for the hypothesis. When the
(i, j)th element of Σ is σij , the population covariance matrix is equal to diagonal matrix,
say, if the (i, j)th element of Σ is σij, H02 : σij = 0, i �= j. The hypothesis can identify
the hypothesis that sample correlation matrix is identity matrix. This asymptotic theory
is based on the sample size of up to infinity after the number of variables goes to infinity.
Now, we need the following assumptions:
When ai = (trΣi/m), i = 1, · · · , 8,

(A) : As m → ∞, ai → a0
i , 0 < a0

i < ∞, i = 1, · · · , 8

(B) : n = O(mδ), 0 < δ ≤ 1.

Under the assumptions, the statistic is

unm =
n(c − 1)

2
√

1 − (
1
m

) (
a
b2

) ,

where

a =
1
m

m∑
i=1

s4
ii, b =

n

m(n + 2)

m∑
i=1

s2
ii, d =

n2

m(n − 1)(n + 2)

[
trS2 − 1

n
(trS)2

]
, c =

d

b
.

This statistic converges to a normal random variable with mean 0 and variance 1. The
normal approximation is over significance levels when m > n and m is around n. Al-
though this approximation is thought in high dimensional approximation, it is not avail-
able, because the asymptotic theory assumes that the sample size and the number of
variables separately go to infinity.

On the other hand, the statistic of Schott(2005) for the hypothesis H01 : P = Im is
based on asymptotic theory which both sample size and number of variables together go
to infinity. The statistic is

tnm =
m∑

i=2

i−1∑
j=1

r2
ij −

m(m − 1)
2n

,

which converges to a normal random variable with mean 0 and variance σ2
tnm

, where

σ2
tnm

=
m(m − 1)(n − 1)

n2(n + 2)
.
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Thus tnm/σtnm converges to a normal variable with mean 0 and variance 1. This asymp-
totic theory is based on lim(m/n) = γ1 ∈ (0,∞). The normal approximation generally
yields suitable significance levels.

Sometimes, micro array data and image data are discrete data. We are concerned
whether the mentioned procedures can adapt to discrete data. Our meaning of robust-
ness is how far the procedure for normal variables is available to discrete variables.
We check for robustness by simulation study. Now, since the statistic of Schott(2005)
is available for the test of the independence in high-dimension, we adapt the test of
Schott(2005) to discrete variables having uniform distribution. When we run a simu-
lation for binary data, three level categorical data, and four level categorical data, we
can not keep significance level in small sample size. But as the number of category of
variables increases, the approximation becomes better.

We consider the simulation study which changes the rate of incidence of random
variables when random variables are binary data generated from uniform distribution.
The rate of incidence of random variables means that when random variables are 0 or 1,
the rate of incidence of 0 is α, 0 < α < 1 and the rate of incidence of 1 is 1 − α. When
we run a simulation for α = 0.1, 0.2, 0.3, 0.4, 0.5, the case of uniform rate of incidence is
most available.

Finally, we apply the theory of Schott(2005) to the test of independence for partial
correlation matrix. We assume that random variables X and sample covariance matrix
S have been partitioned as in

X =
[
X(1)

X(2)

]
, S =

[
S11 S12

S21 S22

]
,

where X(1) is p vector, X(2) is q vector, S11 is p × p matrix and S22 is q × q matrix.
Now sample covariance matrix of X(1) given X(2) = x(2) is written as

S11·2 = S11 − S12S
−1
22 S21.

Let the (i, j)th element of S11·2 denotes σij·p+1,··· ,m. Then we can calculate the (i, j)th
elements of sample correlation matrix of X(1) given X(2) = x(2) , say R11·2, as

rij·p+1,··· ,m =
σij·p+1,··· ,m√

σii·p+1,··· ,m
√

σjj·p+1,··· ,m

We assume the (i, j)th element of population correlation matrix P11·2 of X(1) given
X(2) = x(2) as ρij·p+1,··· ,m, then the hypothesis can be written as H04 : ρij·p+1,··· ,m =
0(i > j). The statistic is made by changing the number of dimension m to p and the
sample size n to n− q for the statistic of correlation matrix, because the distribution of
partial correlation coefficient is equal to distribution of correlation coefficient changing
degrees of freedom and the number of dimension. Thus, the statistic is written as follows

t∗nm =
p∑

i=2

i−1∑
j=1

r2
ij·p+1,··· ,m − p(p − 1)

2(n − q)
,

σ2
t∗nm

=
p(p − 1)(n − q − 1)
(n − q)2(n − q + 2)

.
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The asymptotic theory is based on condition

lim
p,n−q→∞

p

n − q
= γ2 ∈ (0,∞), (1)

this leads to

lim σ2
t∗nm

= lim
p(p − 1)(n − q − 1)
(n − q)2(n − q + 2)

= γ2
2 .

Therefore we have the following theorem.

THEOREM 1. Suppose that the sample correlation matrix R11·2 has been com-
puted from a random sample from a multivariate normal distribution with correlation
matrix P11·2. If P11·2 = Ip and condition (1) holds, then t∗nm converges to a normal
random variable with mean 0 and variance γ2

2 .

We can check the perfprmances of the null distribution of t∗n−q,p by simulation study.
The normal approximation generally yields suitable significance levels. Our future works
are applying the theory of Schott(2005) to the test for independence of k sets of variables.
For the covariance matrix, the test for independence of sets of variables is introductioned
in the tecnical report Schott(2004).
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