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Geometric representation of high-dimensional
data and its asymptotic properties
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Abstract

In recent years, high dimension low sample size (HDLSS) data are emerging in
various areas of science, which are genetic microarrays, medical image and finance.
Such HDLSS data presents a substantial challenge to many methods for classical
statistical analysis. Namely, because the covariance matrix for HDLSS data is not
of full rank, the inverse for this one does not exist. Accordingly, statistical methods
can not be used for HDLSS data.

Consider a random sample of @y, ..., x, from a p-dimensional population. The
high dimension low sample size (HDLSS) data can be regarded as n vectors or points
in p-dimensional space. We discuss the asymptotic behavior of HDLSS as p tends
to infinity. Recently, there is a considerable interest for a high-dimensional data set
when the dimension is large. In high-dimensional asymptotic theory, it is assumed
that (i) p tends to infinity and n is fixed, or (ii) both p and n tend to infinity. The first
high-dimensional framework is used for high-dimensional low sample data (HDLSS).
Assuming that x;’s are a sample from N(0, [,). Hall et al. (2005) showed that the
three geometric statistics satisfy the following under large-dimension-fixed-sample
size;

lzi|| =P+ 0,(1), i=1,...,n,
lx; — ;|| =2p+0,(1), 4,7=1,...n, i #7],
™ .. . .
ang(whwj) = 5 + Op(p_l/Q)a 1,] = 17 I 7& Js

where || - || is the Euclidean distance and O, denotes the stochastic order. These
results imply that the data converge to the vertices of a deterministic regular simplex.
In non-normal case, these properties were extended with some assumptions. They
extended these properties to the case that two data sets are drawn from different
distributions, and examined the performance of some discrimination rules.

In this paper, we mainly refine their results and study influence of dimension p
on these properties in standard normal case. Our results are refined results of Hall
et al, and may be used to extend the statistical insights based on the asymptotic
behaviors to a middle-dimensional case.

We firstly try to refine these results in multivariate standard normal case by
asymptotic expansion of distributions of geometric features in Section 2. To get



them, we difined three statistics
Ty = V2(||lz:|l - vp),
Ty = ||z — ]| — v/2p,
- (5-0)
where the variable ¢ denotes the angle of x; and x;, ¢ = p — A and A is the

correction term. Then the limiting distributions of these statistics are the standard
normal distributions. The distribution of 1 = v2(||2;|| — /p) is expanded as

B(x) — o(x) [ia(x) " 1@(@} o).

VD p

Here ¢1(x) and l5(z) are defined as follows,

li(z) = 12 2(7) — Th(](x)a
l(z) = ﬁ[—lShg,(w) — 6hs(z) + 16hy(z) — 81hy () + T2ho(z)],

where h;(x) denotes the Hermite polynomial. In addition, asymptotic expansion of
distribution of T3 is

D(x) + %QQ [hs(u) + 6(2A — D)o (2)] 6(z) + o(g™Y).

In Section 3, we obtain computable error bounds for limiting distributions of the
length and the one of distance i.e

[P(T; < @) — @(«)| < B(p) = O(p™?), (i=1,2)

where

B(p) = min D(A, p) + (1)

e\/pm
The idea to get the error bounds is based on Ulyanov et al (2006). They obtain
some computable error bounds of O(n™!) for the chi-squared approximation of trans-
formed chi-squared random variables with n degrees of freedom. In expression (1),
miny D (A, p) denotes the following error bound;

X; =P
Sl;p ‘P ( NGT: < x) O(x)
By the centeral limit theorem, P((x; —p)/+/2p < x) converges the normal distribu-
tion ®(x). In Section 3.2, we modify the result of Ulyanov et al (2006) to get this
error bound by two approaches and compare these bounds .

In Section 4, we briefly introduce the extension, which is led by Hall(2005), of
properties in non-normal case. A single sample case is treated in Section 4.1. Then
the following three conditions are assumed to examine the limiting behavior of a
sample X (p) = (x1, 22 ..., x,).

< min D(\,p) = O(p™""?).



1. The fourth moments of the entries of the data vectors are uniformly bounded.

2. For a constant o2,
L2
- Z Var(z;;) — o (2)
P

3. The infinite data vector x; is p mixing for functions that are dominated by
quadratics, where p mixing condition is accurately defined in Appendix;

To be brief, 3rd assumption implies that the correlation between component i and
7 = i+ r gets weak as r increases. In Section 4.2, we extend these properties in
two data sets from different distributions. Properties in Section 4.2 are applied
for the analysis of discrimination methods. In non-normal case, we need a p mix-
ing condition to satisfy properties. This condition is somewhat too strict because
the condition is equivalent to have a strong collinearity among variables and the
condition also depends on the order of entries, which can be arbitrary.

To research asymptotic properties of the sample covariance matrix in a normal
case, Jeongyoun (2007) shows that the same geometric representation hold under
a mild assumption on the population eigenvalues. Note that Jeongyoun (2007)
considers dual sample covariance Sp = X7 X /n instead of primal sample covariance
Sp = XXT/n, where X is p x n data matrix. it has the same positive eigenvalues
as Sp. To show geometric representation for HDLSS data, the following condtions
are assumed;

1. The fourth moments of the entries of the data vectors are uniformly bounded.

2. The eigenvalues of ¥, are sufficiently diffused, in the sense that

P 2
=12

(D j=1 X)?

Jj=1

—0 as p— o0, (3)

where \; > --- > ), is eigenvalues of a nonnegative definite covariance matri-
ces 2.

assumption (3) is uesd at a population version of the locally most powerful invariant
test statistic for sphericity. In multivariate normal distiributions, the empirical
version is the locally most powerful invariant test statistic for sphericity. In Section
5, in addition to a new assumption about cumulants, we extend the idea to non-
normal case.

In Secton 6, this new geometric representation is used to analyse the HDLSS per-
formance of support vector machine (SVM). SVM is a new discrimination method
proposed by Vapnik, and so on. The origin of SVM is Optimal Separating Hyper-
plane proposed by Vapnik in the 1960’s ,and then in the 1990’s, the method was
extended to nonlinear discrimination by a kernel and soft margin. SVM is the no-
table method at the present time. From the point of view of VC-dimension, which
was introduced by Vapnik and Chervonenkis, good generalization performance is



guaranteed for SVM in case that the sample size is finite. Here, VC-dimension de-
notes the one of measures of complex for a function set. And it is known that the
idea such that the margin between two groups become maximum is most suitable
in the sense that the risk become minimum, and the performance does not depend
on the dimension of data. And the performance for HDLSS data is researched by
Hall et,al (2005). They paid attention to the distance of new data from centroid of
simplex. Their result is introduced in Section 6.1.

In Section 6.2, we consider the case of two multivariate standard normal popu-
lations II; : N(,u,(l) I,) and Tl : N(u® 1) where p® = (/Lg),...,,uz(,)) (1 =1,2)
is the vector of means of the ith population, i = 1,2. p and pu® satisfy the
condition that

- Z{ - Mk } = (p : constant).

Let D; and D, be difined as the distances of new data X, from m-simplex and
n-simplex respectively. Then the new data X is classified to II; or Il according as

D < 0= X, eIl
D >0= X, e ll.

Here, D = Dy — D,. The probability of misclassification, if the new data is from Iy,
is approximated following;

Pr <%>0\Xoenl> :@(-@(M—ﬂ)).

The probability of misclassification, if the new data is from II;, is also. The in-
teresting consequence of this result is that the probability of misclassification is
decreasing, as p is increasing. And if 4 = 0, i.e, each population has the same mean,
the probability of misclassification is 1/2, which denotes that discrimination method
(SVM) is meaningless.
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