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Let Sn+p(c) be an (n + p)-dimensional Euclidean sphere of constant
curvature c and let M be an n-dimensional compact minimal submani-
fold isometrically immersed in Sn+p(c). Let Aξ be the Weingarten endo-
morphism associated a normal vector field ξ and T the tensor defined by
T (ξ, η) =traceAξAη.

Recently, Montiel, Ros and Urbano [7] proved the following: Let M be
an n-dimensional compact minimal submanifold isometrically immersed in
Sn+p(c). Let σ be the second fundamental form of M in Sn+p(c). If M is
Einstein, T = k⟨ , ⟩ and

|σ|2 ≤ np(n+ 2)

2(n+ p+ 2)
c

thenM is isotropic and has the parallel second fundamental form, where ⟨, ⟩
is the Riemannian metric.

Xia[16] showed: Let M be an n-dimensional compact minimal submani-
fold isometrically immersed in Sn+p(c). Then

S ≥ (n− 1)c− p(n+ 2)

2(n+ p+ 2)
c and T = k⟨ , ⟩

if and only if one of the following conditions is satisfied: A) S = (n − 1)c

and M is totally geodesic, B) S = (n − 1)c − p(n+2)
2(n+p+2)

c and M is isotropic
and has the parallel second fundamental form.

Using the result of Sakamoto [13], we know thatM which is isotropic with
parallel second fundamental form is a compact rank one symmetric space.
Hence if the immersion ψ of M into Sn+p(c) is full, then ψ is one of the fol-
lowing standard ones (See §2): Sn(c) → Sn(c);PR2(1

3
c) → S4(c);S2(1

3
c) →

S4(c);CP 2(c) → S7(c);QP 2(3
4
c) → S13(c);CP 2(4

3
c) → S25(c).

Matsuyama [9] proved the following:

Let M be an n-dimensional compact minimal submanifold isometrically
immersed in Sn+p(c) and ψ the immersion. Then

|σ(v, v)|2 ≤ p

n+ p+ 2
c and T = k⟨ , ⟩

if and only if one of the following conditions is satisfied:
(A) |σ(v, v)|2 ≡ 0 and M is totally geodesic.
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(B) |σ(v, v)|2 = p
n+p+2

c and M is isotropic and has parallel second fun-
damental form. Hence if ψ is full, then ψ is one of the following stan-
dard ones: Sn(c) → Sn(c);PR2(1

3
c) → S4(c);S2(1

3
c) → S4(c);CP 2(c) →

S7(c);QP 2(3
4
c) → S13(c);CP 2(4

3
c) → S25(c).

Let M be a compact Riemannian manifold, UM its unit tangent bundle,
and UMx the fibre of UM over a point x of M . we suppose that M is
isometrically immersed in an (n+ p)-dimensional Riemannian manifold M̃ .
We define

T : T⊥
x M × T⊥

x M → R

by the expression

T (ξ, η) = traceAξAη,

where T⊥
x M is the normal space to M at x. Then T is a symmetric bilinear

map.
Let ∇ be the Riemannian connection. A and ∇⊥ are the Weingarten en-

domorphism and the normal connection. The first and the second covariant
derivatives of the normal valued tensor σ are given by

(∇σ)(X, Y, Z) = ∇⊥
X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ)

and

(∇2σ)(X, Y, Z,W ) = ∇⊥
X((∇σ)(Y, Z,W ))− (∇σ)(∇XY, Z,W )

−(∇σ)(Y,∇XZ,W )− (∇σ)(Y, Z,∇XW ),

respectively, for any vector fields X, Y, Z and W tengent to M. Let R and
R⊥ denote the curvature tensor associated with ∇ and ∇⊥, respectively.
Then σ and ∇σ are symmetric and for ∇2σ we have the Ricci-identity

(∇2σ)(X, Y, Z,W )− (∇2σ)(Y,X,Z,W ) (1)

= R⊥(X,Y )σ(Z,W )− σ(R(X,Y )Z,W )− σ(Z,R(X,Y )W )

If S and ρ is the Ricci tensor ofM and the scalar curvature ofM , respec-
tively, since M is a minimal submanifold in Sn+p(c), then from the Gauss
equation we have

S(v, w) = (n− 1)c⟨v, w⟩ −
n∑

i=1

⟨Aσ(v,ei)ei, w⟩, (2)

ρ = n(n− 1)c− |σ|2. (3)

LEMMA. LetM be an n-dimensional minimal submanifold isometrically
immersed in Sn+p(c). Then for v ∈ UMx we have

1

2

n∑
i=1

(∇2f10)(ei, ei, v) =
n∑

i=1

|(∇σ)(ei, v, v)|2 + nc|σ(v, v)|2 (4)
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+ 2
n∑

i=1

⟨Aσ(v,v)ei, Aσ(ei,v)v⟩ − 2
n∑

i=1

⟨Aσ(v,ei)ei, Aσ(v,v)v⟩

−
n∑

i=1

⟨Aσ(v,v)ei, Aσ(v,v)ei⟩.

The purpose of this paper is to prove the following:

THEOREM 1. Let M be an n-dimensional compact minimal submani-
fold isometrically immersed in Sn+p(c). Then

|σ|2 ≤ np(p+ 2)

2(n+ p+ 2)
c and T = k⟨ , ⟩

if and only if one of the following conditions is satisfied:
(A) |σ|2 ≡ 0 and M is totally geodesic.

(B) |σ|2 = np(p+2)
2(n+p+2)

c and M is isotropic and has parallel second fun-
damental form. Hence if ψ is full, then ψ is one of the following stan-
dard ones: Sn(c) → Sn(c);PR2(1

3
c) → S4(c);S2(1

3
c) → S4(c);CP 2(c) →

S7(c);QP 2(3
4
c) → S13(c);CP 2(4

3
c) → S25(c).

Here,in order to prove the Theorem 2. we used the following generalized
maximum principle due to Omori [11] and Yau [18].

Generalized Maximum Principle. (Omori [11] and Yau [18])Let Mn

be a complete Riemannian manifold whose Ricci curvature is bounded from
below and f ∈ C2(M) a function bounded from above on Mn. Then, for any
ϵ⟩0, there exists a point p ∈Mn such that

f(p) ≥ sup f − ϵ, ||grad f ||⟨ϵ, ∆f(p) < ϵ.

THEOREM 2. Let M be an n-dimensional complete minimal sub-
manifold isometrically immersed in Sn+p(c). Then if |σ|2 ≤ np(p+2)

2(n+p+2)
c and

T = k⟨ , ⟩, then the second fundamental form is parallel.
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