平面代数曲線の二次変換と種数について

On the quadratic transformations and genera of algebraic plane curves

中央大学大学院理工学研究科 数学専攻 劉 彬

1 Introduction

Our aim is to compute the genera of plane curves with some singularities．For our purpose，the quadratic transformations is a key tool．

Afer we discuss the theory of quadratic transformations，we consider the alge－ braic curve defined by the polynomial $F=\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2}=0$ ．

2 Algebraic curves

Definition 1．Let C be a plane curve．A point P on C is called a simple one if the local ring $\mathcal{O}_{C, P}$ is regular．
Let F be an element of $k[x, y, z]$ ．For simplicity，we denote by F a plane curve $V(F)=C \subset \mathbb{P}^{2}=\operatorname{Projk}[x, y, z]$ ．

Definition 2．Let C be a curve．A point P on C is called singular one if the local ring $\mathcal{O}_{C, P}$ is not regular．

Definition 3．Let C be a curve．C is called non－singular curve if every point on C is simple point．
Definition 4．Let F be a curve in \mathbb{P}^{2} ，and we set $f=F(X, Y, 1)$ ．We let $P=(0,0,1)$ belong to F ．Namely，there exists $m \geq 1$ such that $f=f_{m}+$ $f_{m+1}+\cdots+f_{n}$ ，where f_{i} is homogenous polynomials of degree i in $k[X, Y]$ ，and $f_{m} \neq 0$ ．Then the lowest degree m is called a multiplicity of F at $P=(0,0,1)$ ， denoted by $m_{p}(F)$ ．If $m=2, P$ is called a double point．If $m=3, P$ is called a triple point．

Definition 5．Let $f_{m}=\prod L_{i}{ }^{r_{i}}$ ，where L_{i} are distinct lines．L_{i} is called tangent lines to F at $P=(0,0,1) . r_{i}$ is called multiplicity of the tangent．P is called ordinary multiple point if F has m distinct tangent lines at P ．An ordinary double point is called a node．

Definition 6．Let F, G be plane curves．Let $P=(x, y) \in \mathbb{A}^{2}$ ．$I(P, F \cap G):=$ $\operatorname{dim}\left(\mathcal{O}_{\mathrm{P}}\left(\mathbb{A}^{2}\right) /(\mathrm{F}, \mathrm{G})\right)$ is called the intersection number of F and G at P ．

Theorem 1. (Bezout's Theorem)
Let F, G be projective plane curves of degrees m and n respectively. Assume F and G have no common component. Then $\sum_{P} I(P, F \cap G)=m n$.

Theorem 2. (Riemann's Theorem)
Let D be a divisor on a curve X of genus $g, l(D):=\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D))$. Then there is a constant g such that $l(D) \geq \operatorname{deg}(D)+1-g$ for all divisors D. The smallest such g is called the genus of $X . g$ is a non-negative integer.

Theorem 3. Let C be a plane curve with only ordinary multiple points. Let n be the degree of $C, r_{P}=m_{P}(C)$. Then the genus g of C is given by the formula $g=\frac{(n-1)(n-2)}{2}-\sum_{P \in C} \frac{r_{P}\left(r_{P}-1\right)}{2}$.
Theorem 4. Let C be a plane curve of degree $n, r_{P}=m_{P}(C), P \in C, \frac{(n-1)(n-2)}{2}=$ $\sum_{P \in C} \frac{r_{P}\left(r_{P}-1\right)}{2}$, then C is rational.

Theorem 5. (Riemann-Roch Theorem)
Let D be a divisor on a curve X of genus $g, l(D):=\operatorname{dim}_{k} H^{0}(X, \mathcal{L}(D)), K:=$ canonical divisor on $X, \mathcal{L}(D):=$ an invertible sheaf on X. Then $l(D)-l(K-$ $D)=\operatorname{deg} D+1-g$.

3 Quadratic Transformations

Definition 7. $P=(0: 0: 1), P^{\prime}=(0: 1: 0), P^{\prime \prime}=(1: 0: 0) \in \mathbb{P}^{2}$ is called the fundamental points.

Definition 8. $L=V(Z), L^{\prime}=V(Y), L^{\prime \prime}=V(X)$ is called the exceptional lines. $Q: \mathbb{P}^{2}-\left\{P, P^{\prime}, P^{\prime \prime}\right\} \longrightarrow \mathbb{P}^{2}, U:=\mathbb{P}^{2}-V(X Y Z)$. $(x, y, z) \longmapsto Q(x: y: z):=(y z: x z: x y)$
Definition 9. Q is called standard quadratic transformation when $Q(X: Y:$ $Z):=(Y Z: X Z: X Y)$, for $(X: Y: Z) \in U$.

Definition 10. Let $F \in k[X, Y, Z]$ be a equqtion of $C, n=\operatorname{deg} F$. F^{Q} is called algebraic transform when $F^{Q}:=F(Y Z, X Z, X Y) . \operatorname{deg} F^{Q}=2 n$.

Definition 11. Let $m_{P}(C)=r, m_{P^{\prime}}(C)=r^{\prime}, m_{P^{\prime \prime}}(C)=r^{\prime \prime}$. Then $F^{Q}=$ $Z^{r} Y^{r^{\prime}} X^{r^{\prime \prime}} F^{\prime}$, where X, Y, Z do not divide $F^{\prime} . F^{\prime}$ is called proper transformation of F.

Definition 12. C is called in good position if no exceptional line is tangent to C at a fundamental point.

Definition 13. C is called in excellent position if C is in good position, and $I(P, L \cap C)=n, I\left(P, L^{\prime} \cap C\right)=n-r^{\prime}, I\left(P, L^{\prime \prime} \cap C\right)=n-r^{\prime \prime}$.

Proposition 1. Let $C \in \mathbb{P}^{2}$ be an irreducible curve, $P \in C$. Then
(1) If $m_{P}(C)=r$, then Z^{r} is the largest power of Z which divides F^{Q}.
(2) $\operatorname{deg} F^{\prime}=2 n-r-r^{\prime}-r^{\prime \prime},\left(F^{\prime}\right)^{\prime}=F$. F^{\prime} is irreducible, and $V\left(F^{\prime}\right)=C^{\prime}$.
(3) $m_{P}\left(F^{\prime}\right)=n-r^{\prime}-r^{\prime \prime}, m_{P^{\prime}}\left(F^{\prime}\right)=n-r-r^{\prime \prime}, m_{P^{\prime \prime}}\left(F^{\prime}\right)=n-r-r^{\prime}$.
(4) If C is in good position, C^{\prime} is too.

4 Computation

$F=\left(X^{2}+Y^{2}\right)^{3}-4 X^{2} Y^{2}=0 . V(F) \subseteq \mathbb{A}^{2}$.
Then F can be changed to $f(x, y, z)=\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2} z^{2}=0$.
The singular points are $(x: y: z)=(0: 0: 1)$ and $(\pm i: 1: 0)$.
Case 1. When $P=(0: 0: 1), r_{(0: 0: 1)}=4$.
Case 2. When $P=(i: 1: 0), r_{(i: 1: 0)}=2$.
Case 3. When $P=(-i: 1: 0), r_{(-i: 1: 0)}=2$.
Let

$$
\left\{\begin{array}{l}
L^{\prime \prime}:=V(Y-X)=V(x-y) \\
L^{\prime}:=V(X+Y)=V(x+y) \\
L:=V\left(X-\frac{1}{\sqrt{2}}\right)=V(z-\sqrt{2} x)
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
U:=x+y \\
V:=x-y \\
W:=z-\sqrt{2} x
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
P(x, y, z)=(0: 0: 1) \\
P^{\prime}(x, y, z)=\left(\frac{1}{\sqrt{2}}:-\frac{1}{\sqrt{2}}: 1\right) \\
P^{\prime \prime}(x, y, z)=\left(\frac{1}{\sqrt{2}}: \frac{1}{\sqrt{2}}: 1\right)
\end{array}\right.
$$

It can be changed to

$$
\left\{\begin{array}{l}
P(U, V, W)=(0: 0: 1) \\
P^{\prime}(U, V, W)=(0: 1: 0) \\
P^{\prime \prime}(U, V, W)=(1: 0: 0)
\end{array}\right.
$$

Therefore $f(U, V, W)=\frac{1}{8}\left(U^{2}+V^{2}\right)^{3}-\frac{1}{8}\left(U^{2}-V^{2}\right)^{2}(U+V+\sqrt{2} W)^{2}=0$.
Hence we put $f:=\left(U^{2}+V^{2}\right)^{3}-\left(U^{2}-V^{2}\right)^{2}(U+V+\sqrt{2} W)^{2}$.
When $P=(0: 0: 1), m_{(0: 0: 1)}(C)=4$.
When $P^{\prime}=(0: 1: 0), m_{(0: 1: 0)}(C)=1$.
When $P^{\prime \prime}=(1: 0: 0), m_{(1: 0: 0)}(C)=1$.
$f^{Q}(U, V, W)=2 W^{4} U^{1} V^{1} \times\left\{W^{2}\left[2 U V\left(U^{2}+V^{2}\right)-\left(U^{2}-V^{2}\right)^{2}\right]-2 \sqrt{2} W(U+\right.$ $\left.V)\left(U^{2}-V^{2}\right)^{2}-U V\left(U^{2}-V^{2}\right)^{2}\right\}$

Let $f^{\prime}(U, V, W)=W^{2}\left\{2 U V\left(U^{2}+V^{2}\right)-\left(U^{2}-V^{2}\right)^{2}\right\}-2 \sqrt{2} W(U+V)\left(U^{2}-\right.$ $\left.V^{2}\right)^{2}-U V\left(U^{2}-V^{2}\right)^{2}$.

The singular points are $(0: 0: 1)$ and $(-1: 1: 0)$ and $(1: 1: 0)$.
Case 1. When $(U: V: W)=(0: 0: 1), r_{(0: 0: 1)}=4$.
Case 2. When $(U: V: W)=(1: 1: 0), r_{(1: 1: 0)}=2$.
Case 3. When $(U: V: W)=(-1: 1: 0), r_{(-1: 1: 0)}=2$.
Case 4. When $(U: V: W)=(i+1: i-1:-\sqrt{2} i), r_{(i+1: i-1:-\sqrt{2} i)}=2$.
Case 5. When $(U: V: W)=(-i+1: i-1: \sqrt{2} i), r_{(-i+1: i-1: \sqrt{2} i)}=2$.
So $\frac{(n-1)(n-2)}{2}=\frac{(6-1)(6-2)}{2}=10$.
$\frac{\Sigma r_{p}\left(r_{p}-1\right)}{2}=2 \times \frac{2(2-1)}{2}+\frac{4(4-1)}{2}+2 \times \frac{2(2-1)}{2}=2+6+2=10$.
The genus is $g=\frac{(n-1)(n-2)}{2}-\frac{\Sigma r_{p}\left(r_{p}-1\right)}{2}=10-10=0$.
Since $\frac{(n-1)(n-2)}{2}=\frac{\sum r_{p}\left(r_{p}-1\right)}{2}$, we can say $f(U, V, W)$ is rational.

References

[1] R. Hartshone, Algebraic Geometry, Springer, 1977.
[2] W. Fulton, Algebraic Curves, W. A. BENJAMIN, INC., 1969.
[3] K. E. Smith, An Invitation to Algebraic Geometry, Springer, 2003.

