平面代数曲線の二次変換と種数について

On the quadratic transformations and genera of algebraic plane

curves

中央大学大学院理工学研究科 数学専攻 劉 彬

1 Introduction

Our aim is to compute the genera of plane curves with some singularities. For our purpose, the quadratic transformations is a key tool.

After we discuss the theory of quadratic transformations, we consider the algebraic curve defined by the polynomial $F = (X^2 + Y^2)^3 - 4X^2Y^2 = 0$.

2 Algebraic curves

Definition 1. Let C be a plane curve. A point P on C is called a simple one if the local ring $\mathcal{O}_{C,P}$ is regular.

Let F be an element of k[x, y, z]. For simplicity, we denote by F a plane curve $V(F) = C \subset \mathbb{P}^2 = Projk[x, y, z].$

Definition 2. Let C be a curve. A point P on C is called singular one if the local ring $\mathcal{O}_{C,P}$ is not regular.

Definition 3. Let C be a curve. C is called non-singular curve if every point on C is simple point.

Definition 4. Let F be a curve in \mathbb{P}^2 , and we set f = F(X, Y, 1). We let P = (0, 0, 1) belong to F. Namely, there exists $m \ge 1$ such that $f = f_m + f_{m+1} + \cdots + f_n$, where f_i is homogenous polynomials of degree i in k[X, Y], and $f_m \ne 0$. Then the lowest degree m is called a multiplicity of F at P = (0, 0, 1), denoted by $m_p(F)$. If m = 2, P is called a double point. If m = 3, P is called a triple point.

Definition 5. Let $f_m = \prod L_i^{r_i}$, where L_i are distinct lines. L_i is called tangent lines to F at P = (0, 0, 1). r_i is called multiplicity of the tangent. P is called ordinary multiple point if F has m distinct tangent lines at P. An ordinary double point is called a node.

Definition 6. Let F, G be plane curves. Let $P = (x, y) \in \mathbb{A}^2$. $I(P, F \cap G) := \dim(\mathcal{O}_P(\mathbb{A}^2)/(F, G))$ is called the intersection number of F and G at P.

Theorem 1. (Bezout's Theorem)

Let F,G be projective plane curves of degrees m and n respectively. Assume F and G have no common component. Then $\sum_{P} I(P, F \cap G) = mn$.

Theorem 2. (Riemann's Theorem)

Let D be a divisor on a curve X of genus g, $l(D) := \dim_k H^0(X, \mathcal{L}(D))$. Then there is a constant g such that $l(D) \ge \deg(D) + 1 - g$ for all divisors D. The smallest such g is called the genus of X. g is a non-negative integer.

Theorem 3. Let C be a plane curve with only ordinary multiple points. Let n be the degree of $C, r_P = m_P(C)$. Then the genus g of C is given by the formula $g = \frac{(n-1)(n-2)}{2} - \sum_{P \in C} \frac{r_P(r_P-1)}{2}.$

Theorem 4. Let C be a plane curve of degree $n, r_P = m_P(C), P \in C, \frac{(n-1)(n-2)}{2} = \sum_{P \in C} \frac{r_P(r_P - 1)}{2}$, then C is rational.

Theorem 5. (*Riemann-Roch Theorem*)

Let D be a divisor on a curve X of genus g, $l(D) := \dim_k H^0(X, \mathcal{L}(D)), K :=$ canonical divisor on X, $\mathcal{L}(D) :=$ an invertible sheaf on X. Then l(D) - l(K - D) = degD + 1 - g.

3 Quadratic Transformations

Definition 7. $P = (0:0:1), P' = (0:1:0), P'' = (1:0:0) \in \mathbb{P}^2$ is called the fundamental points.

Definition 8. L = V(Z), L' = V(Y), L'' = V(X) is called the exceptional lines. $Q : \mathbb{P}^2 - \{P, P', P''\} \longrightarrow \mathbb{P}^2, U := \mathbb{P}^2 - V(XYZ).$ $(x, y, z) \longmapsto Q(x : y : z) := (yz : xz : xy)$

Definition 9. Q is called standard quadratic transformation when Q(X : Y : Z) := (YZ : XZ : XY), for $(X : Y : Z) \in U$.

Definition 10. Let $F \in k[X, Y, Z]$ be a equation of $C, n = \deg F$. F^Q is called algebraic transform when $F^Q := F(YZ, XZ, XY)$. $\deg F^Q = 2n$.

Definition 11. Let $m_P(C) = r, m_{P'}(C) = r', m_{P''}(C) = r''$. Then $F^Q = Z^r Y^{r'} X^{r''} F'$, where X, Y, Z do not divide F'. F' is called proper transformation of F.

Definition 12. C is called in good position if no exceptional line is tangent to C at a fundamental point.

Definition 13. *C* is called in excellent position if C is in good position, and $I(P, L \cap C) = n, I(P, L' \cap C) = n - r', I(P, L'' \cap C) = n - r''.$

Proposition 1. Let $C \in \mathbb{P}^2$ be an irreducible curve, $P \in C$. Then

(1) If $m_P(C) = r$, then Z^r is the largest power of Z which divides F^Q .

$$(2) deg F' = 2n - r - r' - r'', (F')' = F. F' is irreducible, and $V(F') = C'.$$$

$$(3) m_P(F') = n - r' - r'', m_{P'}(F') = n - r - r'', m_{P''}(F') = n - r - r'$$

(4) If C is in good position, C' is too.

4 Computation

 $\begin{array}{l} F=(X^2+Y^2)^3-4X^2Y^2=0, \ V(F)\subseteq \mathbb{A}^2.\\ \text{Then } F \text{ can be changed to } f(x,y,z)=(x^2+y^2)^3-4x^2y^2z^2=0.\\ \text{The singular points are } (x:y:z)=(0:0:1) \text{ and } (\pm i:1:0). \end{array}$

Case 1. When $P = (0:0:1), r_{(0:0:1)} = 4$.

Case 2. When $P = (i : 1 : 0), r_{(i:1:0)} = 2.$

Case 3. When $P = (-i:1:0), r_{(-i:1:0)} = 2.$

Let

$$\begin{cases} L'' := V(Y - X) = V(x - y) \\ L' := V(X + Y) = V(x + y) \\ L := V\left(X - \frac{1}{\sqrt{2}}\right) = V(z - \sqrt{2}x) \end{cases}$$

Let

$$\begin{cases} U:=x+y\\ V:=x-y\\ W:=z-\sqrt{2}x \end{cases}$$

Then

$$\begin{cases} P(x, y, z) = (0:0:1) \\ P'(x, y, z) = \left(\frac{1}{\sqrt{2}}: -\frac{1}{\sqrt{2}}:1\right) \\ P''(x, y, z) = \left(\frac{1}{\sqrt{2}}: \frac{1}{\sqrt{2}}:1\right) \end{cases}$$

It can be changed to

$$\begin{cases} P(U, V, W) = (0:0:1) \\ P'(U, V, W) = (0:1:0) \\ P''(U, V, W) = (1:0:0) \end{cases}$$

Therefore $f(U, V, W) = \frac{1}{8}(U^2 + V^2)^3 - \frac{1}{8}(U^2 - V^2)^2(U + V + \sqrt{2}W)^2 = 0.$ Hence we put $f := (U^2 + V^2)^3 - (U^2 - V^2)^2 (U + V + \sqrt{2}W)^2$. When $P = (0:0:1), m_{(0:0:1)}(C) = 4.$ When $P' = (0:1:0), m_{(0:1:0)}(C) = 1.$ When $P'' = (1:0:0), m_{(1:0:0)}(C) = 1.$
$$\begin{split} f^Q(U,V,W) &= 2W^4 U^1 V^1 \times \left\{ W^2 [2UV(U^2+V^2) - (U^2-V^2)^2] - 2\sqrt{2}W(U+V)(U^2-V^2)^2 - UV(U^2-V^2)^2 \right\} \end{split}$$
Let $f'(U, V, W) = W^2 \left\{ 2UV(U^2 + V^2) - (U^2 - V^2)^2 \right\} - 2\sqrt{2}W(U+V)(U^2 - V^2)^2 - UV(U^2 - V^2)^2.$ The singular points are (0:0:1) and (-1:1:0) and (1:1:0). Case 1. When $(U:V:W) = (0:0:1), r_{(0:0:1)} = 4.$ Case 2. When $(U:V:W) = (1:1:0), r_{(1:1:0)} = 2$. Case 3. When $(U:V:W) = (-1:1:0), r_{(-1:1:0)} = 2$. Case 4. When $(U:V:W) = (i+1:i-1:-\sqrt{2}i), r_{(i+1:i-1:-\sqrt{2}i)} = 2.$ Case 5. When $(U:V:W) = (-i+1:i-1:\sqrt{2}i), r_{(-i+1:i-1:\sqrt{2}i)} = 2.$ $\begin{array}{l} \text{So } \displaystyle \frac{(n-1)(n-2)}{2} = \displaystyle \frac{(6-1)(6-2)}{2} = 10. \\ \displaystyle \frac{\Sigma r_p(r_p-1)}{2} = 2 \times \displaystyle \frac{2(2-1)}{2} + \displaystyle \frac{4(4-1)}{2} + 2 \times \displaystyle \frac{2(2-1)}{2} = 2 + 6 + 2 = 10. \\ \text{The genus is } g = \displaystyle \frac{(n-1)(n-2)}{2} - \displaystyle \frac{\Sigma r_p(r_p-1)}{2} = 10 - 10 = 0. \\ \text{Since } \displaystyle \frac{(n-1)(n-2)}{2} = \displaystyle \frac{\Sigma r_p(r_p-1)}{2}, \text{ we can say } f(U,V,W) \text{ is rational.} \end{array}$

References

- [1] R. Hartshone, Algebraic Geometry, Springer, 1977.
- [2] W. Fulton, Algebraic Curves, W. A. BENJAMIN, INC., 1969.
- [3] K. E. Smith, An Invitation to Algebraic Geometry, Springer, 2003.