入力制御および構造変更による衝撃音の快音設計 Comfortable Sound Design of Impact Sound by the Input Control and the Structure Modification

精密工学専攻 2 号 朝日 洋平 Yohei Asahi

1. はじめに

近年,技術の向上に伴い,音への意識が高まりつつあり, 快音化のニーズが高まっている.例として,鐘ではピークの 倍音成分やうなりの影響により快適性が左右され,またパン チプレスでは打抜き音がストレスや不快感および難聴被害 につながる恐れがある.

音色の変更には大きく分けて,入力制御と構造変更の2種 類があり,これらにより音色が決まる.そして,入力制御で は加振の時間や周波数等,加振の仕方を制御し,構造変更で は構造物の形状や材質を変化させることで,音色を変化でき る.本論文では入力制御の基礎として鐘に着目し,音色変化 の基礎研究を行う.また,パンチプレスに対しては入力制御 と構造変更を行い,衝撃音の快音設計を行う.

2. 入力制御による基礎モデルの特性把握

本章では, 鐘を用いて加振間隔を制御することにより, 応 答の特性を把握し,入力制御を行う.

2.1 多重加振による周波数制御

2.1.1 解析による周波数制御

解析において多重加振における加振間隔と周波数につい ての関係の把握を行う.加振対象として鐘の有限要素モデル を用い,下部を加振し,その90度の位置で振動を測定する. 1回加振の入力信号を1-A,2回加振の入力信号の間隔が0.48 msの加振を1-B,0.96 msの加振を1-Cとする.なお,1-B は1次と3次の固有振動数,1-Cは2次の固有振動数の低減 を目的とする.

加振時の時間波形を Fig. 1(a)に示す. ここで,2回加振の間隔を T s とし,低減周波数のピークの番号を n 番とすると,n 番目の低減周波数 F_n Hz は式(1)のように表せる.

$$Fn = (n - 1/2)/T$$
 (1)

加振間隔の違いによる振動レベルの比較を Fig. 1(b)に示 す.1-B は 1042 Hz, 1-C は 521 Hz と 1563 Hz が低減でき, 式(1)通りの結果となる.また,1-B は 1 次と 3 次の固有振動 数,1-C は 2 次の固有振動数の低減ができており,解析上,2 回加振による周波数制御ができることがわかる.

2.1.2 実験による周波数制御

駆動装置を用いて2回加振を行い、衝撃音のサウンドデザインを試みる.駆動装置によりガウディベルと呼ぶ鐘の下部を加振し、加振点から0.2 m 側方で衝撃音の測定を行い、1回加振(2-A)と2回加振(2-B)を行う.なお、2回加振は、駆

動装置で再現でき, 鐘の固有振動数を低減できる間隔が適切 であるため, 40 ms の間隔で加振する.

加振周波数の比較を Fig. 2(a) に, 音圧レベルの比較を Fig. 2(b) に示す.1回加振の際,基音の周波数は 667 Hz と 668 Hz の重根が表れるが,40 ms の間隔で2回加振を行うことにより,668 Hz の加振力が低減できる.また,その周波数において音圧レベルも低減しており,うなりをなくすことができる.このことから実機において2回加振をすることにより,周波数制御を行うことができる.

Fig. 2 Comparison of the single and double excitation

入力制御によるプレス機械の快音設計

本章では,実用的なパンチプレスの入力制御を行うことに より打抜き音の快音設計を目指す.

3.1 SD 法による音質評価

本節ではパンチプレスの打抜き音の音質評価を行い,打抜 き音の傾向を把握し,目標となる音を定める.

3.1.1 パンチプレスの周波数特性の把握

打抜き音の測定位置を Fig. 3 に示す. マイクロフォンを 前方,側方およびラム軸側方 3.0 m,高さ 1.5 m に設置する. 実験条件として,打抜き速度は 500 mm/s,金型は ϕ 30 mm, 板厚は 6.0 mm,測定位置は前方,測定は工場で行う.なお, 打抜き音の周波数特性として,134Hz にピークがあり,高周 波になるにつれて音圧レベルは低下する傾向がある.

Fig. 3 Measurement points to measure the impact sound

3.1.2 打抜き音の音質評価概要

測定した打抜き音を基に作成した6つの音源により評価を 行う.評価音として,基準音 3-0を前方で測定した打抜き音 とし、3-A はピークの周波数 134 Hz の音圧レベルを 19 dB 低減した音、3-B は音圧レベルを 3 dB 低減した音、3-C は 150 Hz に HPF (High Pass Filter)をかけた音、3-D は減衰をかけ た音、3-E は 7000 Hz に LPF (Low Pass Filter)をかけた音で ある.また打抜き音の音色評価のため、3-B を除き、音圧レ ベルを統一する.SD 法により、基準音と評価音の相対評価を 行う.形容詞対は 15 対、被験者は 41 名であり、うち 21 名 はパンチプレスの製造関係者である.

3.1.3 打抜き音の音質評価結果

音質評価および因子分析の結果から重厚因子,快適因子, 迫力因子の3つの因子を抽出でき,重厚因子と快適因子の因 子得点の散布図をFig.4に示す.これより,3-0と3-Aは快 適性に殆ど違いが見られない.これは打抜き音が過渡音であ り,特定の周波数が目立たないためだと考えられる.また, 今回の評価で3-B,3-D,3-Eの快適性が高いことから,音圧 レベルが低く,音の高さが低く,時間減衰の大きい打抜き音 を目指す.

Fig. 4 Relation between heavy factor and comfortable factor

3.2 入力制御による打抜き音の特性把握

本節では打抜き速度の変更による打抜き音の特性を把握し,音質や品質を考慮した設計パラメータを提案する.

3.2.1 打抜き速度の違いによる特性把握

打抜き速度の変化による,打抜き音の特性把握を行う.本 項では金型は ϕ 30 mm,板厚は3.2 mmとし,速度のみを変化 させる.また打抜き速度は 4-A:500 mm/s, 4-B:200 mm/s, 4-C:100 mm/sとし,比較を行う.ここで,音圧レベルの比較 を Fig. 5 に示す.打抜き速度が遅くなるほど,低周波の音 圧レベルが高く,高周波の音圧レベルは低くなり,全体の音 圧レベルが低下する.このことから打抜き速度を遅くするこ とにより,打抜き音が低く,音圧レベルが小さくなるので快 適性は向上すると考えられる.

Fig. 5 Comparison of the SPL with different punching speed

3.2.2 可変速度による影響把握

打抜き速度の指令値を段階的に設定し、打抜き音の特性を 把握する.打抜きイメージを Fig. 6 に示す.打抜き速度を V1~V5の5段階に分け、V1は上死点(TDC)から動き出し、V2 はワークに衝突する直前まで、V3 は衝突前後、V4 は破断前 後から下死点(BDC)まで、V5 は下死点から上死点までに戻る ときの速度である.ここでワークに衝突する直前に V2 から V3 に変化する位置を TP(タッチポイント)とし、ワークの上 面からの距離を示す.また、V3 から V4 に変化する位置を BTP(ブレークスルーポイント)とし、ワークのどの位置で速 度が変化するかを百分率で示す.ここで、板厚を tmm、ワー クの上面からパンチの先端までの距離を x とおくと、BTP は 式(2)と表すことができる.

BTP = 100x/t

なお,速度の表記は指令値であり,実打抜き速度は指令値 より遅くなる傾向がある.

3 種類の打抜きパターンを比較する. 5-A は速度 400 mm/s の高速パターン, 5-B は V3 を 50 mm/s, V4 を 400 mm/s, BTP を 80 %とし, 衝突時の速度を遅くした静音パターン, 5-C は V3 を 400 mm/s, V4 を 5 mm/s, BTP を 45%とし, 破断時の速度を遅くしたパターンである.また, 共通の条件として, 金型は ϕ 30 mm, 板厚は 3.2 mm, V1, V2, V5 を 400 mm/s, TP を 5.6 mm とし, 測定は側方 3.0 m の位置で行う.

打抜き音の時間波形の比較を Fig. 7(a),(b)に示す.V3 やV4を遅くすることにより,音圧が低下し,5-C から打抜き 音は衝突音と破断音が存在することがわかる.これらのこと から音質や品質を考慮すると,衝突時と破断時の速度を遅く し,その間の速度を速くすることが望ましいと考えられる.

Fig. 7 Comparison of the impact sound pressure with different punching pattern

3.2.3 ワークの品質への影響把握

速度 400 mm/s の高速パターン 5-A と V2 を 50 mm/s, V3 を 400 mm/s, V4 を 100 mm/s, BTP を 80 %, TP を 0 mm の音質改 善パターン 6-A を比較し, 6-A が実用的な品質かを調査する. ワークの打抜きによる断面はダレ, せん断面, 破断面, そし てバリの 4 層に分かれる.品質の良い断面の場合, せん断面 の割合は 1/3~1/2 となる.一方,品質の悪い断面の場合, 2 次せん断面の出現や不適切な割合のせん断面となる.

5-A, 6-A で打抜いた際のワークの断面を Fig.8(a),(b)に 示し,バリの高さとせん断面の割合を Table 1 に示す.6-A では破断面が粗くなり.バリ高さが上昇するが,双方ともに 2 次せん断面はみられない.また,せん断面は概ね適切な割 合であり,製品として使用できる品質の許容範囲内である. また打抜き速度低減により,A 特性音圧レベルは 6.4 dBA 低 減できる.以上より,6-A の打抜きにより,極端な品質の劣 化もなく,かつ音圧レベルも低減できるため,音質や品質に 考慮した打抜きパターンを提案できる.

(a) 5-A

(2)

(b) 6-A

Fig. 8 Comparison of cutting surface

Name	5-A	6-A	
Pattern	Fast	Sound quality improvement	
SPL dBA	78.5	71.9	
Burr height µm	50	53	
Ratio of the burr height %	1.56	1.64	
Shear height mm	1.04	1.19	
Ratio of the shear %	32.7	37.1	

4. 構造変更によるプレス機械の快音設計

本章では、パンチプレスの構造における振動、騒音の原因 となる箇所を把握し、対策を行うことで快音設計を目指す. 4.1 分解実験による周波数特性の把握

本節ではパンチプレスの構造を段階的に分解し,打抜き音を測定することにより,騒音の原因となる箇所を把握する. 4.1.1 分解実験の概要

振動, 騒音の測定は分解無 7-0, 分解 7-A~7-D の 5 段階で 行い, 7-A~7-D にかけて徐々にパーツを取り除く. 各分解モ デルを Fig. 9 に示す. 分解する箇所は, 7-A はセンターテー ブルトップとタレット周りテーブルトップ, 7-B は移動テー ブルトップ, 7-C は移動テーブル, 7-D は全カバーである. また,実験条件として,打抜き速度は 500 mm/s の高速パタ ーン,金型は \$ 30 mm, 板厚は 6.0 mm,打抜き音の測定は前 方,側方の 2 パターンとし,測定は工場で行う.

Fig. 9 Removed parts for each decomposition process

4.1.2 分解実験の結果

各分解における A 特性音圧レベルを Table 2 に示す.分解 7-D では全測定点において, A 特性音圧レベルが低減してお り,カバーの振動が音に影響しやすいことがわかる.また, 前方と側方を比較すると,分解無 7-0 と分解 7-A では側方の A 特性音圧レベルが高いのに対し,分解 7-B 以降では差がな い.これは移動テーブルトップの振動が音に影響しており, それを取り外したために,測定点の近い側方の A 特性音圧レ ベルが低下したと考えられる.

Decomposition	SPL dBA		
Decomposition	Front	Side	
7-0	88.0	91.9	
7-A	88.8	91.8	
7-B	87.5	7.5 87.5	
7-C	88.7	88.8	
7-D	86.8	86.3	

4.1.3 パーツの違いによる特性把握

テーブルトップの種類変更による打抜き音の変化を把握 する.分解実験に使用したテーブルトップはスチール製であ り,これを木製のものと比較する.なお,実験条件は分解実 験と同様である.音圧レベルの比較をFig.10に示す.木製 の場合,スチール製より200 Hz 以降の音圧レベルが低減し ている.この結果より木製の方が,快適性が高いと考えられ, 以降の実験では木製のテーブルトップを取り付けたパンチ プレスで実験を行う.

Fig. 10 Comparison of the SPL with the different material on the surface of moving table

4.2 制振材および吸音材の有無による特性把握

本節ではカバーへ制振材と吸音材により対策を施すことで、 振動を低減し、打抜き音の音質改善を目指す.

4.2.1 制振材および吸音材付加による実験概要

分解実験の結果から、制振材及び吸音材は両サイドのタレ ットカバー及びパンチ点の周辺に設置し、冷却ファン周辺に は流路確保のため、制振材のみを設置する.また、実験条件 として、金型は ϕ 30 mm、板厚は3.2 mm、測定位置は側方で あり、測定は防音室で行い、以降も同様の場所で行う.騒音 対策として 8-0 は対策無、8-A は制振材付加、8-B は制振材 と吸音材を付加し、打抜き速度は 400mm/s の高速パターン、 また 6-B は対策無、8-C は制振材と吸音材を付加し、3 章で 定めた音質改善パターンで打抜きを行う.

4.2.2 制振材および吸音材付加による実験結果

心理音響パラメータを Table 3 に示す. 高速パターンの場 合,制振材,吸音材付加により A 特性音圧レベルやシャープ ネスが低減するが,音質改善パターンの場合, A 特性音圧レ ベルはあまり変化がない. これは,速度の遅い打抜きでは構 造体があまり振動せず効果が出にくいためであり,制振材及 び吸音材は高速パターンの場合に効果的である.

Name	Countermeasure	Processing	SPL	Sharpness
		pattern	dBA	acum
8-O	Nothing	Fast	78.4	1.11
8-A	Damping material		76.4	1.07
8-B	Damping material and		75.3	1.07
	acoustic absorbent			
6-B	Nothing		71.9	1.07
8-C	Damping material and	improvement	71 7	1.02
	acoustic absorbent	Improvement	1 1.1	1.05

4.3 TPA(伝達経路解析)による伝達経路の把握

本節ではTPAを用いて冷却ファンの振動伝達経路を特定し、 対策を行うことで騒音低減を行う.またこれまでの入力制御 および構造変更を考慮した最終的な対策を提案する.

4.3.1 TPA による実験概要

TPA を用いた実験の測定箇所を Fig. 11(a),(b)に示す. メンテナンスカバー中心を TPA のターゲット(応答点)9-A と し,9-A に伝達される振動の経路は 9-B~9-E のメンテナンス カバー固定箇所,9-F,9-G の冷却ファンとカバー締結箇所で ある.また,加振位置を Fig.12 に示す.入力加振には Y 軸 モータ加振を用い,入力は5sのチャープサイン波とし,加 振周波数は 0~2000 Hz とする.

(a) Under side of fan (b) Right side of fan Fig. 11 Measurement points to apply TPA

Fig. 12 The rod transferring the vibration

4.3.2 TPA による実験結果

TPA の伝達経路解析結果として代表的な波形を Fig. 13 に 示す. Measure は Y 軸加振によるターゲットの実測値である. また経路 9-B~9-G の波形は,解析上各経路点からターゲッ トに伝達される振動であり,Total はターゲットにおける解 析上各経路から伝達された振動レベルの和である. Measure と Total を比較すると,315 Hz までの数値が近く信頼性が高 い.また 9-B~9-E は Total への寄与が大きく,9-F と 9-G は寄与が小さいため,メンテナンスカバーの振動がターゲッ トに伝達しやすいことがわかる.そして,ターゲットの 63 Hz の振動が大きいので,低周波を中心に対策を行い,騒音低減 を図る.

Fig. 13 Predicted vibration level near of the fan by TPA

4.3.3 伝達経路への対策による効果

TPA の結果から、低周波の伝達を軽減させるため、冷却 ファンへの対策を行う.対策として、9-B~9-E ヘゴムワッシ ャー付加、9-F、および凸部カバーとフレーム結合部に防振 ゴムを付加し、対策前(10-A)と対策後(10-B)の比較を行う. また、冷却ファンと凸部カバー間の固定のためのボルトに防 振ゴム、凸部カバーとフレーム結合部に防振ゴムを取り付け る.さらに、移動テーブルトップとそれを支えるアウトリガ ー締結部の間の防振ゴムを1つ追加し、ラム軸側タレットカ バーに防振ゴムを付加する.そして、NC 側タレットカバーの 開閉部の丁番を2つから3つに変更し、同開閉部のラッチを スナップフィット式からマグネット式に変更する.なお、対 策前の状態として、制振材および吸音材をつけた状態とする.

打抜き速度は 400 mm/s の高速パターン, 金型は φ 30 mm, 板厚は 3.2 mm, 測定は冷却ファンから 1.0 m の位置で行う. 対策前後の周波数特性の比較を Fig. 14 に示す. 63 Hz にお いて, 音圧レベルが 5.5dB 低減していることがわかる.

Fig. 14 Change of the SPL after modification

4.3.4 入力制御および構造変更による効果

最後に入力制御と構造変更による音質改善前後の比較を 示す. 測定の条件として,金型の形状はφ30 mm,板厚は3.2 mm,打抜き音の測定はラム軸側方とする. なお,対策として テーブルとテーブルトップの間に発泡スチロールを新たに 付加する.

比較内容として.11-A はスチール製のテーブルトップを用 い、対策をせず、高速パターンで打抜く.また、11-B は木製 のテーブルトップ、制振材、吸音材、防振ゴム、発泡スチロ ール等、今まで行った対策を施し、高速パターンで打抜く. そして、11-C は木製のテーブルトップと今まで行った対策を 施し、音質改善パターンで打抜く. 11-Aと11-Cの音圧レベルの比較をFig. 15 に示す. 構造 変更や入力制御を施すことにより,200 Hz 以降の音圧レベル が低減できていることがわかる.また,A 特性音圧レベルは 11-A は 80.5 dBA, 11-B は 77.5 dBA, 11-C が 73.4 dBA とな り,11-A から 11-C にかけて,7.1 dBA 低減できた.これら のことから,対策を含めた構造変更および入力制御により, パンチプレスの快音化ができる.

Fig. 15 Change of the SPL after modification in total

5. 研究成果

- (1)加振間隔を調整した2回加振を行うことにより周期的に 振幅が低減するため、固有振動数等、任意の周波数の入 力制御が可能であることを示した。
- (2) パンチプレスの打抜き音にはワークへの衝突音と破断 音があり、衝突時と破断時の速度を遅くした音質改善パ ターンでの打抜きにより、音質と品質を考慮した入力制 御ができた。
- (3) 分解実験と伝達経路解析(TPA)の結果から,打抜き音に 影響の大きい箇所は移動テーブルトップ,タレットカバ 一等のカバー類,冷却ファン,そしてパンチ点周辺等で あることがわかった.
- (4) パンチプレスの構造変更の対策として、カバー類の放射 音には制振材や吸音材の付加、振動伝達の軽減として、 結合部にゴム材の付加、テーブルトップは材質変更を施 すことにより、騒音を低減できた。
- (5)入力制御と構造変更により、鐘やパンチプレスといった 衝撃音の快音設計を行うことができた.

参考文献

- Iva M. Salom, et al., "Aural Determination of the strike note of a bell", Inter-Noise 2010, pp. 275-284, (2010).
- (2)徳永智彦,大久保信行,戸井武司,"音響シミュレーションを用いた形状変化による鐘の音質設計",日本音響学会講演論文集(春),pp.819-820,(2003).
- (3) 朝日洋平, Cho Wan-Ho, 深見靖彦, 長江正行, 戸井武司, "入力制御によるタレットパンチプレスの音質改善手法の開発",日本音響学会講演論文集, pp.1161-1164, (2012).
- (4)山本康晴,堤正臣,吉村允孝,小林英男,遠藤順一,"C 形パンチプレスの制振構造に関する研究",日本機械学 會論文集(C編),社団法人日本機械学会,第 557 号, (1992).
- (5)朝日洋平,有光哲彦,戸井武司,"入力制御による衝撃 音のサウンドデザイン",日本音響学会講演論文集(春), 3-3-9,(2013).
- (6) 日本塑性加工学会編, "最新塑性加工要覧", コロナ社, (2000).
- (7)山本耕三,漆戸幸雄,藤橋克己,田中学,宮島徹,"ゴムボール衝撃源による床衝撃音遮断性能の測定方法に関する検討",日本建築学会大会学術講演梗概集, pp. 201-204, (2007).