主成分解析を用いた中周波数域における振動エネルギ制御 Vibration Energy Control in mid frequency range based on principal component analysis

1. はじめに

今日の振動解析では、対象周波数に応じて低周波で有効な モード解析と高周波で有効な統計的エネルギ解析 (Statistical Energy Analysis, 以下 SEA)を使い分ける.し かしその間にある中周波数域(以下,中周波)に着目すると, 多数の解析法が提案されているが有効な方法は未確立であ る. また主成分解析は応答行列を特異値分解し, 振動モード の重なり合った形状を表現する解析法である. 主成分解析を 用いた解析法(1)は過去にも提案されているが、中周波に絞っ た解析法は提案されていない. また従来の中周波の判断はモ ード密度,内部損失率を利用することが多く,実験では求め 難いものとなっている.本稿ではまずモード解析と SEA の理 論的関係を明確化し, それを利用した中周波の定義法⁽²⁾を提 案する.中周波を対象とした主成分解析による振動現象把握 を実験と解析で検討する.また主成分解析を用いた振動対策 として, 簡単な板状モデルにおいてコンポーネント(以下, サブシステム)間を伝達する大きなパワーの低減によるサ ブシステムの振動エネルギ低減手法を検討する. 最後に複雑 なモデルへの適用例として,自動車エンジンからの伝達パワ ー低減によるトランスミッションの振動エネルギ低減を試 みる.

2. 中周波数領域の定義法の提案

2.1 運動方程式と SEA パワー平衡式の関係⁽²⁾

式(1)のように運動方程式を変位 x について解き, 速度の複素共役 v*に変換する.入力パワーP_Fの式に代入すると,式(2)を得る.

$$x = \frac{(k - \omega^2 m) - j\eta k}{z} f \tag{1}$$

$$P_{\rm F} = \frac{1}{2} v^* f = \frac{1}{2} \frac{-j\omega(k - \omega^2 m) + \omega\eta k}{z} f^2$$
(2)
= $-\frac{1}{2} j\omega x^* f \qquad \not\approx z = (k - \omega^2 m)^2 + (\eta k)^2$

ここで η は構造減衰, k は剛性, m は質量である.式(3)の $P_{\rm M}$, $P_{\rm K}$, $P_{\rm D}$ はそれぞれ運動エネルギ,ひずみエネルギ,減衰エネルギの時間微分(パワー)を表す.

$$P_{\rm M} = \frac{1}{2} v^* \left(-\omega^2 m x\right) = \frac{1}{2} \frac{j \omega^3 m}{z} f^2$$
(3. a)

$$P_{\rm K} = \frac{1}{2} v^* k x = -\frac{1}{2} \frac{j \omega k}{z} f^2$$
(3. b)

$$P_{\rm D} = \frac{1}{2} v^* (j\eta kx) = \frac{1}{2} \frac{\omega \eta k}{z} f^2 \qquad (3. c)$$

これより $P_{\rm M}$, $P_{\rm K}$ は純虚数, $P_{\rm D}$ は実数で,式(2)の実部,虚部をとると次式の関係式を得る.

$$P_{\rm D} = \operatorname{Re}(P_{\rm F}) \tag{4. a}$$
$$P_{\rm K} + P_{\rm M} = j \cdot \operatorname{Im}(P_{\rm F}) \tag{4. b}$$

精密工学専攻 6号 飯井 優太

Yuta Ii

(5)

式(4)から外力パワーの実部は減衰によって消散される成分, 虚部は運動エネルギ,ひずみエネルギのパワー和で定在波と して存在する成分を表している.

系を一自由度と仮定すると、 ω が系の不減衰固有振動数 Ω と一致した場合、 $P_{\rm K}+P_{\rm M}=j\times {\rm Im}(P_{\rm F})=0$ となり、式(1)の運動方程式は式(4.a)と等価になる.

2.2 中周波,高周波数領域の定義

SEA の適用周波数を判断する場合,従来はモーダルオー バーラップ係数(MOF)が利用されている.

$$MOF = \omega_c \eta n > 1$$

 $\omega_{\rm C}$ は 1/3 オクターブバンドの中心角周波数, nはモード密度 を表す. MOF>1 のとき SEA の適用可能範囲となる. しかし, 実験で構造減衰 η やモード密度nを求めるには多くの労力が 必要なこと,またモーダルオーバーラップ係数の物理的な意 味を把握し難いという問題点がある. そこで $\operatorname{Re}(P_{\rm F}) >> \operatorname{Im}(P_{\rm F})$ となる周波数が SEA の適用可能な周波(高周波)と定義し, 次式の $\operatorname{Re}(P_{\rm F})$, $\operatorname{Im}(P_{\rm F})$ のエネルギ比でモード解析と SEA の適 用境界となる周波数(中周波)を説明できるか検証する.

$$\theta = \tan^{-1}(\operatorname{Im}(P_{\rm F})/\operatorname{Re}(P_{\rm F})) \tag{6}$$

エネルギ比 θ が小さいほど $Im(P_F)$ が小さいことを表している.

2.3 有限要素法による検証

Fig. 1 に用いる有限要素モデル(以下FEモデル)を示す. 丸 印はバネ要素での結合点,材質は鉄,板厚は 2.3mm である. 構造減衰は 1%とし,バネ要素の剛性は並進 3 自由度が 1.0E+6N/m,回転 3 自由度が 1.0E+6Nm/rad とする.なお入力 は単位インパルス加振である.Fig. 2 に式(4)の検証結果を示 す.実部と虚部ともに右辺と左辺が一致している.次にFig. 3 に θ と MOF の比較を示す. MOF は右肩上がりに値が上昇し続 けるのに対し, θ は 35°から 40°付近で横ばいになる.こ れより θ と MOF では異なる物理的意味を持つことがわかる. MOF では MOF> 1 となるとき SEA が適用可能となる.これと θ を比較すると 1600Hz 付近で 35°となっている.しかし θ は横ばいであるため,今回は 55°を低周波と中周波の閾値と し,そこから 3 つ程度の 1/3 オクターブバンドを中周波とす る.

Fig.1 FE model

3. 主成分解析の概要

3.1 主成分解析の理論

主成分解析は、式(7)のように各計測点における応答行 列 X_{fi} を特異値分解することにより行われる.⁽¹⁾ $[{X_{f1}}{X_{f2}}...{X_{fm}}]$

$$= \left[\{ \phi_1 \} \{ \phi_2 \} \dots \{ \phi_r \} \right] \begin{bmatrix} \lambda 1 & & \\ & \lambda 2 & \\ & & \dots & \\ & & & \lambda r \end{bmatrix} \begin{bmatrix} \{ v_{f1} \} \\ \{ v_{f2} \} \\ \dots \\ \{ v_{fm} \} \end{bmatrix}$$
(7)

ここで ϕ_i は主成分変形、 λ_i は主成分の寄与率、 v_{fi} は解析周 波数域内での主成分の周波数変化を表す.主成分変形はモー ドの重なりを表現しており、モード解析よりも考慮する変形 を少なくできる.

3.2 主成分解析の最適な周波数範囲

Fig.3において中周波の範囲内にある中心周波数800Hzの 1/3 オクターブバンドにおいて検証する.Fig.4にその範囲 内の一部のSum FRFを示す.三つの周波数範囲に応答行列を 限定し、主成分解析を行う.その主成分変形とピーク周波数 における実稼働変形形状(Operating Deflection Shapes,以 下 ODS)のMAC(Modal Assurance Criterion)をFig.5に示す. 値が高いほど互いの相関性が高くなる.これを見ると範囲 A から範囲 C へ範囲を狭めていくと、一次の主成分が徐々に ODS に近付いていることがわかる.よって主成分解析を行う 際は、適度な周波数範囲をとる必要があると思われる.そこ で今回は既存の範囲として 1/3 オクターブバンドを用いる.

3.3 周波数範囲による主成分変形の変化

次に主成分解析を行う範囲を中周波と高周波にしたとき の主成分変形を比較する. Fig.6 に中周波, Fig.7 に高周波 の一次の主成分変形を示す. なお中周波は先と同様に中心周 波数 800Hz の 1/3 オクターブバンド,高周波は MOF>1 とな った中心周波数 1600Hz の 1/3 オクターブバンドでそれぞれ 主成分解析を行う.Fig.6 の中周波では腹と節がわかり易く, 対策しやすい形状であることがわかる.一方,Fig.7 の高周 波において主成分解析を行った場合では,主成分変形は中周 波に比べ複雑になり,対策しづらくなっている. これより高 周波では主成分解析は有効ではなく,SEA で解析する必要が ある.

Fig.6 Principal deformation 1 in mid frequency

Fig.7 Principal deformation 1 in high frequency

 $[f_c = 1600 Hz]$

4. 主成分を利用した振動エネルギ制御

4.1 減衰材による振動エネルギ制御

本節では、対象となるサブシステムの主成分変形に着目し、 振動振幅の大きな箇所に減衰材を張った際の運動エネルギ の変化をみる.対象モデルは Fig.1 の FE モデルを用いる. なお減衰材付加は、構造減衰を対象部のみ高くすることで模 擬する.対象周波数域はFig.3の範囲のうちから中心周波数 800Hz の 1/3 オクターブバンドとし、対象サブシステムは Fig.1におけるサブシステムBとする.Fig.8にサブシステ ムBでの一次と二次の主成分変形の振幅のコンター図を示す. これにおいて一次の主成分変形において振幅が大きい位置 に減衰材を付加した場合をFig.9の(a)に、一次と二次とも に振幅が小さい部分に減衰材を付加した場合を(b)に示す. それらによる運動エネルギの変化をFig.10に示す.振幅が 大きい部分に減衰材を付加した方が効果的に運動エネルギ を低減できていることがわかる.これより振動モードと同様 に主成分変形でも振幅の大きい部分に対策することで効果 的な振動低減が可能であると思われる.

Fig.10 Comparison of kinetic energy in subsystem B by location of damping area

4.2 伝達パワーの導出

次に伝達パワーへの対策による振動エネルギ低減を行うための伝達パワーの式の導出を行う.サブシステムAを加振した場合のパワー平衡式を式(8)⁽³⁾表す.上からサブシステムA, B, Cの式である.

$$\begin{cases} P_{A} = P_{dA} + P_{AB} - P_{BA} + P_{AC} - P_{CA} \\ 0 = P_{dB} + P_{BA} - P_{AB} \\ 0 = P_{dC} + P_{CA} - P_{AC} \end{cases}$$
(8)
(8)

ここで P_I はサブシステム I の入力パワー, P_{dI} は I の散逸パ ワー, P_{IJ} は I から J への伝達パワーを示す.なお P_{IJ} は各結 合部の剛性 $k_{IJ,n}$ を, P_{dI} はサブシステムの剛性行列 \mathbf{K}_i を用い て式(9),(10)で表せる.

$$P_{IJ} = \frac{1}{2} \sum_{n=1}^{3} \operatorname{Re}[v_{J,n}^{*} k_{IJ,n} (x_{I,n} - x_{J,n})]$$
(9)

$$P_{dI} = \frac{1}{2} \mathbf{V}_{I}^{H} (j \eta \mathbf{K}_{I} \mathbf{X}_{I})$$
(10)

 η は構造減衰を表す. $v_{l,n}$ と $x_{l,n}$ はサブシステム I の n 番目の 結合部の速度と変位である.また V_l^H は I の速度応答行列の 転置, X_l は I の変位応答行列である.各サブシステム間の結 合部は各 3 箇所あり,式(9)はその総和の伝達パワーを示し ている.このとき,正味の伝達パワー $\Pi_{l,l}$ は以下のようにな る.

$$\Pi_{IJ} = P_{IJ} - P_{IJ} \tag{11}$$

$$|\Pi_{AB} = P_{dB}$$

$$|\Pi_{AC} = P_{dC}$$
(12)

解析モデルにおける式(12)の検証結果を Fig.11 に示す.な お入力条件は 2.2 節と同じとする.正味の伝達パワー Π_{IJ} と 散逸パワー P_{dI} の値が一致していることがわかる.これより, 正味の伝達パワー Π_{IJ} を小さくすることで,サブシステム内 で消費される振動エネルギを小さくできると考えられる.な お以下の章で示す伝達パワーは,この正味の伝達パワー Π_{IJ} を示している.

Fig.11 Transmission power and dissipation power

4.3 減衰材による振動エネルギ制御

Fig.1のモデルにおいて,対象周波数域の応答行列に対し, 主成分解析を行う.対象周波数域は4.1節と同様である.またFig.12は一次の主成分によるサブシステムAからBの結合点ごとの伝達パワーである.Fig.12より伝達パワーは結合 点1が大きく,結合点3が小さいことがわかる.そこで結合 点1,3のそれぞれの剛性を5.0E+5N/mに下げた場合のサブ システムBでの運動エネルギをFig.13において比較する. 伝達パワーの大きい結合点の剛性を下げることで,効果的に 運動エネルギが減少していることがわかる.

5. 複雑なモデルへの適用

4.3節の内容を自動車エンジンにおいて試みる. Fig. 14に 実験セットアップを示す.エンジンを加振し、拘束条件を Free-Free,結合部の締付トルクを 20Nm とする.先と同様に 入力パワーの実部と虚部の比より求める.Fig. 15 にその結果 を示す.これより中心周波数 3150Hz の 1/3 オクターブバン ドを対象周波数域とする.実験では結合部の剛性を求められ ないため,結合部 5 箇所全ての締付トルクが一定より、剛性 についても一定と仮定し,式(13),(14)に示す各結合点のパ ワー参考値 II'_{LIn}を評価する.

$$\Pi'_{II,n} = P'_{II,n} - P'_{II,n} \tag{13}$$

$$P'_{IJ,n} = \frac{1}{2} \operatorname{Re}[v^*_{J,n}(x_{I,n} - x_{J,n})]$$
(14)

一次の主成分による伝達パワー参考値 IT_{Un}をFig.16に示す. これより結合点5が最大,1が最小である.結合点1,5にお いて,それぞれ締付トルクを 10Nm に変更し,エンジンとト ランスミッションの間にかませたワッシャーを金属から径 の小さいゴム輪に変更した.Fig.17 にその結果のトランスミ ッションの運動エネルギの変化を示す.対象周波数域におい て効果的に振動エネルギが低減している.

Fig.17 Kinetic energy in transmission

5. まとめ

- (1)運動方程式とパワー平衡式の理論的関係を明確化し、それを用いて入力パワーによる中周波の定義法を提案した.
- (2) 主成分解析は適当な周波数域に限定することで、より有 効的に活用できることを確認した.
- (3) 主成分変形パターンの振幅が大きい箇所への減衰付加により,効率的に振動低減が可能であることを確認した.
- (4)主成分において伝達パワーが大きな箇所の剛性を下げる ことにより、対象サブシステムの振動低減が可能である ことを確認した.
- (5) 複雑なモデルに対しても、伝達パワーに応じた剛性変更 が有効であることを確認した.

参考文献

- (1) 望月隆史, 長尾豊, D&D Conference 2006 論文集, No. 06-7 (2006)
- (2)飯井優太,古屋耕平,大久保信行,戸井武司,瀬戸厚司, 鹿子愼太郎,山本豊樹,日本機械学会関東支部第18期総 会講演会講演論文集,No.120-1 (2012) pp97-98
- (3)大野順一,山崎徹,機械音響工学,森北出版,東京(2010) pp157-161