ウォータージェットカッターの SPH シミュレーション

における精度向上に関する研究

Study on the accuracy improvement in the SPH simulation of water-jet cutter

1. はじめに

直径が 0.1 mm から 1 mm 程度の細いビーム状の高速水 噴流によって加工を行うウォータージェットカッターは 様々な分野に応用され,紙、ゴムなどの軟質材から、プラ スチック,金属などの硬い材料まで多様な物体の切断が可 能になっている.ウォータージェットカッターの主な特徴 としては水噴流を用いるため加工時に発熱を伴わない,細 いが単位面積あたりの加工エネルギが非常に大きく加工 後の残留応力がない,さらに水を使用するため維持費が安 いことなどが挙げられる.様々な分野で応用が期待される ウォータージェット技術だが,水噴流の流体力学的挙動が 材料の破壊機構に影響を与える複雑な切断機構は未だ明ら かではない.しかし,材料の破壊機構は水噴流が高圧・高 速になるほど実験での解明が困難である.そこで,数値解 析を用いて水噴流の挙動や材料の破壊の様子を検討するこ とが期待される.

液体の噴流によって固体を切断する現象は自由表面流 れと固体の変形,破壊が連成する複雑な固体—液体連成問 題である.このような問題を有限要素法のような計算メッ シュを用いる方法で解こうとすると,液体と固体のそれぞ れの変形にあわせてメッシュを変更させなければならず複 雑な計算になる.そこで本研究では連続体を粒子の集合と 考え,粒子のラグランジュ的な動きによって連続体の変形 を計算する SPH 法⁽¹⁾を適用する.

本研究ではこれまでの研究⁽²⁾⁻⁽⁵⁾において課題とされ てきた圧力の数値振動の抑制と噴流中心部の高圧部分 (噴 流核)の再現を目指して,計算手法の改良と検証を行う.

2. 基礎方程式

Fig.1 に、ウォータージェットによる固体切断の計算モデルを示す.本研究では、現象は2次元的であると仮定する.この問題は、水噴流の液相と切断される物体の固相が 連成する問題である.

Fig.1 Water jet cutter

2.1 水噴流の支配方程式

水を弱い圧縮性をもつ粘性流体とすると,流れの支配方 程式は,連続の方程式

精密工学専攻

$$\frac{D\rho}{Dt} = -\rho \frac{\partial v^{\alpha}}{\partial x^{\alpha}} \tag{1}$$

14 号 宇田川知機 Tomoki Udagawa

と運動方程式

$$\frac{Dv^{\alpha}}{Dt} = \frac{1}{\rho} \frac{\partial \sigma^{\alpha\beta}}{\partial x^{\beta}} + f^{\alpha}$$
(2)

そして,状態方程式

$$P = P_0 \left[\left(\frac{\rho}{\rho_0} \right)^{\gamma} - 1 \right] \tag{3}$$

である.ここで, t は時間, ρ は密度, x^{α} は直角座標系 ($\alpha = 1, 2$), v^{α} は速度の x^{α} 成分, P は圧力, $\sigma^{\alpha\beta}$ は応力 テンソルの成分, f^{α} は外力の x^{α} 成分を表す. $P_0 \ge \rho_0$ は 基準状態の圧力と密度である.また D/Dt はラグランジュ 微分演算子である. γ は圧縮性の度合いを表すパラメータ で,本研究では $\gamma = 7$ とする.物理量の上付き添字 α , β に対しては総和規約が適用されるものとする.

応力テンソルの成分 $\sigma^{\alpha\beta}$ は, 圧力 P と粘性による偏差 応力テンソルの成分 $\tau^{\alpha\beta}$ を用いて次のように表される.

$$\sigma^{\alpha\beta} = -P\delta^{\alpha\beta} + \tau^{\alpha\beta} \tag{4}$$

ここで $\delta^{\alpha\beta}$ はクロネッカのデルタである. $\tau^{\alpha\beta}$ は,粘性係数を μ とすると

$$\tau^{\alpha\beta} = \mu \varepsilon^{\alpha\beta} \tag{5}$$

$$\varepsilon^{\alpha\beta} = \frac{\partial v^{\beta}}{\partial x^{\alpha}} + \frac{\partial v^{\alpha}}{\partial x^{\beta}} - \frac{2}{3} \frac{\partial v^{\gamma}}{\partial x^{\gamma}} \delta^{\alpha\beta} \tag{6}$$

となる.ここで、 $\varepsilon^{\alpha\beta}$ は変形速度テンソルの成分である.

2.2 固体の支配方程式

固体は線形弾性体とする.固体の運動と変形に対する支 配方程式は,連続の方程式(1)と運動方程式(2)そして, フックの法則を表す状態方程式

$$P = K\eta = K\left(\frac{\rho}{\rho_0} - 1\right) \tag{7}$$

である.ここで, K は体積弾性率, η は体積ひずみである. 固体の応力テンソルの成分 $\sigma^{\alpha\beta}$ は, 圧力 P と偏差応力テ ンソルの成分 $s^{\alpha\beta}$ を用いて次のように表される.

$$\sigma^{\alpha\beta} = -P\delta^{\alpha\beta} + s^{\alpha\beta} \tag{8}$$

変形時の物体の回転を考慮した Jaumann stress rate⁽⁶⁾ を 用いると、偏差応力の時間変化率 $\dot{s}^{\alpha\beta}$ が

$$\dot{s}^{\alpha\beta} = 2G\left(\dot{\varepsilon}^{\alpha\beta} - \frac{1}{3}\delta^{\alpha\beta}\dot{\varepsilon}^{\gamma\gamma}\right) + s^{\alpha\gamma}\omega^{\beta\gamma} + s^{\gamma\beta}\omega^{\alpha\gamma} \tag{9}$$

で与えられる.ここで、Gは横弾性係数である. $\dot{\epsilon}^{\alpha\beta}$ はひずみテンソルの成分の時間変化率、 $\omega^{\alpha\beta}$ は回転テンソルの成分であり、それぞれ

$$\dot{\varepsilon}^{\alpha\beta} = \frac{1}{2} \left(\frac{\partial v^{\alpha}}{\partial x^{\beta}} + \frac{\partial v^{\beta}}{\partial x^{\alpha}} \right) \tag{10}$$

$$\omega^{\alpha\beta} = \frac{1}{2} \left(\frac{\partial v^{\alpha}}{\partial x^{\beta}} - \frac{\partial v^{\beta}}{\partial x^{\alpha}} \right) \tag{11}$$

で定義される.

3. SPH 法による離散化

3.1 SPH 法の概要

SPH 法は連続体を粒子の集合とみなし、この粒子上で任 意の時間における物理量を計算する方法である.方法の概 要を以下にまとめる.

空間内の任意の位置 \mathbf{r} での物理量 $\phi(\mathbf{r})$ は積分表現

$$\phi(\mathbf{r}) = \int \phi(\mathbf{r}')\delta\left(\mathbf{r} - \mathbf{r}'\right)d\mathbf{r}'$$
(12)

で与えられる.ここで δ(**r**) はディラックのデルタ関数で ある.ディラックのデルタ関数のような不連続関数は数値 計算には適さないため,SPH 法ではデルタ関数の代わり に内挿カーネルと呼ぶ連続関数 W を用いる.本研究では, 次のカーネル関数を用いる.

$$W(\mathbf{r} - \mathbf{r}', h) = \frac{1}{h^2} f\left(\frac{|\mathbf{r} - \mathbf{r}'|}{h}\right)$$
(13)

ここに,hはカーネルの広がりを表すパラメータである. 関数fは

$$f(s) = \begin{cases} \frac{10}{7\pi} \left(1 - \frac{3}{2}s^2 + \frac{3}{4}s^3 \right) & 0 \le s < 1\\ \frac{5}{14\pi} (2 - s)^3 & 1 \le s < 2\\ 0 & s \ge 2 \end{cases}$$
(14)

のような 3 次のスプライン関数で与える. ディラックのデ ルタ関数を内挿カーネル W で置き換えると, $\phi(\mathbf{r})$ に対す る近似が

$$\phi(\mathbf{r}) \approx \int \phi(\mathbf{r}') W\left(\mathbf{r} - \mathbf{r}', h\right) d\mathbf{r}'$$
(15)

のように得られる.連続体を N 個の粒子の集合体と考えると,式 (15) は

$$\phi(\mathbf{r}) \approx \sum_{j=1}^{N} m_j \frac{\phi_j}{\rho_j} W\left(\mathbf{r} - \mathbf{r}_j, h\right)$$
(16)

のように表すことができる.ここに、 m_j , ρ_j , \mathbf{r}_j はそれ ぞれ j 番目の粒子の質量,密度,位置ベクトルを表し、 $\phi_j = \phi(\mathbf{r}_j)$ である.前節で示した支配方程式を離散化す るために、物理量の微分形が必要となる.物理量 ϕ の勾配 $\partial \phi / \partial x^{\alpha}$ は、カーネルの勾配を計算することで得られる. すなわち、式 (16) より

$$\frac{\partial \phi}{\partial x^{\alpha}} \approx \sum_{j=1}^{N} m_j \frac{\phi_j}{\rho_j} \frac{\partial}{\partial x^{\alpha}} [W(\mathbf{r} - \mathbf{r}_j, h)]$$
(17)

となる. さらに,式 (16), (17) において $\mathbf{r} = \mathbf{r}_i$ として両 式を粒子 i の位置に適用すると,

$$\phi_i = \sum_{j=1}^N m_j \frac{\phi_j}{\rho_j} W_{ij} \tag{18}$$

$$\left(\frac{\partial\phi}{\partial x^{\alpha}}\right)_{i} = \sum_{j=1}^{N} m_{j} \frac{\phi_{j}}{\rho_{j}} \frac{\partial W_{ij}}{\partial x_{i}^{\alpha}}$$
(19)

となる. ここに, $W_{ij} = W(\mathbf{r}_i - \mathbf{r}_j, h)$ である.

式 (18) と (19) の総和計算は全粒子について行うのでは なく、粒子 iを中心とする半径 Rの円の内部に含まれる粒 子のみを対象とする、本研究では R = 2h とする.

3.2 離散化

連続の方程式(1)を離散化した式は

$$\frac{D\rho_i}{Dt} = \sum_{j=1}^{N} m_j v_{ij}^{\alpha} \frac{\partial W_{ij}}{\partial x_i^{\alpha}}$$
(20)

となる.本研究では,SPH 法における問題である圧力の数 値振動を抑えるため式 (20) に人工拡散項⁽⁷⁾を加える.

$$\frac{D\rho_i}{Dt} = \rho_i \sum_{j=1}^N \frac{m_j}{\rho_j} v_{ij}^{\alpha} \frac{\partial W_{ij}}{\partial x_i^{\alpha}} + \delta h c_0 \sum_{j=1}^N \psi_{ij} \frac{\partial W_{ij}}{\partial x_i^{\alpha}} \quad (21)$$
$$\psi_{ij}^{\alpha} = 2(\rho_i - \rho_j) \frac{x_{ij}^{\alpha}}{x_{ij}^{\alpha} x_{ij}^{\alpha} + \lambda \overline{h}_{ij}^2} - \left[\langle \nabla \rho \rangle_i^{\alpha} - \langle \nabla \rho \rangle_j^{\alpha} \right] \quad (22)$$

ここで、 c_0 は音速、 δ は人工拡散項の大きさを調整するパ ラメータである. $x_{ij}^{\alpha} = x_i^{\alpha} - x_j^{\alpha}$ である. $\langle \nabla \rho \rangle^L$ は再正規 化した密度勾配で次のように定義される. ここに、 $L_i^{\alpha\beta}$ は 行列 \mathbf{L}_i の α 行 β 列の成分である.

$$\langle \nabla \rho \rangle_i^{\alpha} = \sum_{j=1}^N \frac{m_j}{\rho_j} (\rho_j - \rho_i) L_i^{\alpha\beta} \frac{\partial W_{ij}}{\partial x_i^{\beta}}$$
(23)

$$\mathbf{L}_{i} = \left[\sum_{j=1}^{N} (\mathbf{r}_{j} - \mathbf{r}_{i}) \otimes \bigtriangledown_{i} W(x_{j}^{\alpha}) dV_{j}\right]^{-1}$$
(24)

運動方程式(2)を離散化した式は

$$\frac{Dv_i^{\alpha}}{Dt} = \sum_{j=1}^N m_j \left(\frac{\sigma_i^{\alpha\beta} + \sigma_j^{\alpha\beta}}{\rho_i \rho_j}\right) \frac{\partial W_{ij}}{\partial x_i^{\beta}} + f_i^{\alpha}$$
(25)

となる. さらに式 (25) に圧力振動を防ぐ効果のある人工 粘性項を導入する. したがって,

$$\frac{Dv_i^{\alpha}}{Dt} = \sum_{j=1}^N m_j \left(\frac{\sigma_i^{\alpha\beta} + \sigma_j^{\alpha\beta}}{\rho_i \rho_j} - \delta^{\alpha\beta} \Pi_{ij} \right) \frac{\partial W_{ij}}{\partial x_i^{\beta}} + f_i^{\alpha} \quad (26)$$

が得られる. 固体粒子についても同様である. ここで

$$\Pi_{ij} = \begin{cases} \frac{-\alpha_i \overline{c}_{ij} \theta_{ij} + \beta_i \theta_{ij}^2}{\overline{\rho}_{ij}} & v_{ij}^{\alpha} x_{ij}^{\alpha} < 0\\ 0 & v_{ij}^{\alpha} x_{ij}^{\alpha} \ge 0 \end{cases}$$
(27)

$$\theta_{ij} = \frac{h_{ij} v_{ij}^{\alpha} x_{ij}^{\alpha}}{x_{ij}^{\beta} x_{ij}^{\beta} + 0.01 \overline{h}_{ij}^{2}}$$
(28)

である.ここで, $v_{ij}^{\alpha} = v_i^{\alpha} - v_j^{\alpha}$ である.また, \overline{c}_{ij} , \overline{h}_{ij} は それぞれ粒子 iと粒子 jの音速とカーネルの大きさの平均 である. α , β は人工粘性に用いられるパラメータである.

3.3 計算手順

ウォータージェットカッターのシミュレーションのため の計算手順は次のとおりである.

- 1. 連続の方程式 (21) より水粒子と固体粒子の密度の時 間変化率を計算する.
- 状態方程式(3),(7)より水粒子と固体粒子の圧力を計算する.
- 3. 粒子相対速度と粘性係数から偏差応力成分を求める.
- 2と3で求めた圧力と偏差応力成分から応力を求め運動方程式(26)より加速度を計算する.
- 5. 固体粒子について式 (10), (11) によりひずみ速度,回転速度を計算し,計算したひずみ速度,回転速度から式 (9) より偏差応力成分の時間微分を計算する.
- 6.1から5で求めた密度の時間変化率,加速度,固体の偏差応力成分の時間微分を時間積分し,次の時刻の粒子の密度,位置,速度,固体の偏差応力成分を計算する.
- 7. 固体粒子について破壊の判定を行う.
- 8. 時間を Δt だけ進めて、1 に戻る.

4. 計算結果

4.1 計算モデル

本研究では、切断される固体に衝突する前の水噴流内 の圧力分布に関心があるので、計算モデルは Fig.2 のよ うなノズルから吐出された噴流部分とする。ノズル径 は 0.15 mm、噴流はノズル出口(流入境界)で流速 v =18.9 m/s、吐出圧力 P = 0.13 MPa,密度 $\rho = 1003$ kg/m³ である。重力加速度 g = 9.81 m/s² とする。

Fig.2 Water jet emitted from a nozzle

4.2 人工粘性に関する検討

SPH 法における課題である圧力の数値振動を防ぐ手段 として人工粘性は有効であるとされている.人工的な付加 項である人工粘性について式中に含まれるパラメータを 変化させ効果を調べてみる.人工粘性における二つのパラ メータ $\alpha = \beta = 0.0$ の場合と, $\alpha = \beta = 2.5$ の場合での 計算を行った.

噴流の中央を通るある粒子に着目し、圧力の時間変化を 比較したものを Fig.3 に示す. $\alpha = \beta = 2.5$ と比較した場 合、 $\alpha = \beta = 0.0$ では時間が経過しても圧力の振動が減衰 していないことがわかる. したがって、圧力の数値振動を 防ぐために人工粘性が必要であることが確認できた.

Fig.3 Influence of the artificial viscosity term

4.3 人工拡散項に関する検討

式 (21) の右辺第 2 項に導入した人工拡散項は,前節の 人工粘性と同様に,式中に項を付加することで圧力の数値 振動を防ぐ作用があるとされている.人工粘性 ($\alpha = \beta =$ 2.5) に加え,人工拡散項 ($\delta = 0.1$)を付加したときの計算 結果を Fig.4 に示す.人工拡散項を付加することで圧力振 動の振幅が小さくなり,収束も早くなることがわかる.こ のことから,圧力振動の抑制に有用であると考えられる.

Fig.4 Influence of the artificial diffusion term

4.4 流入条件に関する検討

これまでの流れ計算では、ノズル出口を噴流部としていた. その場合、噴流がノズルから出た際に噴流核(噴流中

心の高圧部)が形成されず急激に圧力が低下するという不 自然な結果となっていた.この原因を流入境界における境 界条件の設定にあると考え,Fig.5のようにノズルの内部 まで流体領域を拡大する計算モデルを検討した.そのため にはノズル壁という固体壁境界とそこでのすべりなし条件 の導入を図らなければならない.SPH 法による固体壁境 界はいくつか考えられるが Fig.6(a)に示す水粒子の鏡映 対象の位置に等圧,逆向きの速度を持つゴースト粒子を配 置する手法,(b)に示す壁として粒子を配置し,固定した うえで近傍の水粒子から圧力,速度を求め流れ計算に組み 込む手法を用い比較した.

噴流の中央を通る粒子に着目し、2種類の固体壁境界と 従来の手法の圧力を比較した.Fig.7 に計算結果を示す. 従来の境界条件のモデルでは流入直後,圧力が急激に低下 してしまうことがわかる.一方,壁境界を導入した場合, 流入直後,圧力の上昇は生じるがノズル出口に向かってな だらかに低下している様子がわかる.Fig.8 に時刻 t = 2× 10^{-5} s の時の圧力分布を示す.壁境界を導入したこと で,噴流核と考えられる高圧部が存在することがわかる.

Fig.5 A computational model of nozzle

Fig.7 Influence of the wall boundary

Fig.8 Calculation result

5. おわりに

本研究では,SPH 法における数値振動抑制のため人工 粘性項の検証および人工拡散項の導入を行うことで,流れ 計算における圧力振動を減少させることができた.また, ウォータージェットの流入直後の圧力の急低下を避けるた め,計算モデルの流入境界における流入条件を見直した. 今回,固体壁境界とそこでのすべりなし条件を表現するた めゴースト粒子と固体壁粒子による境界条件を検討した が,どちらの手法においても流入直後の急激な圧力低下を 抑えることができた.

参考文献

- Monaghan, J. J., Smoothed particle hydrodynamics. Annual Review of Astrophysics, **30** (1992) pp.543-574.
- (2) 篠原寿充, ウォータージェットによる固体切断の数値 シミュレーションに関する研究, 修士論文, 中央大学, 2004.
- (3) 岡部啓一, ウォータージェットによる固体切断の数値 シミュレーションに関する研究, 修士論文, 中央大学, 2006.
- (4) 佐藤裕介, Smoothed Particle Hydrodynamics 法に よるウォータージェットカッターの数値シミュレー ション,修士論文,中央大学, 2008.
- (5) 岩崎将史, ウォータージェットカッターの数値シミュレーションにおける精度向上に関する研究, 修士論文, 中央大学, 2010.
- (6) Gray, J. P., Monaghan, J. J. and Swift, R. P., SPH elastic dynamics, Computer Methods in Applied Mechanics and Engineering, **190** (2001) pp.6641-6662.
- (7) S.Marrone, M. Antuono, A. Colagross , δ-SPH model for simulating violent impact flows, Computer Methods in Applied Mechanics and Engineering, **200** (2011) pp.1526-1542.