新規 ClickFerrophos の合成と その金属錯体触媒を用いる不斉合成反応 Synthesis of New ClickFerrophos Ligands and Application to Asymmetric Reactions

応用化学専攻 紺野 貴史 KONNO Takashi

1. 緒言

遷移金属錯体触媒を用いる不斉合成反応では、金 属化合物と不斉配位子の組み合わせにより多様な 不斉環境を構築することができ、高立体選択的反応 が実現可能である。特に、不斉配位子の性質が重要 な役割を担い、様々な骨格のものが報告されている。 中でも、フェロセンを基盤とする不斉配位子は、面 性不斉の構築が容易であるという特長をもつ¹⁾。

当研究室では、トリアゾール環を有するキラルフ ェロセニル P,P-配位子 ClickFerrophos および P,S-配 位子 ThioClickFerrophos を合成し、その金属錯体触 媒を不斉合成反応に適用している。近年では、P,S-配位子 ThioClickFerrophos (L1)と酢酸銀(I)による金 属錯体触媒をグリシンイミノエステル1とニトロア ルケンによる不斉共役付加反応に適用することで、 高立体選択的反応を達成した (Scheme 1)²⁰。

L1

グリシンイミノエステルが関与する不斉共役付加 反応は、求電子剤として他にもα,β-不飽和マロン酸エ ステル2が知られており、これまでに銅(I)錯体触媒と 塩基を用いる高立体選択的共役付加反応が達成され ている³⁾。また求電子剤としてα-エノン4を用いた不 斉共役付加反応に関しても、銅(I)錯体触媒を用いて1 例のみ達成されている⁴⁾。これらの報告では、グリシ ンイミノエステルから求核種 (アゾメチンイリド)を 発生させるために塩基の添加を必要としている。

一方で,我々は酢酸銀(I)を用いる反応に着目している。酢酸銀(I)は,ルイス酸とルイス塩基の双方の機能を果たす二官能性触媒として作用するという特長を有し,求核種発生のために塩基の添加を必ずしも必要とせず,温和な条件下での反応が実現可能である⁵⁾。

そこで、本研究では二官能性触媒として作用する酢酸銀(I)/ThioClickFerrophos 錯体触媒をグリシンイミノ エステル1と α , β -不飽和マロン酸エステル2または α -エノン4との不斉共役付加反応に適用し、従来よりも 温和な条件下での高立体選択的反応の達成と、本触媒 系の適用範囲拡大を目的として検討を行った。

2. 結果と考察

2.1. *α*,*β*-不飽和マロン酸エステルに対する不斉共 役付加反応

2.1.1. 反応条件の検討

Scheme 2. Bifunctional AgOAc-catalyzed asymmetric conjugate addition reaction

酢酸銀(I)/L1 錯体触媒の存在下において, グリシ ンイミノエステル1とα,β-不飽和マロン酸エステル 2 による不斉共役付加反応は,塩基を用いない温和 な反応条件下で進行し, syn 体の共役付加体 3a が極 めて高い不斉収率で得られた。この結果より,酢酸 銀(I)/L1 錯体は本反応において,二官能性触媒とし て高い活性をもつことが明らかとなった。一方で, 塩基として炭酸セシウムを添加すると著しく反応 速度が向上し,収率が改善された。

2.1.2. α,β-不飽和マロン酸エステルの適用限界

酢酸銀(I)/L1 錯体触媒の存在下において,塩基を 用いない温和な反応条件のもと,グリシンイミノエ ステル1と各種のα,β-不飽和マロン酸エステル2と の不斉共役付加反応を行った (Table 1)。 Table 1. Scope of substrates

 $\begin{array}{c} \begin{array}{c} & & \\ Ph \\ Ph \\ N \\ CO_2Me \end{array} \begin{array}{c} & \\ \begin{array}{c} R \\ CO_2Et \\ CO_2Et \\ \hline CO_2Et \\ AgOAc (5.0 \text{ mol}\%) \\ L1 (5.5 \text{ mol}\%) \\ 1 \end{array} \begin{array}{c} Ph \\ Ph \\ CO_2Me \\ Ph \\ CO_2Me \end{array} \begin{array}{c} & \\ \begin{array}{c} CO_2Et \\ CO_2Et \\ Ph \\ CO_2Et \\ Ph \\ CO_2Me \end{array} \begin{array}{c} \\ + anti \text{ isomer} \\ syn-3a-3i \end{array}$

entry	product (R)	yield $(\%)^a$	syn/anti ^b	ee $(\%)^c$ (syn)
1	3a (C ₆ H ₅)	76 (97) ^d	97/3 (97/3) ^d	99 (98) ^d
2	3b (<i>o</i> -MeC ₆ H ₄)	86	97/3	95
3	3c (<i>p</i> -MeC ₆ H ₄)	87	96/4	93
4	3d (<i>p</i> -MeOC ₆ H ₄)	83	97/3	98
5	3e (<i>p</i> -FC ₆ H ₄)	95	97/3	98
6	3f (<i>p</i> -ClC ₆ H ₄)	83	97/3	98
7	3g (<i>p</i> -BrC ₆ H ₄)	50 (99) ^d	97/3 (90/10) ^d	99 (95) ^d
8	3h (2-Pyridyl)	70 (88) ^d	93/7 (95/5) ^d	97 (93) ^d
9	3i (2-Thienyl)	92	94/6	98
10^d	3j (2-Naphthyl)	74	96/4	97
11^{d}	3k (Ferrocenyl)	82	94/6	90
12^{d}	31 (Cyclohexyl)	60^e	80/20	97

^{*a*} Combined yield of *syn*-**3** and *anti*-**3**. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by HPLC. ^{*d*} 20 mol% of Cs₂CO₃ was added as base.

^e Isolated yield of syn-31.

α,β-不飽和マロン酸エステル2の置換基Rに関し て、その電子的性質に関わらず高エナンチオ選択的 に syn 体の生成物 3 が優先的に得られた (entries 2-7)。また、ヘテロ芳香環を有する基質においても 高エナンチオ選択的に反応が進行した (entries 8,9)。 一方で、立体的にかさ高いナフチル基やフェロセニ ル基を有する基質およびアルキル基を有する基質

では、炭酸セシウムを添加す ることで反応が進行した (entries 10–12)。なお、共役 付加体の絶対立体配置は、 2-チエニル基を有する生成 物 **3i**の単結晶 X 線構造解析 により決定した (Figure 1)。

2.2. α-エノンに対する不斉共役付加反応

2.2.1. 反応条件の検討

Table 2. Screening of bases

Ph Ph N 1	CO ₂ Me AgOA L1 (5. base THF,	O Ph (1.2 eq.) tc (5.0 mol%) 5 mol%) (20 mol%) -40 °C, 2 h	Ph O Ph K Ph K N CO ₂ M 5a	Ph + Ph Ne Ph H 6a
entry	base	yield $(\%)^a$	5a/6a ^b	ee (%) ^c of 5a
1	_	98	78/22	97
2^d	Cs_2CO_3	95	71/29	90
3	DIPEA	88	89/11	98
4	Et ₃ N	97	90/10	96
5	DABCO	93	95/5	99
a 1 ·	1 11 0 5	16 PD (· 11 111	J. (D)

^{*a*} Combined yield of **5a** and **6a**. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by HPLC. ^{*d*} Reaction was carried out at rt. 紺野 貴史, 2/2

酢酸銀(I)/L1 錯体触媒存在下において,求電子剤 として α -エノン 4 を用いた不斉共役付加反応を行 ったが,共役付加体 5a の他に環化付加体 6a が生成 した (entry 1)。そこで塩基の検討を行ったところ, DABCO を用いることで環化付加体 6a の生成が大 きく抑えられ,共役付加体 5a が極めて高い不斉収 率で得られたため,これを最適条件とした (entry 5)。

2.2.2. α-エノンの適用限界

最適条件下において, 種々のα-エノンとの不斉共 役付加反応を行った (Table 3)。α-エノンの置換基 R に関して, 電子求引性が高いほど共役付加体 5 の生 成の選択性が高いという傾向がみられた (entries 2-6)。また, 立体障害の大きいメシチル基およびア ルキル基を有する基質では, 共役付加体 5 のみが高 エナンチオ選択的に得られた (entries 8,9)。

Table 3. Scope of substrates

Ph Ph N 1	CO ₂ Me AgOAc (5.0 L1 (5.5 mol? DABCO (20 THF, -40 °C	R 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	0 N CO ₂ Me	$\begin{array}{c} O \\ R \\ + \\ Ph \\ Ph \\ H \\ H \\ 6a-6i \end{array}$
entry	product (R)	yield $(\%)^a$	5 / 6 ^b	ee (%) ^{<i>c</i>} of 5
1	5a (C ₆ H ₅)	93	95/5	99
2	5b (<i>p</i> -MeC ₆ H ₄)	89	92/8	99
3	5c (<i>p</i> -MeOC ₆ H ₄)	96	87/13	98
4	5d $(p-FC_6H_4)$	91	96/4	99
5	5e $(p-ClC_6H_4)$	97	96/4	97
6	5f $(p$ -BrC ₆ H ₄)	95	97/3	97
7	5g (Ferrocenyl)	96	87/13	87
8	5h (2,4,6-Me ₃ C ₆ H	₂) 91	99/1	98
9	5i (Me)	93	99/1	96

^{*a*} Combined yield of **5** and **6**. ^{*b*} Determined by ¹H NMR. ^{*c*} Determined by HPLC.

3. 結論

酢酸銀(I)/ThioClickFerrophos (L1) 錯体触媒をグリ シンイミノエステルと α,β -不飽和マロン酸エステル との不斉共役付加反応に適用し、従来よりも温和な 条件下において高立体選択的に共役付加体を得た。 また、 α -エノンを基質として用いる場合、塩基を添 加することにより、高エナンチオ選択的に共役付加 体を合成することに成功した。

4. 参考文献

1) R. G. Arrayás, J. Adrio, J. C. Carretero, Angew. Chem. Int. Ed. 2006, 45, 7674.

K. Imae, T. Konno, K. Ogata, S.-i. Fukuzawa, Org. Lett. 2012, 14, 4410.
J. Hernández-Toribio, R. G. Arrayás, J. C. Carretero, Chem. Eur. J. 2011, 17,

6334. 4) M. Strohmeier, K. Leach, M. A. Zajac, Angew. Chem. Int. Ed. 2011, 50,

12335. 5) Q.-A. Chen, D.-S. Wang, Y.-G. Zhou, *Chem. Commun.* **2010**, *46*, 4043.