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Abstract

A special dynamic system is analyzed which describes Goodwin�s busi-
ness cycle model (Goodwin, 1951). In realistic economies there are time
delays in both investment and consumption. The two time delays have
a signi�cant e¤ect on the asymptotic behavior of the system. Without
delay the system is locally asymptotically stable with reasonable parame-
ter selection, however in the presence of delays stability might be lost.
This paper gives a complete stability analysis of the delayed system by
determining the stability switch curves and characterizing the directions
of the stability switches based on the monotonic properties of the curves.
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1 Introduction

Physical and economic systems often deal with delayed data, so the dynamic
equations describing the motion or development of such systems are usually
delay di¤erential equations. The asymptotical behavior of these systems became
a central research topic recently. There are two di¤erent ways to model time
delays (Cooke and Grossman, 1982). In applying the concept of continuously
distributed delays, it is assumed that the length of the delay is uncertain following
a particular distribution. Cushing (1977) provided a comprehensive summary
of the relevant methodology with applications to population dynamics. If the
length of the delay is known, then �xed delays are considered. Bellman and
Cooke (1956) introduced the relevant methodology. The methods and stability
conditions are model dependent, so researchers have examined particular model
types and investigated their asymptotical behavior. The approach becomes
much more complicated if multiple delays are present. The pioneering works of
Hale (1979) and Hale and Huang (1993) can be considered as basic breakthrough
in this area. The paper of Piotrowska (2007) examined some properties of the
stability switch curves for important special models. More recently Matsumoto
and Szidarovszky (2013) gave a complete description of the stability switches and
asymptotical properties of a certain class of dynamic systems arising in the study
of dynamic oligopolies. However the same approach cannot be used in the case
of di¤erent dynamic models such as Goodwin�s business cycle model (Goodwin,
1951). In this paper we will examine the local asymptotical behavior of the
corresponding two-delay model. The paper is organized as follows. The classical
Goodwin model is introduced in Section 2, and its single-delay extension is
discussed in Section 3, and then the general case is investigated, where stability
switches are determined, and conditions for the local asymptotical stability of
the delay system are derived. The last section concludes the paper and further
research directions are outlined.

2 The Model

Goodwin�s classical model can be described by the following two-dimensional
system:

" _y(t) = _k(t)� (1� �)y(t)

_k(t) = '( _y(t))

(1)

where y is the national income, k is the capital stock, '( _y) denotes the induced
investment and �; " are positive constants. By combining these equations a
single-dimensional nonlinear equation is obtained:

" _y(t)� '( _y(t)) + (1� �)y(t) = 0: (2)

The local asymptotical stability of this system can be examined by linearization
around the steady state �y = 0:

" _y(t)� � _y(t) + (1� �)y(t) = 0 (3)
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where � = '
0
(0): From economic consideration we discuss the case when � < ".

By assuming delays in both investment and consumption this equation becomes
a delay di¤erential equation with two delays:

" _y(t)� � _y(t� �) + (1� �)y(t� �) = 0: (4)

By introducing the notation

a =
�

"
and b =

1� �
"

this equation simpli�es as

_y(t)� a _y(t� �) + by(t� �) = 0 (5)

with characteristic equation

�� a�e��� + be��� = 0: (6)

The stability of system (5) can be examined by �nding the locations of the
eigenvalues.

3 The Single-Delay Case

Assume �rst that � = 0; so equation (6) becomes

�(1� a) + be��� = 0: (7)

At � = 0 the eigenvalue is �b=(1 � a); so the system is stable if a < 1; which
is the case, since � < ". At any stability switch � = i!; where we can assume
that ! > 0; since the conjugate of any eigenvalue is also an eigenvalue. By
substitution into equation (7), we have

i!(1� a) + b(cos�! � i sin�!) = 0 (8)

and separating the real and imaginary parts gives two equations for unknowns
! and � as

b cos�! = 0

!(1� a)� b sin�! = 0
(9)

from which we conclude that cos�! = 0 and sin�! = 1. So

! =
b

1� a

� =
1� a
b

��
2
+ 2k�

�
for k = 0; 1; 2; :::;

that is, we have in�nitely many potential stability switches. In order to see if
there are actual stability switches we select � as the bifurcation parameter and
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consider the eigenvalues as functions of �; � = �(�). By implicitly di¤erentiating
equation (7) with respect to �; we have

d�

d�
(1� a) + be���

�
��� � d�

d�

�
= 0 (10)

implying that
d�

d�
=

�be���

1� a� b�e���

= � �2(1� a)
1� a+ ��(1� a)

= � �2

1 + ��

(11)

where we used equation (7). If � = i!, then

d�

d�
=

!2

1 + i�!
(12)

with real part

Re

�
d�

d�

�
=

!2

1 + (�!)
2 > 0: (13)

Therefore by gradually increasing the value of � from zero, at each potential
stability switch an eigenvalue changes its real part from negative to positive. So
the system becomes unstable at the smallest such value,

�0 =
1� a
b

�

2
; (14)

and the stability cannot be regained later. Hence we have the following result:

Proposition 1 System (5) with � = 0 and a < 1 is locally asymptotically
stable if � < �0 and unstable for � > �0. At � = �0; Hopf bifurcation occurs
giving the possibility of the birth of limit cycles.

4 The General Case

The characteristic equation of system (5) is considered now. We know that its
eigenvalues have negative real parts if � = 0 and � < �0: At any stability switch
� = i! and by substituting it into equation (6) we get

i! � ia!(cos �! � i sin �!) + b(cos�! � i sin�!) = 0: (15)

By separating the real and imaginary parts we have two equations for three
unknowns:

�a! sin �! + b cos�! = 0;

a! cos �! + b sin�! = !:
(16)
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By introducing the notation

x = cos �! and y = sin�!

and using the �rst equation of (16) we get

a!
p
1� x2 = b

p
1� y2 (17)

so
a2!2 � b2 = a2!2x2 � b2y2: (18)

From the second equation of (16) we have

y =
! � a!x

b
; (19)

and by substituting it into (18),

a2!2 � b2 = a2!2x2 � (! � a!x)2 (20)

implying that

cos �! = x =
(1 + a2)!2 � b2

2a!2
(21)

and from (19),

sin�! = y =
(1� a2)!2 + b2

2b!
: (22)

Feasible solutions exist only if both x and y are in interval [�1; 1] which can be
reduced to

b

1 + a
� ! � b

1� a: (23)

From (16) it is clear that sin �! and cos�! have the same sign, therefore we
have two parametric curves describing the set of potential stability switches:

C1(k; n) =

8>>>><>>>>:
� =

1

!

�
sin�1

�
(1� a2)!2 + b2

2b!

�
+ 2k�

�

� =
1

!

�
cos�1

�
(1 + a2)!2 � b2

2a!2

�
+ 2n�

� (24)

and

C2(k; n) =

8>>>><>>>>:
� =

1

!

�
� � sin�1

�
(1� a2)!2 + b2

2b!

�
+ 2k�

�

� =
1

!

�
2� � cos�1

�
(1 + a2)!2 � b2

2a!2

�
+ 2n�

� (25)

with k; n = 0; 1; 2; ::: and

! 2
�

b

1 + a
;
b

1� a

�
:
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Notice �rst that at ! = b=(1 + a);

(1 + a2)!2 � b2
2a!2

= �1; (1� a
2)!2 + b2

2b!
= 1

and at ! = b=(1� a);

(1 + a2)!2 � b2
2a!2

=
(1� a2)!2 + b2

2b!
= 1:

Therefore the initial and end points of C1(k; n) are

I1(k; n) =
1 + a

b

��
2
+ 2k�; � + 2n�

�
; E1(k; n) =

1� a
b

��
2
+ 2k�; 2n�

�
and these for C2(k; n) are

I2(k; n) =
1 + a

b

��
2
+ 2k�; � + 2n�

�
; E2(k; n) =

1� a
b

��
2
+ 2k�; 2� + 2n�

�
:

Clearly C1(k; n) and C2(k; n) have the same initial point and C1(k; n+ 1) and
C2(k; n) have identical endpoints. Figure 1 shows these connecting curves for
k = 0 and n = 0; 1; 2; ::with the parameter speci�cation of � = 17=20; " =
3=4; � = 6=5 and � = 9=80. These curves are shifted to the right by increasing
the value of k:

Figure 1. Shapes of curves C1(0; n) and
C2(0; n) for n = 0; 1; 2

Notice that with �xed value of k; all initial points with di¤erent values of
n have the same abscissas, and the same holds for the endpoints as well. The
common abscissa values are

�I =
1 + a

b

��
2
+ 2k�

�
and �E =

1� a
b

��
2
+ 2k�

�
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respectively. Notice that

E1(0; 0) =

�
1� a
b

�

2
; 0

�
so from the previous section we know that the system is stable for

� = 0 and � <
1� a
b

�

2

which is the linear segment connecting the origin with E1(0; 0). At the points
of the horizontal axis being to the right of E1(0; 0) the system is unstable.
Select and �x a value of � > 0 and gradually increase the value of � from
zero. The resulting horizontal line will have in�nitely many intersections with
the curves C1(k; n) and C2(k; n). The directions of stability switches at the
intersections can be determined by considering � as the bifurcation parameter,
and considering the eigenvalues as functions of �; � = �(�): By implicitly
di¤erentiating equation (6) with respect to � we get a simple equation for d�=d�:

d�

d�
� ad�

d�
e��� � a�e���

�
�� d�
d�

�
+ be���

�
��� � d�

d�

�
= 0 (26)

implying that
d�

d�
=

b�e���

1� ae��� + a��e��� � b�e��� : (27)

From (6) we see that

ae��� =
1

�

�
�+ be���

�
; (28)

so
d�

d�
=

b�2

�2�e�� + (�b+ b�� � b��)
: (29)

At � = i! we have

d�

d�
=

�b!2
�!2�(cos�! + i sin�!) + (�b+ i!�b� i!b�) (30)

with real part having the same sign as

b!2(!2� cos�! + b):

So at any point of the curve C1(k; n) or C2(k; n); stability is lost if !2� cos�!+
b > 0 and stability may be regained if !2� cos�! + b < 0: Notice �rst that on
C1(k; n);

�! 2
h
2k�;

�

2
+ 2k�

i
;

so cos�! > 0 implying that on all intercepts with C1(k; n) at least one eigenvalue
changes its sign from negative to positive. Consider next a curve C2(k; n): On
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this curve

@�

@!
= � 1

!2

h
2� � cos�1

�
(1+a2)!2�b2

2a!2

�
+ 2n�

i
+
1

!
1vuut1�

 
(1+a2)!2�b2

2a!2

!2

2b2

2a!3

= � 1

!2
!� +

1

!

1

� sin �!
b2

a!3
(31)

From the �rst equation of (16), we have

sin �! =
b

a!
cos�� (32)

so

@�

@!
= � 1

!

0B@� + 1

b

a!
cos��

b2

a!3

1CA
= � 1

!3 cos�!

�
�!2 cos�! + b

�
:

(33)

Since cos�! < 0 on C2(k; n); we conclude that stability is lost when @�=@! > 0
and might be regained if @�=@! < 0: The �rst case occurs when the curve
C2(k; n) is increasing in � from right to left and the second case occurs when
the curve is decreasing in � from right to left.
Next we show that at each intersection only one eigenvalue can change the

sign of its real part. In contrary, assume that � is a multiple eigenvalue. Then
it solves the characteristic equation and its derivative:

�� a�e��� + be��� = 0 (34)

and
1� ae��� + a��e��� � b�e��� = 0: (35)

If � = i!; then

i! � ia!(cos �! � i sin �!) + b(cos�! � i sin�!) = 0 (36)

and

1�a(cos �!�i sin �!)+ia�!(cos �!�i sin �!)�b�(cos�!�i sin�!) = 0: (37)

By separating the real and imaginary parts, four equations are obtained for the
four unknowns, sin �!; cos �!; sin�! and cos�!:

�a! sin �! + b cos�! = 0; (38)

! � a! cos �! � b sin�! = 0; (39)

8



1� a cos �! + a�! sin �! � b� cos�! = 0; (40)

a sin �! + a�! cos �! + b� sin�! = 0: (41)

Simple calculation shows that the solution is the following:

sin �! = � �!

a (1 + !2(� � �)2) ; cos �! =
1 + !2�(� � �)
a (1 + !2(� � �)2) ; (42)

sin�! =
!3�(� � �)

b (1 + !2(� � �)2) ; cos�! = �
�!2

b (1 + !2(� � �)2) ; (43)

and now from (33) at these values,

@�

@!
=

�2!4 � b2
�
1 + !2(� � �)2

�
!3(cos�!)b (1 + !2(� � �)2) = 0; (44)

since from (43),
1 = sin2 �! + cos2 �!

=
�2!4[1 + !2(� � �)2]
b2[1 + !2(� � �)2]2

=
�2!4

b2 (1 + !2(� � �)2) :

(45)

Consequently multiple eigenvalues are possible only at the extreme values of �
with respect to ! on C2(k; n). This is not an intersection since the horizontal
line is tangent to the curve at the extreme points.
From (24) we know that in C1(k; n) the value of � decreases as ! increases,

so as the curve moves from right to left from I1(k; n) to E1(k; n) the value of
� decreases, so at the intersection with C1(k; n) one eigenvalue changes its real
part from negative to positive. The same is true with intersections on increasing
segments of C2(k; n) as well. However on the decreasing segment of C2(k; n) one
eigenvalue changes its real part from positive to negative, so stability is regained
here when only one eigenvalue had positive real part before, that is, only one
intersection with stability loss can be found before.
Figure 2 shows again the continuous curves, C1(0; n) and C2(0; n) (n =

0; 1; 2; 3; :::) under the same speci�cation of the parameters as before. The hor-
izontal line shows the stability losses and gains. When we increase the value of
� along the horizontal line, stability is lost at point A; regained at point B and
lost again at point C. However system is unstable after point C. The stabil-
ity region is the yellow region. If (�; �) is any point, then we have to consider
the linear segment connecting points (0; �) and (�; �) and count the number of
intersections with stability loss (L) and number of intersections with stability
gain (G). The point (�; �) is a stability point if G � L:
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Figure 2. Stability switches

5 Conclusions

In this paper a special dynamic system with two delays was examined. The sta-
bility switch curves were determined and the directions of the stability switches
were characterized by the monotonicity of the di¤erent segments of the curves.
Small values of � are harmless, since system is stable with any values � > 0.
With large values of �; the stability region is an irregular domain depending on
both values of � and �.
This study discovered only local asymptotic stability. The global asymptotic

behavior of the system in case of local instability is an interesting research issue
which can be examined by computer simulation. This is our next project.
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