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Abstract

We study the effects of two delays on the local as well as on global
stability of nonlinear Cournot duopoly dynamics. The two major findings
are an analytical construction of the stability switching curve on which
stability is lost and the numerical confirmation of the birth of aperiodic
global dynamics when the stationary state is locally unstable. The de-
lays matters and can generate various dynamics ranging from simple to
complicated dynamics.
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1 Introduction

Oligopoly theory has a long history since the pioneering work of Cournot (1838).
It has played a central role in mathematical economics and developed in various
directions. The existence and uniqueness of the equilibrium were the research
issues in early stage and then dynamic extensions become the main topic of re-
searchers. Linear models were first examined, where local asymptotical stability
implies global stability. Each model is based on a particular output adjustment
scheme. In applying best response dynamics, global information is needed about
the profit function while in the case of gradient adjustments only local informa-
tion is needed to assess the marginal profit. Okuguchi (1976) summarizes the
early results on static and dynamic oligopolies and Okuguchi and Szidarovszky
(1999) discuss their multiproduct generalizations. During the last two decades
an increasing attention has been given to nonlinear dynamics. Bischi et al.
(2010) give a comprehensive summary of the newer developments. Concern-
ing oligopoly dynamics, it is now well-known that oligopoly models formulated
in discrete-time framework can generate various dynamics ranging from sim-
ple dynamics to complex dynamics including chaos if endogenous nonlinearities
become stronger. It is also well-known that continuous-time oligopoly models
behave better than discrete-time models in a sense that the former models have
larger stability regions of the parameters. In the existing literature, however,
not much has been revealed with the delay oligopoly model that is a hybrid
of the discrete-time and the continuous-time models.1 In particular, it has not
yet been known what dynamic behavior arises when more than one delays are
involved in economic variables.

The main purpose of this paper is to provide rigorous theoretical analysis
on multiple-delay dynamic behavior and to confirm the analytical results by
performing numerical simulations. For this end, we construct an á la Cournot
duopoly model in which each firm has a delay in implementing information
about its own output. This is a continuity of Matsumoto et al. (2011) in which
a linear duopoly model with two fixed delay is considered. It is a special case of
Howroyd and Russell (1984) in a sense that the number of the firms is reduced to
two from a general N and, at the same time, considered to be an extended case
in a sense that the number of delays is increased to two from one. It is also an
application of the results obtained in delay dynamic monopolies of Matsumoto
and Szidarovszky (2014a, b). We apply an analytical method developed by Lin
and Wang (2012) and construct a stability switching curve with respect to two
delays. We provide some examples in which periodic as well as aperiodic delay
dynamics may appear in a 2D system of differential equations.

The paper is organized as follows. In Section 2, the traditional continuous-
time duopoly model is presented and then delays are implemented. The stability
switching curves are analytically derived. In Section 3, we give numerical ex-

1The delay equations describing the population of the species are frequently discussed in
theoretical biology. Even in early 80s, Shibata and Saito (1980) investigate the time delayed
saturation effect in a logistic model of two competing species and numerically confirm the
birth of chaotic solutions.
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amples to illustrate the theoretical findings and to find how the delays affect
dynamic behavior. In the final section, concluding remarks are given.

2 Delay Model

We consider an industry of two firms producing a homogeneous good. Let x
and y be the output quantities produced by firms x and y, respectively. The
price function is assumed to be linear,

p = a− b(x+ y) with a > 0 and b > 0.

Production costs are also assumed to be linear and the marginal costs are de-
noted by cx and cy. The profit function of firm z (z = x, y) is given by

πz = (a− b(x+ y))z − czz.

Firm z determines its output to maximize profit, taking quantity supplied by
the competition as given. Assuming an interior optimal solution and solving the
first-order condition for the profit maximizing problem yield the best replies (or
reaction functions),

Rx(y) =
1

2
(a− cx − by) and Ry(x) =

1

2
(a− cy − bx) .

A Cournot equilibrium is a pair of outputs (xe, ye) satisfying xe = Rx(ye) and
ye = Ry(x

e), that is,

xe =
a− 2cx + cy

3b
and ye =

a− 2cy + cx
3b

where the following is assumed to guarantee positive equilibrium,

a > max[2cx − cy, 2cy − cx].

Concerning the adjustment process of output, we make two assumptions.
One is that the firms are boundedly rational in a sense that they modify their
production according to the sign of the marginal profits. That is, the firm
increases its production if the marginal profit is positive, decreases it if negative
and does not change it if zero. Such an adjustment process is called gradient
dynamics and satisfies the following condition,

sign [ż(t)] = sign

[
dπz
dz

]
.

Specifically, two formulations are often used,

ż(t)

z(t)
= kz

dπz
dz

or ż(t) = fz(z)
dπz
dz

with f ′z(z) > 0,
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where the growth rate of the variable is portional to the marginal profit in the
first formulation and the adjustment rate is determined in the second formula-
tion by a product of the marginal profit and the degree of the adjustment that
depends on the level of the variable. Notice that the two are mathematically
equivalent if fz(z) = kzz although their economic interpretations are different.
The other assumtption is that the firms obtain only delayed information on pro-
duction activities. There are two ways to introduce a delay in our framework.
The first is a delay in implementing information about firm’s own output and
the second is a delay in obtaining information about the competitor’s output.
However, it has been shown by Howroyd and Russell (1984) that the second
delay is harmless in a Cournot oligopoly model.2 Thus we focus on only the
first delay in this study to simplify the analysis. The two assumptions can be
given in the following way.

Assumption 1. The firms continuously adjust their output growth rates
proportional to changes in their profits.

Assumption 2. The firms experience delays in implementing information
about their own outputs.

With positive adjustment coefficients αx and βy of firms x and y, this gradi-
ent dynamic system is described by a 2D system of delay differential equations,

ẋ(t) = αxx(t) [a− cx − 2bx(t− τx)− by(t)] ,

ẏ(t) = βyy(t) [a− cy − bx(t)− 2by(t− τy)] ,
(1)

where τx ≥ 0 and τy ≥ 0 are time delays. The positive steady state of system
(1) is identical with Cournot equilibrium (xe, ye).3 The linear approximation in
a neighborhood of the equilibrium is

ẋδ(t) = α [−2bxδ(t− τx)− byδ(t)] ,

ẏδ(t) = β [−bxδ(t)− 2byδ(t− τy)] ,
(2)

where

xδ(t) = x(t)− xe, yδ(t) = y(t)− ye, α = αxxe and β = βyy
e.

Substituting exponential solutions

x(t) = eλtu and y(t) = eλtv,

2A more general result obtained in Hofbauer and So (2000).
3This model has multiple equilibria. Other than the positive equilibrium, there are one

zero solution and two corner solutions that correspond to monopoly equilibrium. Our concern
is on the positive equilibrium in this study.
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into the linearized equations in (2) and arranging terms yield a 2D simultaneous
equation system with respect to u and v,




λ+ 2αbe−λτx αb

βb λ+ 2βbe−λτy








u

v



 =




0

0



 .

Thus the corresponding characteristic equation is

P (λ, τx, τy) = P0(λ) + P1(λ)e
−λτx + P2(λ)e

−λτy + P3(λ)e
−λ(τx+τy) = 0 (3)

where
P0(λ) = λ

2 − αβb2,

P1(λ) = 2αbλ,

P2(λ) = 2βbλ,

P3(λ) = 4αβb
2.

Before proceeding, we examine the non-delay case with τx = τy = 0 in which
case the characteristic equation is simplified as

λ2 + 2b(α+ β)λ+ 3b2αβ = 0.

Since all coefficients of this equation and the discriminant are positive, the
characteristic roots are real and negative, implying that the steady state with
no delays is locally stable. We can mention that it is still stable as long as
positive delays are sufficiently small by continuous dependency of λ on the
values of delays. To see what extent the stationary point can preserve stability,
we determine the threshold values of the delays for which stability is just lost.

The characteristic equation (3) is now investigated with a constructive method
developed by Lin and Wang (2012) to solve a class of two delay differential equa-
tions. We look for a pair of the delays for which the characteristic equation has
purely imaginary roots. The set of such pairs is called stability switching curve.
Since λ = 0 is not a solution and roots of a real function come in conjugate
pairs, we assume, without loss of generality, that λ = iω with ω > 0 on this
curve. Substituting this solution into (3), we have two different forms,

[
P0(iω) + P1(iω)e

−iωτx]+
[
P2(iω) + P3(iω)e

−iωτx] e−iωτy = 0 (4)

and

[
P0(iω) + P2(iω)e

−iωτy]+
[
P1(iω) + P3(iω)e

−iωτy] e−iωτx = 0 (5)

Using equations (4) and (5), we can derive the following theorem that yields
explicit expressions for the stability switching curves.
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Theorem 1 Suppose that P2P̄3 − P0P̄1 �= 0 and P1P̄3 − P0P̄2 �= 0. Then the
stability switching curves are the loci of LR(m,n) and LB(m,n) defined by

LR(m,n) =
{
(τ+x (ω,m), τ

−
y (ω, n))

∣∣ ω ∈ Ω1, m, n ∈ Z
}

and
LB(m,n) =

{
(τ−x (ω,m), τ

+
y (ω, n))

∣∣ ω ∈ Ω2, m, n ∈ Z
}

where Ω1 and Ω2 are the sets of ω > 0 for which relations (A-5) and (A-6 /) of
the Appendix are satisfied, furthermore

τ±x (ω,m) =
±ψx(ω)− ϕx(ω) + 2mπ

ω
,

and

τ±y (ω, n) =
±ψy(ω)− ϕy(ω) + 2nπ

ω
,

with ϕx(ω) = arg(P2P̄3 − P0P̄1), ϕy(ω) = arg(P1P̄3 − P0P̄2),

ψx(ω) = cos
−1

[
|P0|2 + |P1|2 − |P2|2 − |P3|2

2 |B1(ω)|

]

, ψx ∈ [0, π],

and

ψy(ω) = cos
−1

[
|P0|2 − |P1|2 + |P2|2 − |P3|2

2 |B2(ω)|

]

, ψy ∈ [0, π].

Proof. Proof is given in the Appendix.

To check the existence and domain of ω for which inequalities (A-5) and
(A-6) (given in the Appendix) hold, we introduce two functions,

F (ω) =
(
|P0|2 + |P1|2 − |P2|2 − |P3|2

)2
− 4B21 ≤ 0

and

G(ω) =
(
|P0|2 − |P1|2 + |P2|2 − |P3|2

)2
− 4B22 ≤ 0.

It can be shown that the right hand side expressions of F (ω) and G(ω) are
equivalent and, with the notation of z = ω/b, are reduced to

z8 + 4a3z
6 + 2a2z

4 + 4a1z
2 + a0

where
a3 = −2α2 + αβ − 2β2,

a2 = 8α
4 + 8α3β − 19α2β2 − 8β4 + 16α2β(4β − α),

a1 = −30α4β2 − 15α3β3 + 30α2β4 − 4α2β2(4β − α)2,

a0 = 225α4β
4.
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Let Z = z2 and

f(Z) = Z4 + 4a3Z
3 + 2a2Z

2 + 4a1Z + a0.

Solving f(Z) = 0 for Z yields four solutions,

Z1 = 2α2 − αβ + 2β2 + 2 |α− β|
√
α2 + αβ + β2,

Z2 = 2α
2 − αβ + 2β2 − 2 |α− β|

√
α2 + αβ + β2,

Z3 = 2α
2 − αβ + 2β2 + 2 |α− β|

√
α2 − 3αβ + β2,

Z4 = 2α
2 − αβ + 2β2 − 2 |α− β|

√
α2 − 3αβ + β2.

Let us denote the discriminant of the last two equations by D = α2 − 3αβ +
β2. Notice that Z3 and Z4 are real if D ≥ 0 and complex if D < 0, and the
following result is the simple consequence of the above expressions:

Lemma 1 Given α > 0 and β > 0,

If α = β, then 0 < Z1 = Z2 = Z3 = Z4;

If α �= β and D ≥ 0, then 0 < Z2 < Z4 ≤ Z3 < Z1;

If α �= β and D < 0, then 0 < Z2 < Z1.

This lemma immediately implies the following result:

Theorem 2 Given α > 0, β > 0 and b > 0,

If α = β, then F (ω) ≥ 0 for all ω ≥ 0;

If α �= β and D ≥ 0, then F (ω) ≤ 0 for ω ∈ [ω2, ω4] and ω ∈ [ω3, ω1];

If α �= β and D < 0, then F (ω) ≤ 0 for ω ∈ [ω2, ω1]

where for i = 1, 2, 3, 4,
ωi = zib with zi =

√
Zi.

In examining the sign of the discriminant D, we solve α2− 3αβ+β2 = 0 for
α giving two solutions describing two lines with positive slopes,

α =
3−

√
5

2
β and α =

3 +
√
5

2
β.

The β = α line divides the positive quadrant of the (α, β) plane into two parts
as shown in Figure 1. Each part is further divided into two parts by one of
these two lines since the first line is steeper than the diagonal and the second
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is flatter. Since the situation is symmetric with respect to the diagonal line, we
focus on the left part to it by making the following assumption.

Assumption 3: α < β

It is clear that in Figure 1, D > 0 in the left to the α = 3−
√
5

2 β line and
D < 0 in the right.

Figure 1. Division of the (α, β) plane

We reveal the effects caused by the changing values of the adjustment speeds
on the shapes of the stability switching curves. Figures 2(A), (B) and (C)
illustrate the F (ω) curves with β = 1,

(A) α =
3−

√
5

2
β − 0.01, (B) α = 3−

√
5

2
β and (C) α =

3−
√
5

2
β + 0.01.

As is already mentioned in Theorem 2, F (ω) has a finite number of roots, in
particular, there are four intersections with the axis of abscissa in Figure 2(A)
with D > 0, two intersections and one tangency point in Figure 2(B) with
D = 0 and two intersections in Figure 2(C) with D < 0.

(A) Four roots (B) Three roots (C) Two roots

Figure 2. Shapes of F (ω)
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Accordingly, the corresponding stability switching curves are determined.
For simplicity we confine attention to the case of m = 0, 1 and n = 0 and
illustrate LR(0, 0) and LB(1, 0) as red and blue curves, respectively, in Figures
3(A), (B) and (C). We start with Figure 3(B), which is a boundary case between
Figures 3(A) and 3(C). Since D = 0, F (ω) ≤ 0 for ω ∈ [ω2, ω1] with ω2 < ω4 =
ω3 < ω1. The continuous red curve LR(0, 0) consists of the two segments, one
defined over the interval [ω2, ω4] is unimodal and the other defined over the
interval [ω3, ω1] is positive-sloping. It has a kink at point (τ0x, τ

0
y) with

τ0x = τ
+
x (ωm, 0) and τ

0
y = τ

−
y (ωm, 0)

where ωm = ω4 = ω3. In the same way, the blue curve LB(1, 0) has two seg-
ments, one over [ω2, ω4] has a steep positive slope and the other over [ω3, ω1]
has a flat negative slope. These segments are connected at the same kinked
point,

τ0x = τ
−
x (ωm, 1) and τ

0
y = τ

+
y (ωm, 1).

When the value of α increases from (3 −
√
5)β/2, the discriminant becomes

negative so the kinked point disappears. In consequence, LR(0, 0) as well as
LB(1, 0) defined over interval [ω2, ω3] become smoother as depicted in Figure
3(C). When the value of α decreases from (3−

√
5)β/2, the discriminant becomes

positive and the interval is separated into two distinct intervals, [ω2, ω4] and
[ω3, ω1] with ω3 > ω4. Further, the kinked point (τ0x, τ

0
y) is broken into two

different points, (τ1x, τ
1
y) and (τ

2
x, τ

2
y). In particular, the stability switching curve

defined over [ω2, ω4] takes an inequality-wise shaped curve and has the blue
curve LB(1, 0) connected with the red curve LR(0, 0) at the point (τ

1
x, τ

1
y) where

τ1x = τ
+
x (ω4, 0) = τ

−
x (ω4, 1) and τ

1
y = τ

−
y (ω4, 0) = τ

+
y (ω4, 1).

On the other hand, the stability switching curve defined over [ω3, ω1] takes a
flat-roof shaped curve and has the blue curve LB(1, 0) connected with the red
curve LR(0, 0) at the point (τ2x, τ

2
y) where

τ2x = τ
+
x (ω3, 0) = τ

−
x (ω3, 1) and τ

2
y = τ

−
y (ω3, 0) = τ

+
y (ω3, 1).

(A) D > 0 (B) D = 0 (C) D < 0

Figure 3. Stability crossing curves for m = 0, 1 and n = 0
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3 Simulations

We now perform simulations to illustrate the theoretical findings. For this pur-
pose, we specify some of the parameters in (1) as follows:

Assumption 4: a = 4, b = 1, cx = 1, cy = 1 and βy = 1

Under this assumption, we have

xe = ye = 1, β = 1 and α = αx.

In Section 3.1, we take αx = 0.5 for which D < 0 as (3−
√
5)/2 ≃ 0.382, select

three values of τy and examine how changing the value of τx affects dynamics
generated by system (1). Then in Section 3.2, we decrease the value of αx to
0.35 for which D > 0 and repeat the same procedure.

3.1 Simulation Study I

The adjustment coefficient of firm x is taken to be αx = 0.5 in this subsection.
As in Figure 3(C), we have the smoother red curve LR(0, 0) and the blue curve
LB(1, 0).

4 A larger value of α shifts the blue curve in Figure 3(C) rightward
and the red curve leftward, resulting in the location of the curves as shown in
Figure 4. Since it is shown that the stationary point is locally stable in the
yellow region below the red curve, the red curve is the stability switching curve
on which stability is lost. We select three different values of τy and perform
three simulations with the increasing value of τx from zero to detect the effects
caused by the delays.

Figure 4. Division of the time delay plane

In the first example we take τy = 0.5 and increase the value of τx along
the dotted line that crosses the red curve at τx = τ0.5(≃ 1.348) as shown in

4The segments of LB(0, 0) and LR(1, 0) do not appear in this region of (τx, τy).
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Figure 4. A bifurcation diagram with respect to τx is given in Figure 5(A).
It is constructed in the following way. With fixed value of τx, we run the
delay system (1) with the specified parameter values for 0 ≤ t ≤ 1000. To take
away the initial disturbances, we discard the numerical data of x(t) and y(t)
for t ≤ 950 and plot the local maximum and local minimum of y(t) obtained
from the data for 950 ≤ t ≤ 1000 against this value of τx. Then we increase the
value of τx and repeat the same procedure until τx arrives at 2.8. It is shown
there that until τx reaches τ0.5, the stationary point is asymptotically stable,
loses stability at τx = τ0.5 and a limit cycle of y(t) emerges for τx > τ0.5. To
observe how cyclic fluctuations emerge, we gradually increase further the value
of τx. We find first a unique minimum and maximum, then two minima and
maxima, even further increase of τx results in three minima and maxima, and
so on. Accordingly, we have a regular cycle, which is distorted more and more
to be a cycle having several ups and downs by the increase of τx. For example,
the vertical dotted line at τx = 2 crosses the bifurcation diagrams eight times,
four time with the upper branches of the diagram and four times with the lower
branches. This implies that the motion of y(t) is oscillatory and the trajectory
has four increasing segments and four decreasing segments. In Figure 5(B) a
periodic solution for 900 ≤ t ≤ 1000 is illustrated in the (x, y) plane in red while
the two best reply lines are shown in black.

(A) Bifurcation diagram (B) Distorted limit cycle

Figure 5. Delay effects of τx, given τy = 0.5

In the second example, we increase the value of τy to 0.9. The horizontal
dotted line at τy = 0.9 in Figure 4 crosses the red curve two times at τx = τa0.9(≃
0.593) and τx = τ

b
0.9(≃ 1.058) and the blue curve one time at τx = τ

c
0.9(≃

1.885). A bifurcation diagram of y(t) with respect to τx is given in Figure 6(A)
and shows that increasing the value of τx along the dotted line gives rise to a wide
variety of dynamics of y(t) ranging from a stable trajectory to chaotic motions.
There, a limit cycle emerges for τx < τa0.9, stability is gained in the interval
(τa0.9, τ

b
0.9) for which the dotted line is located in the yellow region of Figure

4. Stability is lost again at τx = τ
b
0.9 and bifurcates to a periodic cycle having

11



several local maxima and minima for τx < τ c0.9 and finally more complicated
dynamics arises for larger values of τx. Figure 6(B) illustrates a phase diagram
for 9500 ≤ t ≤ 10000 in the (log[x(t)],log[y(t)]) plane for τx = τ̄(= 2) in which
output exhibits many ups and downs.

(A) Bifurcation diagram (B) Chaotic trajectory

Figure 6. Delay effects of τx, given τy = 0.9

In the third example, the value of τy is further increased to 1.1 at which the
dotted horizontal line starts and crosses the blue curve at τx = τ1.1(≃ 1.409) in
Figure 4. A bifurcation diagram shown in Figure 7(A) indicates that the steady
state is locally unstable for τx = 0 and the dynamic system (1) generates a
limit cycle for τx > 0. The limit cycle then bifurcates to complicated cycles
through a period-doubling-like cascade and then comes back to a simple limit
cycle through period-halving-like cascade for τx ≤ τ1.1. Further increasing
τx indicates transformation to aperiodic oscillations from periodic oscillations.
Figure 7(B) illustrates a phase diagrams of log[x(t)] and log[y(t)] for 9500 ≤ t ≤
10000 when τx = τ̄(= 2.25).

12



(A) Bifurcation diagram (B) Chaotic movement

Figure 7. Delay effects of τx, given τy = 1.1

3.2 Simulation Study II

In this section we present numerical simulations when α = 0.35 < (3 −
√
5)/2.

The last inequality implies D > 0 and as in Figure 3(A), there are two in-
dependent intervals, [ω2, ω4] with ω2 ≃ 0.563 and ω4 ≃ 1.081 and [ω3, ω1]
with ω3 ≃ 1.619 and ω1 ≃ 1.863. For ω ∈ [ω2, ω4], the red curve LR(0, 0)
is connected to the blue curve LB(1, 0) and thus both curves take distorted
inequality-shaped profiles while only a small portion of the blue curve LB(1, 0)
is illustrated in Figure 8. On the other hand, for ω ∈ [ω3, ω1], the red curve
LR(0, 0) and the blue curve LB(0, 0) together construct a flatterly roof-shaped
profile. In the yellow region surrounded by these curves, the stationary point is
locally stable and its stability is lost on these curves. To examine what kinds of
dynamics emerge for (τx, τy) in the white region, we will perform three numer-
ical simulations as before.

13



Figure 8. Dividion of the (τx, τy) plane

In the first simulation, we take τy = 0.5 and increase the value of τx along the
dotted line that crosses the downward sloping red curve at τx = τ0.5(≃ 1.934)
in Figure 8. A bifurcation diagram is presented in Figure 9(A) in which the
dynamics seems to be similar to the one in Figure 5(A), that is, stability is lost
at τx = τ0.5 and a limit cycle is born for τx > τ0.5. It is seen that the number
of increasing and decreasing segments increases as the value of τx increases.
In Figure 9(B) a time trajectory of y(t) for 955 ≤ t ≤ 1000 is depicted when
τx = 3. Within one cycle, the trajectory hits maximum and minimum seven
times each.

(A) Bifurcation diagram (B) Time trajectory

Figure 9. Delay effect of τx, given τy = 0.5

In the second example, τy is increased to 0.9. As can be seen in Figure
8, the dotted line at τy = 0.9 crosses the positive-sloping red curve at τx =
τA0.9(≃ 0.954), the negative sloping blue curve at τx = τ

B
0.9(≃ 1.467) and the
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negative sloping red curve at τx = τC0.9(≃ 1.743). So as the value of τx increases
from zero, the stationary state gains stability for τA0.9 < τx < τ

B
0.9 and loses

it otherwise. The bifurcation diagram presented in Figure 10(A) reveals what
kind of dynamics emerges when stability is lost. A simple limit cycle arises
for τx < τ

A
0.9 while more complex dynamics emerges via a period-increasing

cascade for τx > τ
B
0.9. With further increasing the value of τx, a very long

periodic cycle or chaotic behavior might emerge and its oscillations are aperiodic
but not erratic. Figure 10(B) gives time trajectories for τx = τ̄(= 2.8), the
red one for log[y(t)] and the blue one for log[x(t)]. A phase diagram in the
(log[x(t)], log[y(t)]) plane is very similar to the one shown in Figure 9(B).

(A) Bifurcation diagram (B) Time trajectories

Figure 10. Delay effect of τx, given τy = 0.9

In the third example, τy is further increased to 1.1 at which the dotted
horizontal line crosses the positive-sloping segment of the red curve at τx =
τ1.1(≃ 1.624). Since the line is located in the white region of Figure 8, the
stationary state is locally unstable for any τx ≥ 0 and a bifurcation diagram
in Figure 11(A) shows that periodic and aperiodic motions of y(t) alternate
as the value of τx increases. The time trajectories of log[x(t)] and log[y(t)] at
τx = τ̄(= 2.5) are illustrated again as the blue and the red curves in Figure
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11(B). They are aperiodic but not erratic.

(A) Bifurcation diagrams (B) Time trajectories

Figure 11. Delay effect of τx, given τy = 1.1

4 Concluding Remarks

In this paper we have focused on dynamics of the Cournot duopoly model in
which each firm has a delay in implementing information about its own output.
First we analytically derived the stability switching curve that divides the delay
region into two regions, one in which stability is preserved and the other in
which stability is lost. Then we numerically examined dynamic behavior of
output when the stationary state loses stability. It is found that the shape of
the stability switching curve is parameter-dependent. It is demonstrated that
the two delay model can generate rich dynamics involving chaotic oscillations.
This finding implies that the delay can be a source of periodic as well as aperiodic
dynamics in the continuous-time framework. It may be possible to extend the
numerical results in the cases of higher dimension. However the construction of
the stability switching surfaces in higher dimesions is still in progress.
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Appendix

Following Lin and Wang (2012), we now present the proof of Theorem 1.
Since

∣∣e−iωτx
∣∣ =

∣∣e−iωτy
∣∣ = 1, equations (4) and (5) can be written as

∣∣P0(iω) + P1(iω)e−iωτx
∣∣ =

∣∣P2(iω) + P3(iω)e−iωτx
∣∣

and ∣∣P0(iω) + P2(iω)e−iωτy
∣∣ =

∣∣P1(iω) + P3(iω)e−iωτy
∣∣ .

Using the relation

∣∣a+ be−iωτ
∣∣2 =

(
a+ be−iωτ

) (
ā+ b̄eiωτ

)
,

we can rewrite (4) as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(ω) cos(ωτx)− 2B1(ω) sin(ωτx) (A-1)

and (5) as

|P0|2 − |P1|2 + |P2|2 − |P3|2 = 2A2(ω) cos(ωτy)− 2B2(ω) sin(ωτy) (A-2)

where
A1(ω) = Re[P2P̄3 − P0P̄1] and B1(ω) = Im[P2P̄3 − P0P̄1]

and
A2(ω) = Re[P1P̄3 − P0P̄2] and B2(ω) = Im[P1P̄3 − P0P̄2].

It is clear that both P2P̄3 −P0P̄1 and P1P̄3− P0P̄2 are pure complex with zero
real parts. So A1(ω) = A2(ω) = 0. Assume B1(ω) �= 0 and B2(ω) �= 0 and then
compute the arguments of these complex values as

ϕx(ω) := arg(P2P̄3 − P0P̄1) =






π

2
if B1(ω) > 0,

3π

2
if B1(ω) < 0

and

ϕy(ω) := arg(P1P̄3 − P0P̄2) =






π

2
if B2(ω) > 0,

3π

2
if B2(ω) < 0.

With A1(ω) = 0 and cosϕx(ω) = 0, the right-hand side of equation (A-1) can
be rewritten as

−2B1(ω) sinωτx = −2 |B1(ω)| sinϕx(ω) sinωτx

= 2 |B1(ω)| [cosϕx(ω) cosωτx − sinϕx(ω) sinωτx]

= 2 |B1(ω)| cos[ϕx(ω) + ωτx].
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The right-hand side of equation (A-2) can be rewritten in the same way. There-
fore, (A-1) and (A-2) becomes

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2 |B1(ω)| cos(ϕx(ω) + ωτx) (A-3)

and

|P0|2 − |P1|2 + |P2|2 − |P3|2 = 2 |B1(ω)| cos(ϕy(ω) + ωτy). (A-4)

A sufficient and necessary condition for the existence of τx > 0 and τy > 0
satisfying the above equations are

∣∣∣|P0|2 + |P1|2 − |P2|2 − |P3|2
∣∣∣ ≤ 2 |B1(ω)| (A-5)

and ∣∣∣|P0|2 − |P1|2 + |P2|2 − |P3|2
∣∣∣ ≤ 2 |B1(ω)| . (A-6)

Denote by Ω1 and Ω2 the set of ω > 0 values satisfying (A-5) and (A-6), respec-
tively. Let us define new functions by

cos[ψx(ω)] =
|P0|2 + |P1|2 − |P2|2 − |P3|2

2 |B1(ω)|
, ψx ∈ [0, π] (A-7)

and

cos[ψy(ω)] =
|P0|2 − |P1|2 + |P2|2 − |P3|2

2 |B1(ω)|
, ψy ∈ [0, π], (A-8)

then from (A-3) and (A-7), (A-4) and (A-8), we have

cos[ϕx(ω) + ωτx] = cos[ψx(ω)]

and
cos[ϕy(ω) + ωτy] = cos[ψy(ω)]

both of which yield, for arbitrary integers m and n,

τ±x (ω,m) =
±ψx(ω)− ϕx(ω) + 2mπ

ω

and

τ±y (ω, n) =
±ψy(ω)− ϕy(ω) + 2nπ

ω
.

These are the values of the delays that solve equations (4) and (5). Therefore,
given m and n, (τ+x (ω,m), τ

−
y (ω, n)) for ω ∈ Ω1 and (τ−x (ω,m), τ

+
y (ω, n)) for

ω ∈ Ω2 construct the stability switching curves in the (τx, τy) plane. Q.E.D.
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