額縁形探索窓を採用した SHV 向け

動きベクトル検出アルゴリズム

Picture Frame Shaped Search Window Algorithm for Block Motion Estimation in SHV

あらまし

SHV 向けに動きベクトル検出処理速度を超高速 化した額縁形探索窓動きベクトル検出アルゴリズ ムを開発した.本アルゴリズムは1次~3次探索で 構成される.1次探索は複数の候補点より最適な2 次探索の探索開始点を得る予備探索,2次探索は額 縁形探索窓探索,3次探索はダイアモンド探索であ る.本アルゴリズムを H.264/AVC に準拠したソフ トウェアエンコーダに実装し,6種類の HDTV(High Definition TeleVision)画像("Bronze with Credits", "Ice Hockey", "Whale Show", "Tractor", "Riverbed", "Inter-section")に適用し,画質,探索速度を評価し た.その結果,本アルゴリズムは全探索法と遜色の ない高画質を維持した上で,既存の高速アルゴリズ ムより探索速度を高速化できた.

キーワード:H.264,動きベクトル検出,サブサンプ リング

1 はじめに

8K UHD (Ultra High Definition Television)と呼ば れるスーパーハイビジョンの放送が 2016 年に開始 される予定である.フル解像度の UHD では,1フ レーム当たりの総画素数は 9,950 万(7,680 画素 ×4,320 ライン×RGB)と極めて多い.この膨大なデ ータを実時間で符号化できる動画像符号化プロセ ッサを実現するためには,処理量が特に大きい動き ベクトル検出(Block Motion Estimation; BME)を高 速処理できるアルゴリズムの開発が必須である.こ れまでに,高速 BME アルゴリズムとして, Simplified Unsymmetrical-cross Multi-Hexagon-grid Search (S-UMHS)^[1], Enhanced Predictive Zonal Search (EPZS)^[2]等が開発された.

更なる高速化を目指して,我々は額縁形探索窓 (Picture Frame shaped Search Window; PFSW)を採用 したサブサンプリングアルゴリズムを開発した^[5]. PFSW アルゴリズムを H.264/AVC に準拠したソフ トウェアエンコーダ JM12.3^[3] に実装し,5 種類の HDTV 画像("Bronze with Credits", "Ice Hockey", "Whale Show", "Tractor", "Riverbed")に適用し, 評価した.その結果, PFSW アルゴリズムは再生画 像の画質を全探索法(Full Search; FS)のそれと同等 の画質を維持できた.また, PFSW アルゴリズムの 探索速度は, "Bronze with Credits"の場合,FS, S-UMHS, EPZS アルゴリズムのそれぞれ 325.55 倍, 3.795 倍, 1.656 倍, 高速化された.

以下,第2章で PFSW アルゴリズムを,第3章 で PFSW の画像解析結果を,第4章では PFSW ア ルゴリズムの速度・画質を既報アルゴリズムと比較 する.

図 1.1 額縁形探索窓(PFSW)アルゴリズム

2 額縁形探索窓(PFSW)アルゴリズム

最終動きベクトル決定(探索終了)

額縁形探索窓(PFSW)アルゴリズムは図 2.1 に示 すように、1次、2次、3次探索で構成される. 1次探索は(*i*)符号化対象マクロブロック(MB)の周 辺 MB の動きベクトル情報より12 個の探索開始候 補点(候補 MB)を設定し、次に(*ii*)これらの中から1 個の候補 MB を選択し、これを2次探索の探索開 始点とする.2次探索は額縁形探索窓(PFSW)を採 用した繰り返しサブサンプリング探索である.探索 窓サイズを縮小しながら、サイズが最小となるまで、 これを複数回繰返すことにより、より最適な MB を検出する.3次探索は2次探索で得られた最適 MBを探索開始点とするダイアモンド探索で、最終 MB を検出する.

2.1 1次探索

2.1.1 探索開始候補点(候補 MB)の設定

2次探索の探索開始点を決定するため、1次探索で12個の探索開始候補点(候補 MB)を設定する.図 2.2 に現フレーム、前(参照)フレーム、前々フレー ムおよび MB の位置関係を示す.A は現フレーム 中の符号化対象 MB, B~Eは現フレーム中の MB, P は A と同位置で前フレーム中の MB, F~I は前フ レーム中の MB, Q は A と同位置で前々フレーム中 の MB である.今、MB 名が Z の動きベクトルを

図 2.1 符号化対象 MB と周辺 MB

MVz, *MVz*の x 方向成分を *MVzx*, y 方向成分を *MVzy*と定義し、この定義を用いて、上記 12 個の候 補点を下記のように分類する.

 ● 1 個目, 2 個目, 3 個目, 4 個目, 5 個目, 6 個目, 7 個目, 8 個目の候補 MB は前フレーム中で, P から MV_B, MV_C, MV_D, MV_E, MV_F, MV_G, MV_H, MV_I だけ離れた位置の MB, 9 個目の候補 MB は P である.

• 10 個目の候補 MB は前フレーム中で, P から x 方向に MV_{Bx} , MV_{Dx} , MV_{Ex} の中間値だけ, y 方向に MV_{By} , MV_{Dy} , MV_{Ey} の中間値だけ離れた位置の MB である \emptyset . 例 えば, $MV_{\text{By}} \ge MV_{\text{Dx}} \ge MV_{\text{Ex}}$, $MV_{\text{Ey}} \ge MV_{\text{By}} \ge MV_{\text{Dy}}$, とすれば, 候補 MB は P から x 方向に MV_{Dx} だけ, y 方向に MV_{By} だけ離れた位置の MB である. • 11 個目の候補 MB は前フレーム中で, P から x 方 向に $MV_{\text{Bx}} \sim MV_{\text{Ix}}$, MV_{Px} の平均値だけ, y 方向に MV_{By} $\sim MV_{\text{Iy}}$, MV_{Py} の平均値だけ離れた位置の MB である. • 12 個目の候補 MB は前フレーム中で, P から x

方 向 に {(*MV*_{Px}-*MV*_{Qx})+*MV*_{Px}}, y 方 向 に {(*MV*_{Py}-*MV*_{Qy})+*MV*_{Py}}だけ離れた位置の MB である. 2 次探索の探索開始点は 1~12 個目の各候補点の全 てでブロックマッチングを行い, 差分絶対値和 (*D*_a)を求め,この中から *D*_aが最小の候補点を 2 次 探索の探索開始点とする.

2.2 2次探索(PFSW 探索)

2 次探索は額縁形探索窓(PFSW)を採用した繰り 返しサブサンプリング探索である.第1回探索は1 次探索1~5の何れかで決定された探索開始点から 動きベクトル検出(BME)を開始し,大きく設定され た額縁形探索窓でBMEを実施する.第2回探索以 後,窓サイズを順次縮小しながら,BMEを繰返す ことにより,より最適なMBを検出する.

2.2.1 探索窓サイズの設定

A. 第1回探索

前フレーム中に設定される第1回探索の探索窓, 探索中心を図2.2に示す.全探索法(FS)の探索窓サ イズ(x方向_F,y方向_F)=(X_F , Y_F)を($\pm p_0$ 画素, $\pm p_0$ 画素), A, P, Qの位置(C₁)を(x_1 =0, y_1 =0)とする.また,第 1回探索の探索開始点(C₂₁)を前フレーム中の(x_{21} , y_{21})とする.C₂₁(x_{21} , y_{21})はC₁(x_1 =0, y_1 =0)からx方向 に x_{21} 画素,y方向に y_{21} 画素離れた位置にある.

第1回探索の額縁形探索窓サイズ(x 方向 21, y 方 向 21)=(X21, Y21)を, FSの探索窓サイズ(XF, YF)より小 さく設定する.つまり、{±(p0-x21), ±(p0-y21)}とする. 図 2.2 では、一例として、(XF, YF)=(±10, ±10)、(x21,

図 2.2 額縁形探索窓(PFSW)アルゴリズムの処理過程

 y_{21})=(1,2)としているので, (X_{21}, Y_{21}) =(9,8)となる. (X_{21}, Y_{21}) をさらに縮小する事も考慮し,縮小窓サ イズを (RX_{21}, RY_{21}) ={ $\pm R(p_0-x_{21}), \pm R(p_0-y_{21})$ }と定義す る. Rは縮小計数($R \le 1$)で,下記に定義する6個の 「距離」と距離計数($d \le 1$)から決定される.6個の距 離が小さい場合(距離 $\le p_0 d$), Rを小さな値(例えば, R=0.5)とし,探索窓サイズ小さくする.一方,6個 の距離が大きい場合(距離> $p_0 \times r$), Rを大きな値(例 えば, R=1.0)とし,探索窓サイズを大きくする. 6個の距離は B, D, F の各動きベクトルと P の動 きベクトルの同一方向成分の差で定義される.つま り,6個の距離は $MV_{\text{Bx}}-MV_{\text{Px}}, MV_{\text{Dx}}-MV_{\text{Px}}, MV_{\text{Fx}}-MV_{\text{Px}},$ $MV_{\text{By}}-MV_{\text{Py}}, MV_{\text{Dy}}-MV_{\text{Py}}, MV_{\text{Fy}}-MV_{\text{Py}}$ である.

B. 第2回探索以後

2 次探索, 第 m 回探索の探索窓サイズ(x 方向 2m, y
方向 _{2m})=(X _{2m} , Y _{2m})は下式で設定される(m	≥2).
$X_{2m} = \{(M-m)/(M-1)\}X_{2(m-1)} + 1$	(1)
$Y_{2m} = \{(M-m)/(M-1)\}Y_{2(m-1)} + 1$	(2)
ここで, M は第2次探索の最大繰り返	し探索回数
である. 第2回探索(m=2)の(X22, Y22)は	
$X_{22} = \{(M-2)/(M-1)\}X_{21} + 1 \approx X_{21} + 1$	
$Y_{22} = \{(M-2)/(M-1)\}Y_{21} + 1 \approx Y_{21} + 1$	
となる. 第3回探索(m=3)以後の探索窓	サイズも同
様に設定できる. 第(M-1)回探索の(X _{2(M-1})), Y _{2(M-1)})は
$X_{2(M-1)} = \{(M-M+1)/(M-1)\}X_{2(M-2)} + 1$	
$= \{X_{2(M-2)}/(M-1)\}+1$	
$Y_{2(M-1)} = \{(M-M+1)/(M-1)\}Y_{2(M-2)} + 1$	
$= \{Y_{2(M-2)}/(M-1)\} + 1$	
となる. 最終回(<i>m=M</i>)の(<i>X</i> _{2<i>M</i>} , <i>Y</i> _{2<i>M</i>})は	
$X_{2M} = \{(M-M)/(M-1)\}X_{2(M-1)} + 1 = 1$	
$Y_{2M} = \{(M-M)/(M-1)\}Y_{2(M-1)} + 1 = 1$	

となり、2次探索は終了する.

図 3.1 評価に用いた HDTV 動画像 (a) "Bronze with Credits", (b) "Ice Hockey", (c) "Whale Show", (d) "Tractor", (e) "Riverbed"

2.2.2 2次探索の探索手順

A. 探索点の設定

探索点は額縁状探索窓上に 16 点設定される.第 1回探索の探索点は,図 2.3 に示すように,上部額 縁には,C₂₁のx座標点(x₂₁)から-RX₂₁,-RX₂₁/2,0, +RX₂₁/2 だけ離れた位置の4点(□)に設定される. 以下同様に,残りの下部,左,右探額縁に4点ずつ 設定される.第2回探索以後の探索点も,第1回探 索の探索点と同様に,額縁状探索窓上に通常16点 設定される.

B. 最適探索点の決定

最適探索点は額縁上の 16 点と探索開始点の予測 誤差(D_a)のうち最小 D_a の MB とする.第1 回探索 では、まず額縁上の 16 点の探索点と符号化対象 MB(A)との間でブロックマッチングを行い、 D_a を 求める.これらの D_a と計算済みの探索開始点(C_{21}) の D_a のうち最小 D_a の MBを第2回探索の探索開始 点(C_{22})=(x_{22} , y_{22})とする.第m回(m=2 \sim M)の最適探 索点も第1回探索と同様なブロックマッチングに より検出される.

2.3 3次探索(ダイアモンド探索)

図 2.3 に示すように、3 次探索は $C_{31}=(2, -6)$ (Δ) を中心として、上下左右の4点 {本図では2点(\oplus)} で第1回探索を行い、最小 D_a のMBを求める.こ のMBが $C_{32}=(2, -7)$ とすれば、次に、 C_{32} の周囲の3 点(Φ)で探索を行う.以後同様に、3点(あるいは2 点)探索を継続する.探索の停止は探索ステップ毎 に全探索点の差分絶対値和(D_a)の減少が停止する {減少分(ΔD_a)が0となる}時点とする.また、 D_a の

衣 5. 凹貫と処理重の解析采	杤条件
-------------------	-----

プロファイル@レベル	MP@HL			
COD 樓洪	N=15, M=3			
OOF 伸迫	(IBBPBBPBBPBBPBBIBB)			
データレート(R_d)	15 Mbps			
フレームサイズ	1,920×1,088 (1080+8 black lines)			
フレームレート $(R_{\rm F})$	25 fps			
探索窓サイズ(p ₀)	±16~±192 画素 (HDTV)			
フレーム数	450 (1,080i), 150 (1,088p)			
1/4 画素探索	使用			
参照フレーム数	1			
ブロックサイブ	16×16, 16×8, 8×16, 8×8,			
フロツクリイベ	8×4, 4×8, 4×4 画素			
レートコントロール	使用			
Early Skip	非使用			
InitialQP	画像ごとに適応的に設定			
綻小計粉(D<1)	6個の距離≤0.25p₀:R=0.5			
$ME/\Gamma_{P} \propto (K \geq 1)$	6 個の距離>0.25p ₀ :R=1.0			
距離計数(d≤1)	0.25			
FS の窓サイズ(±p ₀ , ±p ₀)	10			

減少が停止する以前に, 探索点が FS の探索窓 (±*X* F, ±*Y*F)の外側に出る場合も2次探索を停止する.こ の場合, 外側に出る前に得られた最小 *D*aの探索点 を符号化対象 MB の最終動きベクトルとする.

3 額縁形探索窓(PFSW)アルゴリズムの特性

3.1 テスト画像と解析条件

H.264/AVC に準拠したソフトウェアエンコーダ JM12.3^[7] に PFSW アルゴリズムを実装し, 画質と 処理量を評価した. 用いた画像は 6 種類の HDTV 動画像で, 動きの複雑な "Bronze with Credits", "Ice Hockey", 動きの速い"Whale Show", "Tractor", 動 きの遅い"Riverbed", である(図 3.1). 解析条件を表 3.1 にまとめる.

3.2 PFSWの探索速度と画質の評価

図3.2に"Bronze with Credits"で評価した各種アル ゴリズムの解析結果を示す. (a)は平均差分演算回 数/MB(N_b), (b)は平均ピークS/N(R_{sn}), (c)はフレー ム毎に推移する R_{sn} , (d)は R_{sn} とデータレート(R_d)の 関係である. (a), (b)中の〇はFS, □は従来の高速 アルゴリズムであるS-UMHS^[1], ▽は同じく従来の 高速アルゴリズムであるEPZS^[2], ●はPFSWである. 表3.2に"Bronze with Credits", で評価した上記アル ゴリズムの N_b , R_{sn} , 速度比(F_s), FSを基準としたピ ークS/N差をまとめる.最も高い R_{sn} が得られる最小 の窓サイズは p_0 =±64画素である.

3.3 PFSWの探索速度と画質の評価

3.3.1 速度解析

 p_0 が増加すると, FS, S-UMHSの N_b は増加するが, EPZS, PFSWはほぼ一定である.全ての探索範囲に おいてPFSWの N_b が,最も少ない.つまりそれぞれ の範囲で,PFSWが最も高速なアルゴリズムと言え る. p_0 =±64 画素では,PFSWはFSの325.55 倍, S-UMHSの3.795倍,EPZSの1.656倍高速化されてい る.

図 3.2 "Bronze with Credits"で評価した各種アル ゴリズムの解析結果 (a) 平均差分演算回数 /MB(N_b)と p_0 の関係, (b) 平均ピーク S/N(R_{sn}) と p_0 の関係, (c) フレーム毎に推移する R_{sn} , (d) R_{sn} とデータレート(R_d)の関係

表 3.2 に "Ice Hockey", "Whale Show", "Tractor", "Riverbed", で評価した各種アルゴリズムの解析結 果も合わせて示す. 各画像とも, p_0 の値は最も高い R_{sn} が得られる最小窓サイズの値である.

いずれのテスト画像においても、PFSW が最も速 いアルゴリズムであることがわかる. 例えば、 "Whale Show", $p_0=\pm112$ 画素では、PFSW は FS の 697.47 倍、S-UMHS の 5.472 倍、EPZS の 2.148 倍、高 速化されている.

3.3.2 画質解析

 $\pm 32 \le p_0 \le \pm 192$ 画素でPFSWの R_{sn} は高速アルゴリズ ムである、S-UMHS、EPZS、の R_{sn} はほぼ同等であ るが、FSと比べ、若干(0.1~0.2dB)劣化している. しかし、 $p_0 = \pm 64$ 画素では、PFSWの R_{sn} (33.082dB)は FSの R_{sn} (33.204dB)より0.122dB下回るだけで、画質 に遜色は無いと言える.

図 3.2(c)に FS と PFSW の R_{sn} を示す.両 R_{sn} はい ずれのフレームにおいてもほぼ一致している.図 3.2(d)にデータレート(R_d)を変数とする FS と PFSW の R_{sn} を示す.両 R_{sn} にほとんど差はみられない. 図 3.2(b)~(d)より,PFSW は FS 並みの画質を補償 していることがわかる.PFSW の R_{sn} を FS の R_{sn} と 比べると,"Bronze with Credits"では 0.122 dB の減 少(劣化),"Ice Hokey"では 0.054 dB の減少(劣化), "Whale Show"では 0.065dB の増加(改善),"Tractor" では 0.002 dB の減少(劣化),"Riverbed"では 0.004 dB

表 3.2 動画像解析結果 (R_d=15Mbps, R_F=25 fps, Pピクチャ)

テスト 画像 (pa)	アルゴリ ズム	<i>N</i> b [旦]	Fs [倍]	Fs [倍]	Fs [倍]	R _{sn} [dB]	FSと の差 [dB]
Bronze with Credits (±64)	FS	5,498,639.94	1.00			33.204	0.000
	S-UMHS	64,093.28	85.79	1.000		33.093	-0.111
	EPZS	27,972.85	196.57	2.291	1.000	33.087	-0.117
	PFSW5	16,890.21	325.55	3.795	1.656	33.082	-0.122
Ice Hockey (±112)	FS	12,760,735.59	1.00			40.347	0.000
	S-UMHS	40,214.90	31731	1.000		40.248	-0.099
	EPZS	25,940.43	491.92	1.550	1.000	40.320	-0.027
	PFSW5	20,794.96	613.65	1.934	1.247	40.293	-0.054
Whale Show (±112)	FS	17,431,853.10	1.00			31.357	0.000
	S-UMHS	136,764.11	127.46	1.000		31.386	0.029
	EPZS	53,682.20	324.72	2.548	1.000	31.408	0.051
	PFSW5	24,993.04	697.47	5.472	2.148	31.422	0.065
Tractor (±64)	FS	4,626,846.60	1.00			39.669	0.000
	S-UMHS	54,737.63	84.53	1.000		39.578	-0.091
	EPZS	33,129.12	139.66	1.652	1.000	39.559	-0.110
	PFSW5	22,431.65	206.26	2.440	1.477	39.667	-0.002
	FS	850,072.38	1.00			36.137	0.000
Riverbed (±16)	S-UMHS	61,133.16	13.91	1.000		36.148	0.011
	EPZS	26,460.73	32.13	2.310	1.000	36.166	0.029
	PFSW5	18,692.28	45.48	3.227	1.416	36.133	-0.004

の減少(劣化), である. PFSW と FS の差が極めて 小さいことから, PFSW は FS と全く遜色のないア ルゴリズムで, 画質面で最も優れたアルゴリズムの 一つと言える.

4 おわりに

額縁形探索窓(Picture Frame-Shaped Window; PFSW)を採用したPFSWアルゴリズムを開発し、5 種類のHDTVテスト画像を用いて,探索速度と画質 を評価した.この結果,本アルゴリズムは多種多様 な画像(動きの遅い画像,動きの速い画像,絵柄が 複雑な画像)に柔軟に対応でき,かつFSと同等の画 質を維持できるアルゴリズムであることがわかっ た.さらに,PFSWアルゴリズムは,既報告アルゴ リズム中,最も高速処理できる動きベクトル検出ア ルゴリズムであることもわかった.

謝辞

本論文の研究にあたり,熱心な御指導と御助言を下さ った榎本名誉教授,小林准教授に心より感謝致します.

また、本論文をまとめるにあたり数々のご指導下さった指 導教授の趙教授ならびに情報工学専攻教授の方々に心より 御礼を申し上げます.

参考文献

- X. Yi, J. Zhang, N. Ling, and W. Shang, "Improved and simplified fast motion estimation for JM", JVT-P021.doc, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 16th Meeting, Pozan, Poland, July 2005.
- [2] A. M. Tourapis, Proc. in Visual Communications and Image Processing, in San Jose, CA, USA, pp. 1069-1079, Jan. 2002.
- [3] JM Reference Software [Available Online]. http://bs.hhi.de/suehring/tml/download/