球面内の完備な部分多様体について On complete minimal submanifolds in a sphere

数学専攻 鈴木 翔吾 Shogo Suzuki

Let $S^{n+p}(c)$ be an $(n+p)$－dimensional Euclidean sphere of constant curvature c and M an n－dimensional minimal submanifold isometrically immersed in $S^{n+p}(c)$ ． We denote by A_{ξ} the Weingarten endomorphism associated a normal vector field ξ and T the tensor defined by $T(\xi, \eta)=\operatorname{trace}_{\xi} A_{\eta}$ ．

Yuan and Matsuyama［13］proved the following：Let M be an n－dimensional compact minimal submanifold isometrically immersed in $S^{n+p}(c)$ ．Let σ and ψ are the second fundamental form of M in $S^{n+p}(c)$ and the immersion respectively．Then

$$
|\sigma|^{2} \leq \frac{n p(n+2)}{2(n+p+2)} c \quad \text { and } \quad T=k\langle,\rangle
$$

if and only if one of the following conditions is satisfied：
（A）$|\sigma|^{2} \equiv 0$ and M is totally geodesic．
（B）$|\sigma|^{2}=\frac{n p(n+2)}{2(n+p+2)} c$ and M is isotropic and has parallel second fundamental form．

Hence if ψ is full，then ψ is one of the following standard ones：$S^{n}(c) \rightarrow$ $S^{n}(c) ; P R^{2}\left(\frac{1}{3} c\right) \rightarrow S^{4}(c) ; S^{2}\left(\frac{1}{3} c\right) \rightarrow S^{4}(c) ; C P^{2}(c) \rightarrow S^{7}(c) ; Q P^{2}\left(\frac{3}{4} c\right) \rightarrow S^{13}(c) ;$ $C P^{2}\left(\frac{4}{3} c\right) \rightarrow S^{25}(c)$ ．

Moreover，they obtain the reseult of the case of M being complete：Let M be an n－dimensional complete minimal submanifold isometrically immersed in $S^{n+p}(c)$ ． Then

$$
|\sigma|^{2} \leq \frac{n p(n+2)}{2(n+p+2)} c \quad \text { and } \quad T=k\langle,\rangle
$$

Then if and only if one of the following conditions is satisfied：
（A）$|\sigma|^{2} \equiv 0 \quad$ and M is totally geodesic．
（B）$|\sigma|^{2}=\frac{n p(n+2)}{2(n+p+2)} c$ and M is isotropic and has parallel second fundamental form．

Rerated to these results， Li and $\mathrm{Li}[2]$ obtained without assumption of $T=k\langle$,$\rangle ，$ the following：Let $A_{1}, A_{2}, \ldots, A_{p}$ be symmetric $(n \times n)$－matrices（ $p \geq 2$ ）．Denote $S_{\alpha \beta}=\operatorname{trace}^{t} A_{\alpha} A_{\beta}, S_{\alpha}=S_{\alpha \alpha}=N\left(A_{\alpha}\right), S=S_{1}+\cdots+S_{p}$ ．Then we have

$$
\sum_{\alpha, \beta} N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)+\sum_{\alpha, \beta} S_{\alpha \beta}^{2} \leq \frac{3}{2} S^{2},
$$

and the equality holds if and only if one of the following conditions holds：

1) $A_{1}=A_{2}=\ldots=A_{p}=0$,
2) only two of the matrices $A_{1}, A_{2}, \ldots, A_{p}$ are different from zero. Moreover, assuming $A_{1} \neq 0, A_{2} \neq 0, A_{3}=\ldots=A_{p}=0$, then $S_{1}=S_{2}$, and there exists an orthogonal $(n \times n)$-matrix T such that

$$
\begin{aligned}
& { }^{t} T A_{1} T=\sqrt{\frac{S_{1}}{2}}\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & -1 & \\
\hline 0 & 0
\end{array}\right), \\
& { }^{t} T A_{2} T=\sqrt{\frac{S_{1}}{2}}\left(\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & \\
\hline 0 & 0
\end{array}\right) .
\end{aligned}
$$

Using the result, they proved the following: Let M be an n-dimensional compact minimal submanifold in $S^{n+p}, p \geq 2$. If $|\sigma|^{2} \leq \frac{2}{3} n$ everywhere on M, then M is either a totaly geodesic submanifold or a Velonese surface in S^{4}.

Now let $v \in U M_{x}, x \in M$. If e_{2}, \ldots, e_{n} are orthonormal vectors in $U M_{x}$ orthogonal to v, then we can consider $\left\{e_{2}, \ldots, e_{n}\right\}$ as an orthonormal basis of $T_{v}\left(U M_{x}\right)$. We remark that $\left\{v=e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an orthonormal basis of $T_{x} M$. If we denote the Laplacian of $U M_{x} \cong S^{n-1}$ by Δ, then $\Delta f=e_{2} e_{2} f+\cdots+e_{n} e_{n} f$, where f is a differentiable function on $U M_{x}$.

Define functions $f_{1}(v), f_{2}(v), \cdots, f_{16}(v)$ on $U M_{x}, x \in M$, by

$$
\begin{array}{rlrl}
f_{1}(v) & =\sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} v, A_{\sigma(v, v)} e_{i}\right\rangle & f_{9}(v)=\sum_{i, j=1}^{n}\left\langle A_{\sigma\left(e_{j}, v\right)} e_{i}, A_{\sigma\left(e_{j}, v\right)} e_{i}\right\rangle, \\
f_{2}(v) & =\sum_{i, j=1}^{n}\left\langle A_{\sigma\left(e_{j}, e_{i}\right)} e_{j}, A_{\sigma(v, v)} e_{i}\right\rangle, & f_{10}(v) & =\sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} e_{i}, v\right\rangle, \\
f_{3}(v) & =\sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} v, A_{\sigma\left(v, e_{i}\right)} e_{i}\right\rangle, & f_{11}(v)=\left|A_{\sigma(v, v)} v\right|^{2} . \\
f_{4}(v)=\sum_{i, j=1}^{n}\left\langle A_{\sigma\left(e_{j}, e_{i}\right)} e_{j}, A_{\sigma\left(v, e_{i}\right)} v\right\rangle, & f_{12}(v)=\sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} v, A_{\sigma\left(v, e_{i}\right)} v\right\rangle \\
f_{5}(v)=\sum_{i, j=1}^{n}\left\langle A_{\sigma\left(e_{i}, v\right)} e_{i}, A_{\sigma\left(v, e_{j}\right)} e_{j}\right\rangle, & f_{13}(v)=|\sigma(v, v)|^{4} \\
f_{6}(v)=\sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} e_{i}, A_{\sigma(v, v)} e_{i}\right\rangle, & f_{14}(v)=\sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} e_{i}, v\right\rangle|\sigma(v, v)|^{2} \\
f_{7}(v)=|\sigma(v, v)|^{2}, & f_{15}(v)=\left(\sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} e_{i}, v\right\rangle\right)^{2} \\
f_{8}(v)=\sum_{i, j=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} e_{j}, A_{\sigma\left(e_{j}, v\right)} e_{i}\right\rangle, & f_{16}(v)=|\sigma|^{2}|\sigma(v, v)|^{2},
\end{array}
$$

The following generalized maximum principle due to Omori [11] and Yau [18] will be used in order to prove our theorem.

Generalized Maximum Principle. (Omori [11] and Yau [18])Let M^{n} be a complete Riemannian manifold whose Ricci curvature is bounded from below and $f \in$ $C^{2}(M)$ a function bounded from above on M^{n}. Then, for any $\epsilon>0$, there exists a point $p \in M^{n}$ such that

$$
f(p) \geq \sup f-\epsilon, \quad\|\operatorname{grad} f\|<\epsilon, \quad \Delta f(p)<\epsilon .
$$

We have the following (See [7] and [8])
Lemma. Let M be an n-dimensional minimal submanifold isometrically immersed in $S^{n+p}(c)$. Then for $v \in U M_{x}$ we have

$$
\begin{aligned}
\frac{1}{2} \sum_{i=1}^{n}\left(\nabla^{2} f_{7}\right)\left(e_{i}, e_{i}, v\right)= & \sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}+n c|\sigma(v, v)|^{2} \\
& +2 \sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} e_{i}, A_{\sigma\left(e_{i}, v\right)} v\right\rangle-2 \sum_{i=1}^{n}\left\langle A_{\sigma\left(v, e_{i}\right)} e_{i}, A_{\sigma(v, v)} v\right\rangle \\
& -\sum_{i=1}^{n}\left\langle A_{\sigma(v, v)} e_{i}, A_{\sigma(v, v)} e_{i}\right\rangle \\
= & \sum_{i=1}^{n}\left|(\nabla \sigma)\left(e_{i}, v, v\right)\right|^{2}+n f_{7}(v)+2 f_{1}(v)-2 f_{3}(v)-f_{6}(v)
\end{aligned}
$$

Using this Lemma and the result [2], we obtained: Theorem 1. Let M be an n dimensional complete minimal submanifold in $S^{n+p}, p \geq 2$. If $|\sigma|^{2} \leq \frac{2}{3} n$ everywhere on M, then M is isotropic and either a totally geodesic submanifold or a Veronese surface in S^{4}

On the other hand, in Yuan and Matsuyama [13], we assume codimension $=2$ and

$$
\operatorname{trace} A_{\alpha}^{2} \leq \frac{n(n+2)}{2(n+4)} c \quad \text { for } \quad \forall_{\alpha}
$$

every where on M, we obtained:
Theorem 2. Let M be an n-dimensional complete minimal submanifold in S^{n+2}. If trace $A_{\alpha}^{2} \leq \frac{n(n+2)}{2(n+4)} c$ for ${ }^{\forall} \alpha$, then M is isotropic and either a totally geodesic submanifold or isotropic and has parallel second fundamental form.

Especially, $n=2 \Rightarrow S^{2}\left(\frac{1}{3} c\right) \rightarrow S^{4}(c)$ and $\quad n=5 \Rightarrow S^{5} \rightarrow S^{7}(c)$.

References

[1] S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (1970), 59-75.
[2] A. M. Li and J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58(1992), 582-594.
[3] Y. Matsuyama, On some pinchings of minimal submanifolds, Geometry and its applications, edited by Tadashi Nagano et al., World scie ntific, Singapore (1993), 121-134.
[4] Y. Matsuyama, On submanifolds of a sphere with bounded second fundamental form, Bull. Korean Math. Soc. 32 (1995), No. 1, pp. 103-113.
[5] Y. Matsuyama, Curvature pinching for totally real submanifolds of a complex projective space, J. Math. Soc. Japana Vol. 52, No. 1, 2000.
[6] S. Montiel, A. Ros and F. Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
[7] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19(1967), 205-214.
[8] K. Sakamoto, Planar geodesic immersions, Tohoku Math. J. 29 (1977), 25-56.
[9] Y. Uchida and Y. Matsuyama, Submanifolds with nonzero mean curvature in a euclidean sphere, I. J. Pure and Appl. Math., 29(2006), 119-130.
[10] C. Xia, On the minimal submanifolds in $C P^{m}(c)$ and $S^{N}(1)$, Kodai Math. J. 15 (1992), 143-153.
[11] S. T. Yau, Submanifolds with constant mean curvature, Amer. J. Math., 96(1974), 346-366.
[12] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math, 28(1975), 201-228.
[13] L. Yuan and Y. Matsuyama, Curvature pinching for a minimal submanifolds of a sphere, J. Adv. Math. Stud. Vol. 7(2014), No. 1, 45-55.

