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Abstract

In this study, we develop a New Keynesian model that includes the policy rule

with which the nominal interest rate’s responses are induced according to fluctua-

tions in three economic variables, namely output, the inflation rate, and asset prices.

In this model, we also assume that there is a time lag in the interest rate’s response

to each variable. The model economy is represented as a “differential equation sys-

tem with three delays.” For the determinacy analysis, we use the numerical method

developed by Gu and Naghnaeian [K. Gu and M. Naghnaeian, Stability crossing set

for systems with three delays, IEEE Transactions on Automatic Control 56 (2011),

pp. 11–26] to find the parameter regions that achieve local determinacy in order to

examine the effects of the three policy lags on local equilibrium determinacy. This is

the first such application of this method to New Keynesian economics. We demon-

strate that implementations of monetary policy should be “purposefully” delayed to

achieve local equilibrium determinacy. Hence, the central bank should determine its

target variables by considering not only the responsiveness of the nominal interest

rate to output, the inflation rate, and asset prices but also the lag lengths associated

with policy implementations.
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1 Introduction

Optimizing models that consider price stickiness are referred to as New Keynesian (NK)

models. The standard NK model comprises three equations: an Euler equation, Phillips

curve, and monetary policy rule.1 Benhabib et al. (2003) assume the backward-looking

monetary policy rule wherein the nominal interest rate responds to the weighted mean of

past inflation rates (i.e., lagged inflation rates).

Generally, time lags can be classified into two types, namely distributed lag models

and fixed lag models, of which Benhabib et al.’s (2003) model can be considered to be

the former. In this study, we develop an NK model that includes fixed time lags. This

is, we assume that the nominal interest rate responds to target variables evaluated at

fixed points in time. Conceptually, fixed lag models can be regarded as limiting cases of

distributed lag models wherein the weighting factor for each target variable is unity at a

certain point in time. Algebraically, however, it is impossible to treat fixed lags as special

cases of distributed lags. Accordingly, spatial methods must be used.

In the simplest case where the system includes only one fixed lag, its characteristic

function can generally be expressed as follows: ∆(λ) = p0(λ)+p1(λ)e
−λτ , where λ is a root,

τ > 0 is the lag length, and p0(λ) and p1(λ) are polynomials of λ. Owing to the existence

of the exponential function e−λτ , the equation ∆(λ) = 0 includes an infinite number of

roots. Bellman and Cooke (1963), among others, have characterized the solutions of this

type of function.

Recently, more complex configurations of characteristic functions have been examined:

• Beretta and Kuang (2002): lag-dependent parameters; ∆(λ) = p0(λ, τ)+p1(λ, τ)e
−λτ .

• Gu et al. (2005): two lags; ∆(λ) = p0(λ) + p1(λ)e
−λτ1 + p2(λ)e

−λτ2 .

• Deng et al. (2006): time-dependent lag; ∆(λ) = p0(λ) + p1(λ)e
−λτ(t).

• Gu and Naghnaeian (2011): three lags; ∆(λ) = p0(λ) + p1(λ)e
−λτ1 + p2(λ)e

−λτ2 +

p3(λ)e
−λτ3 .

• Lin and Wang (2012): two lags (where one of the exponential functions includes the

sum of lags); ∆(λ) = p0(λ) + p1(λ)e
−λτ1 + p2(λ)e

−λτ2 + p3(λ)e
−λ(τ1+τ2).

1Introductory textbooks for NK economics are presented by Woodford (2003), Walsh (2010), and Gaĺı

(2015).
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In economics (especially in the context of NK economics), however, few works have ex-

amined the effects of fixed time lags,2 especially compared with the many applications of

these mathematical studies in biology.

Tsuzuki (2014, 2015) develops NK models that include only one fixed lag in the mon-

etary policy rule. Here, the nominal interest rate is assumed to change in response to

fluctuations in the inflation rate with a time lag, which represents an inflation targeting

policy with delay. Tsuzuki’s models can thus be considered to be fixed lag versions of

Benhabib et al.’s (2003) model. According to Tsuzuki (2014, 2015), an increase in the

lag time necessarily increases the number of roots with positive real parts. Accordingly,

a policy lag may resolve the problem of equilibrium indeterminacy. However, in a system

with two fixed lags, as in the model of Tsuzuki et al. (2015) that includes monetary and

fiscal policy lags, an increase in the lag may raise the number of roots with negative real

parts. This finding implies that a policy lag may resolve the problem of instability rather

than that of indeterminacy.

In the present study, we consider the coexistence of three fixed lags in monetary policy

responses. The model economic system is developed based on the model of Carlstrom and

Fuerst (2007). In their model, the central bank was assumed to manipulate the nominal

interest rate according to variations in both the inflation rate and asset prices. We add

output as the third variable of the policy rule in accordance with the formulation in

Bullard and Mitra (2002).

In the simplest NK model that does not include a time lag and in which the nominal

interest rate responds only to the inflation rate, the necessary and sufficient condition

for achieving local equilibrium determinacy is that the nominal interest rate increases by

more than one unit when a one-unit increase in the inflation rate occurs; in other words,

a monetary policy must be “active.” This is the well-known policy norm referred to as

the “Taylor principle.” However, some notable studies have demonstrated that even if

the Taylor principle is not satisfied, equilibrium determinacy can be achieved. Meng and

Yip (2004), Bilbiie (2008), and Gliksberg (2009) show that equilibrium determinacy can

be achieved when endogenous investment, limited asset market participation, and the

2In economics, Guerrini and Sodini (2013) and Tsuzuki and Shinagawa (2015) apply Beretta and

Kuang’s (2002) method, while Matsumoto and Szidarovszky (2015b) apply Lin and Wang’s (2012)

method. In addition, Matsumoto and Szidarovszky (2015a) present an application of Gu et al.’s (2005)

method.
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existence of capital adjustment costs, respectively, are assumed.3 Furthermore, Bullard

and Mitra (2002) and Carlstrom and Fuerst (2007) demonstrate that in discrete-time

sticky-price models, an increase in the responsiveness of the nominal interest rate to both

the inflation rate and output increases the possibility of the Taylor principle holding,

whereas an increase in the responsiveness of the nominal interest rate to asset prices

decreases this possibility.

In this study, we investigate the effects of monetary policy lags (i.e., the interaction

between multiple policy lags) on the condition for local equilibrium determinacy. First,

we consider the case where no policy lags are present. We demonstrate that the responses

of the nominal interest rate to both the inflation rate and output increase the possibility of

equilibrium determinacy, whereas responses to asset prices decrease that possibility, in line

with the results shown by Carlstrom and Fuerst (2007) and Bullard and Mitra (2002).

Next, we introduce three time lags to the monetary policy rule. For the determinacy

analysis, we use the numerical method developed by Gu and Naghnaeian (2011) to find

the parameter regions that achieve local determinacy. This is the first such application of

this method to NK economics.

An extensional part of the discussion about the rights and wrongs of the central bank’s

response to fluctuations in asset prices pertains to the difference between the views of the

Federal Reserve and the Bank for International Settlements. The Fed’s view, which derives

from a monetary policy perspective, is that the central bank should be dedicated to the

stabilization of commodity prices and that it does not need to respond to fluctuations in

asset prices. Bernanke and Gertler (2001) provide a theoretical ground with this view.

Conversely, the Bank for International Settlements’ view advocates a need for vigorous

austerity measures when confronted with excessive increases in asset prices. Carlstrom

and Fuerst (2007) establish the validity of the Fed’s view in the presence of sticky prices.

This is also confirmed in our model without a lag. However, if positive policy lags exist,

how would this result change, if at all? The present study provides an answer to this

question.

The remainder of this paper is organized as follows. Section 2 presents a differential

equation system that describes the dynamics of the model economy. Section 3 examines

the case with no policy lags. Section 4 examines the case with three policy lags. Section

3Buffie (2013) demonstrates that Bilbiie’s (2008) result strongly depends on the assumption of real

wage flexibility. If the real wage rate is sufficiently sticky, the Taylor principle reasserts itself as the

condition for determinacy.
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5 concludes.

2 The model

In this section, we present the standard NK model. The model economy is constructed by

firms, households, and the public sector. Each firm produces differentiated goods by using

workers under monopolistic competition. Likewise, each household supplies differentiated

workers to firms under monopolistic competition and consumes goods.

2.1 Intratemporal optimization of firms

Various types of differentiated workers indexed by j (j ∈ [0, 1]) exist. Firms first aggregate

the differentiated workers lj via the Dixit–Stiglitz function as follows:

l =

[∫ 1

0

l
η−1
η

j dj

] η
η−1

, (1)

where l is the composite labor and η > 1 is the elasticity of substitution among workers.

The first-order condition for cost minimization yields the demand function for worker

lj as follows:
4

lj =

(
Wj

W

)−η

l, (2)

where Wj is the nominal wage rate of worker lj and W is the nominal wage rate of the

whole economy, defined as W = [
∫ 1

0
W 1−η
j dj]

1
1−η .

2.2 Intratemporal optimization of households

Various types of differentiated consumption goods indexed by i (i ∈ [0, 1]) exist. House-

holds first aggregate their differentiated goods and then consume them as a composite

good. As in the previous section, we express the aggregation of goods as the Dixit–Stiglitz

function: y = [
∫ 1

0
y
ϕ−1
ϕ

i di]
ϕ
ϕ−1 , where y is the amount of the composite good and ϕ > 1 is

the elasticity of substitution among goods. The first-order condition for cost minimization

yields the demand function for good i as follows:

yi =

(
pi
p

)−ϕ

y, (3)

4See Blanchard and Kiyotaki (1987).
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where pi is the price of good i and p is the price level, represented as p = [
∫ 1

0
p1−ϕi di]

1
1−ϕ .

2.3 Intertemporal optimization of firms

We assume a linear technology and specify the production function of good i as follows:

yi = li, (4)

where yi is the output of good i and li is the amount of composite labor used to produce

good i.

Considering the constraints expressed in Equations (3) and (4), firm i solves the profit

maximization problem as follows:

Maximizeπi

∫ ∞

0

[
piyi −Wli

p
− γ

2
(πi − π∗)2y

]
e−

∫ t
0 r(s)dsdt,

subject to ṗi = πipi,

where πi = ṗi/pi is the price change rate of good i, r is the real interest rate, and π∗ is

the steady-state value of the inflation rate. In addition, γ
2
(πi − π∗)2y represents a price

revision cost. Owing to the existence of this cost, the price becomes sticky. Hence, γ > 0

can be interpreted as a parameter that reflects the price stickiness measure; the larger

the value of γ, the greater the stickiness. Here, we formulate the price revision cost in

a quadratic function consistent with that outlined by Rotemberg (1982). Moreover, for

simplicity, we assume that the price revision cost is a firm’s payment to households that

do not spend on goods. For example, it is considered to be a lump-sum payment to

workers who handle price replacement tasks.

In the following discussion, we examine a “symmetric equilibrium” in which all firms’

behavior is based on the same equations. In this case, we can drop subscript i from

all the variables. Furthermore, as the number of goods is normalized to unity (see the

Dixit–Stiglitz function), the following expressions hold: pi = p, πi = π, and yi = y. By

using these expressions along with the solutions to the optimization problem above, we

can obtain

π̇ + (π − π∗)
ẏ

y
= r(π − π∗)− 1− ϕ

γ
− ϕ

γ

W

p
. (5)

This equation is the NK Phillips curve. Furthermore, economically significant solutions

would also require satisfying the transversality condition expressed as limt→∞ p(t)e−
∫ t
0 r(s)dsdt =

0.
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2.4 Intertemporal optimization of households

In every period, household j obtains utility from consumption cj and real money holding

mj, and disutility from labor supply lj. We specify the utility function as follows:

u(cj,mj, lj) ≡ ln cj + lnmj −
l1+ψj

1 + ψ
, (6)

where ψ > 0 is the disutility elasticity of labor supply.

Households possess assets that comprise money Mj ≡ pmj, bond Bj, and a constant

volume of stock. We standardize the measure of stock to unity. The stock price relative

to the commodity price is denoted as Q and the stock yields dividend D in every period.

Nominal asset level Aj can be expressed as follows: Aj = Mj + Bj + pQ. Assets can be

increased based on income Wjlj, bond interest RBj (where R ≡ r + π is the nominal

interest rate), dividend D, capital gain Q̇, lump-sum income from firms T ≡ γ
2
(πi −

π∗)2y, and benefits from the government X, whereas assets can be decreased based on

consumption cj. Thus, we obtain

Ȧj = Wjlj +RBj + pD + pQ̇+ pT + pX − pcj. (7)

By using the non-arbitrage condition, the nominal yields on stock represented as Q̇+D
Q

+

π must equal the nominal interest rate for bonds R, i.e.,

Q̇ = RQ−D − πQ. (8)

By using this expression, Equation (7) can be rewritten as follows:

ȧj = wjlj + raj + T +X − cj −Rmj − πQ, (9)

where aj ≡ Aj/p is the real asset level of household j and wj ≡ Wj/p is the real wage

rate of worker lj.

Considering Equations (2) and (9), household j solves the utility maximization prob-

lem as follows:

Maximizecj ,mj ,Wj

∫ ∞

0

[
ln cj + lnmj −

l1+ψj

1 + ψ

]
e−ρtdt,

subject to ȧj = wjlj + raj + T +X − cj −Rmj − πQ,

where ρ > 0 is the subjective discount rate of households.
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Under the assumption of the symmetry condition, the following equations hold: cj =

c, Wj = W , and lj = l. By using these expressions along with the solutions to the

optimization problem above,5 we obtain

ċ

c
= r − ρ, (10)

w =
η

η − 1
clψ. (11)

Equation (10) is an Euler equation, which is one of the optimal conditions for a Ramsey-

type utility maximization problem. Equation (11) is a labor supply function. If the labor

market is perfectly competitive, the real wage rate w should equal the marginal disutility

of labor measured in terms of goods clψ.6 However, in the present model, the labor

market is monopolistically competitive. Hence, the real wage rate becomes equal to the

marginal disutility of labor multiplied by the markup η/(η− 1) > 1, as in Equation (11).

Furthermore, economically significant solutions would require satisfying the transversality

condition expressed as limt→∞ a(t)e−ρtdt = 0.

Finally, the profits of firms are paid to households in the form of a dividend; therefore,

D = y − W

p
l − γ

2
(π − π∗)2y. (12)

2.5 Central bank

The central bank manipulates nominal interest rate R according to fluctuations in output

y, inflation rate π, and asset price Q, which implies that it targets output, inflation, and

asset prices simultaneously. In this case, the monetary policy rule is expressed as follows:

R = R(y, π,Q); αy ≡
∂R

∂y
> 0; απ ≡ ∂R

∂π
> 0; αq ≡

∂R

∂Q
> 0; R̄ = R(y∗, π∗, Q∗), (13)

where αy, απ, and αq are the responsiveness of the nominal interest rate to output, the

inflation rate, and asset prices, respectively. In addition, R̄ > 0 is the target level of the

5One of the conditions for optimality is given by 1
mj

− µR = 0. The dynamics of the model economic

system can be examined without using this condition. Therefore, we ignore it from the simultaneous

equation system of the model economy.
6The inverse of the marginal utility of consumption is expressed as ∂c/∂u = c. In addition, the

marginal disutility of labor is expressed as ∂u/∂l = −lψ. Therefore, the marginal disutility of labor

measured in terms of goods is given by dc
dl = − ∂u/∂l

∂u/∂c = clψ.
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nominal interest rate that corresponds to the target levels of these three variables (we

regard their steady-state values here).

When delays are present in the central bank’s responses to economic fluctuations,

Equation (13) can be rewritten as follows:

R(t) = R(y(t− τ1), π(t− τ2), Q(t− τ3)), (14)

where τ1, τ2, and τ3 are delays in the output, inflation rate, and asset-price targeting

policies, respectively.

3 Case with no policy lags

To emphasize the effects of policy lags on equilibrium determinacy, we first consider the

case with no policy lags (i.e., τ1 = τ2 = τ3 = 0).

In this case, the model economic system comprises Equations (4), (5), (8), and (10)–

(13). By using the goods market equilibrium condition y = c, the system can be summa-

rized in the following three equations:

ẏ = [R(y, π,Q)− π − ρ]y,

π̇ = ρ(π − π∗)− 1− ϕ

γ
− ϕη

γ(η − 1)
y1+ψ,

Q̇ = R(y, π,Q)Q−
(
1− η

η − 1
y1+ψ − γ

2
(π − π∗)2

)
y − πQ.

(15)

The non-trivial solutions to this system are expressed as follows:

y∗ =

[
(ϕ− 1)(η − 1)

ϕη

] 1
1+ψ

,

π∗ = R̄− ρ,

Q∗ =

(
1− η

η − 1
y∗1+ψ

)
y∗

ρ
.

(16)

The Jacobian matrix of System (15) evaluated at the steady state can be given by

J ≡

 αyy
∗ (απ − 1)y∗ αqy

∗

−P1 ρ 0

αyQ
∗ + P2 (απ − 1)Q∗ αqQ

∗ + ρ

 ,
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where

P1 ≡
ϕη(1 + ψ)

γ(η − 1)
y∗ψ > 0,

P2 ≡ −
(
1− η

η − 1
y∗1+ψ

)
+
η(1 + ψ)

η − 1
y∗1+ψ

= −
(
1− η(2 + ψ)

η − 1
y∗1+ψ

)
= −

(
1− (2 + ψ)(ϕ− 1)

ϕ

)
.

For plausible parameter values, P2 > 0 holds.7 Hence, in the following discussion, we

assume that this inequality holds.

Thus, the characteristic equation of the above system can be represented as

∆1(x) ≡ |xI − J | = x3 + b1x
2 + b2x+ b3 = 0, (17)

where x is a characteristic root, I is an identity matrix,

b1 ≡ −traceJ
= −(αyy

∗ + αqQ
∗ + 2ρ) < 0,

b2 ≡ sum of the second-order principal minors of J

= −(P2y
∗ − ρQ∗)αq + ρ2 + 2αyy

∗ρ+ P1(απ − 1)y∗,

b3 ≡ −detJ
= αqy

∗ρP2 − αyy
∗ρ2 − P1(απ − 1)y∗ρ.

If αq = 0, Jacobian matrix J becomes decomposable. In other words, the dynamics of

y and π are unaffected by those of Q (whereas the dynamics of Q are affected by y and π).

Therefore, in this case, the dynamic structure of the system is consistent with that of a

simple NK model. Hence, the Taylor principle would hold as the necessary and sufficient

condition for determinacy. However, as demonstrated by Bullard and Mitra (2002), when

the nominal interest rate responds not only to the inflation rate but also to output,

the condition for determinacy becomes more complicated; in this case, the condition is

expressed as αyρ+P1(απ−1) > 0. If αy = 0, then the well-known determinacy condition,

απ > 1, can be obtained. When αq > 0, the following lemma holds:

7If ψ > ϕ/(ϕ− 1)− 2, P2 > 0; therefore, if specifically ϕ > 2, P2 > 0 holds for all ψ > 0.
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Lemma 1 The equilibrium is locally determinate if and only if

αq < αq3 ≡
αyρ+ P1(απ − 1)

P2

. (18)

Proof. Matrix J includes three roots. For equilibrium determinacy, all these roots must

have positive real parts. The necessary and sufficient conditions for all roots to have

positive real parts (Inverse Routh–Hurwitz theorem) are given by b1 < 0, b2 > 0, and

b3 < 0.8 Irrespective of the value of αq, b1 < 0 holds. Furthermore, b3 < 0 if and only

if the condition in Equation (18) is satisfied. A necessary condition for Equation (18) to

hold is that αyρ+P1(απ − 1) > 0. Under this condition, b2 is ensured to become positive

if P2y
∗ < ρQ∗; however, if P2y

∗ > ρQ∗, it becomes positive only when

αq < αq2 ≡
ρ2 + 2αyy

∗ρ+ P1(απ − 1)y∗

P2y∗ − ρQ∗ .

As αq2 > αq3, if Equation (18) is satisfied, αq < αq2 is also satisfied. Thus, b2 > 0 and

b3 < 0 if and only if αq < αq3. □

The economic implications of this result can be explained as follows. In our model, an

increase in the inflation rate increases the real wage rate, which is a marginal cost of firms.

This change further results in decreases in profits and asset prices (by P2 > 0). The central

bank responds not only to the variation in the inflation rate but also to the variation in

asset prices. Therefore, the response of the nominal interest rate to the inflation rate is

partly offset by the response to asset prices. This fact implies that the Taylor principle

becomes less likely to be satisfied. Thus, the larger the value of αq, the more likely is the

occurrence of indeterminacy. Carlstrom and Fuerst (2007) use a discrete-time sticky-price

model to demonstrate the equivalent result.9

8See Asada et al. (2007) and Tsuzuki (2013).
9See Proposition 1 in Carlstrom and Fuerst (2007). They also consider the cases where (i) nominal

wages are sticky and (ii) both prices and nominal wages are sticky. In this study, we examine the standard

case where only prices are sticky.
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4 Case with positive policy lags

The model economic system when Equation (14) is used as the policy rule is expressed as

follows:

ẏ(t) = [R(y(t− τ1), π(t− τ2), Q(t− τ3))− π(t)− ρ]y(t),

π̇(t) = ρ(π(t)− π∗)− 1− ϕ

γ
− ϕη

γ(η − 1)
y(t)1+ψ,

Q̇(t) = R(y(t− τ1), π(t− τ2), Q(t− τ3))Q(t)

−
(
1− η

η − 1
y(t)1+ψ − γ

2
(π(t)− π∗)2

)
y(t)− π(t)Q(t).

(19)

This is a differential equation system with three delays.

The steady-state values of System (19) are given by Equation (16). We linearize this

system at the steady state to obtain

˙̂y(t) = [αyŷ(t− τ1) + αππ̂(t− τ2) + αqQ̂(t− τ3)− π̂(t)]y∗,

˙̂π(t) = ρπ̂(t)− P1ŷ(t),

˙̂
Q(t) = αyQ

∗ŷ(t− τ1) + απQ
∗π̂(t− τ2) + αqQ

∗Q̂(t− τ3) + P2ŷ(t)−Q∗π̂(t) + ρQ̂(t),

(20)

where ŷ(t) ≡ y(t) − y∗, π̂(t) ≡ π(t) − π∗, and Q̂(t) ≡ Q(t) − Q∗. Assuming that the

exponential functions ŷ(t) = C1e
xt, π̂(t) = C2e

xt, and Q̂(t) = C3e
xt are the solutions to

this system, where C1, C2, and C3 are arbitrary constants, and plugging these functions

into System (20), we get the following: x− αyy
∗e−τ1x y∗ − απy

∗e−τ2x −αqy∗e−τ3x

P1 x− ρ 0

−P2 − αyQ
∗e−τ1x Q∗ − απQ

∗e−τ2x x− ρ− αqQ
∗e−τ3x


 ŷ(t)π̂(t)

Q̂(t)

 =

00
0

 .
The determinant of the left-hand side matrix must equal zero for non-trivial solutions to

exist:

∆2(x) ≡ s0(x) + s1(x)e
−τ1x + s2(x)e

−τ2x + s3(x)e
−τ3x = 0, (21)

12



where

s0(x) ≡ x3 − 2ρx2 + (ρ2 − P1y
∗)x+ P1y

∗ρ,

s1(x) ≡ −αyy∗x2 + 2αyy
∗ρx− αyy

∗ρ2,

s2(x) ≡ P1απy
∗x− P1απy

∗ρ,

s3(x) ≡ −αqQ∗x2 + (ραqQ
∗ − P2αqy

∗)x+ αqy
∗ρP2.

Equation (21) is the characteristic equation of System (19).

Owing to the existence of the terms that contain the exponential functions e−τ1x,

e−τ2x, and e−τ3x, Equation (21) has an infinite number of roots.10 Furthermore, unlike in

the case of ordinary differential equations, delay differential equations require the initial

values of y(t), π(t), and Q(t) evaluated not only at time zero (t0; present time) but also

at t0 − τ1 ≤ t < t0, t0 − τ2 ≤ t < t0, and t0 − τ3 ≤ t < t0. However, the only values that

economic agents can determine at time t0 are (y(t0), π(t0), Q(t0)) because “past values”

must be considered as given. Therefore, equilibrium determinacy can be achieved only

when there are exactly three roots with positive real parts among the infinite number of

roots. The equilibrium is indeterminate if fewer than three roots have positive real parts

and it is unstable if more than three roots have positive real parts (i.e., an equilibrium

path does not exist).

4.1 Method of analysis

The following analysis is performed based on the numerical method developed by Gu and

Naghnaeian (2011). The procedure is given as follows:

1. The set of the imaginary part of the roots that generates pure imaginary roots

(crossing frequency set: Ω) is characterized. The crossing frequency set is broadly

grouped into two types: Grashof and Non-Grashof sets.

2. The set of lags corresponding to the crossing frequency set (stability crossing set:

T ∈ (τ1, τ2, τ3)) is characterized.

3. By assuming plausible parameter values, we depict the stability crossing set as a

surface in a 3D space.

10See Chapter 3 in Bellman and Cooke (1963).
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The notations used in the following sections are defined as follows: R = set of all

real numbers; C = set of all complex numbers; Z+
3 = {1, 2, 3}; i = imaginary unit.

Furthermore, let u′ = (u mod 3) + 1 for u ∈ Z+
3 ; that is, 1

′ = 2, 2′ = 3, and 3′ = 1. In

addition, let u′′ = (u′)′ = [(u+ 1) mod 3] + 1. Then, {u, u′, u′′} = Z+
3 .

4.2 Preliminaries

First, to apply Gu and Naghnaeian’s (2011) method, some preconditions should be ex-

amined. The polynomials su(x), u = 0, 1, 2, 3, must satisfy the following conditions (non-

triviality assumptions):

Assumption 1 deg (s0(x)) ≥ max {deg (su(x))|u ∈ Z+
3 },

Assumption 2 s0(0) + s1(0) + s2(0) + s3(0) ̸= 0,

Assumption 3 lim
x→∞

|s1(x)|+ |s2(x)|+ |s3(x)|
|s0(x)|

< 1.

Assumption 1 ensures the existence of a set (τ1, τ2, τ3) ∈ R3
+ that establishes perfect

stability, wherein a root with a positive real part does not exist. However, this study

examines equilibrium determinacy, which is different from the concept of stability used in

mathematics. Hence, the existence of a perfectly stable state is not necessarily required;

nevertheless, we adopt this assumption only to apply Gu and Naghnaeian’s (2011) method.

Because deg (s0(x)) = 3 and max {deg (su(x))|u ∈ Z+
3 } = 2, this assumption is satisfied.

Assumption 2 implies that ∆2(0) ̸= 0; i.e., zero is not a root. For the same reason as for

Assumption 1, we adopt this assumption, while it also plays the only role of a necessary

condition to ensure the existence of a perfectly stable state. We should assume detJ ̸= 0

because ∆2(0) = −detJ . Finally, Assumption 3 is required to ensure the continuity of

roots over (τ1, τ2, τ3). Because limx→∞
|s1(x)|+|s2(x)|+|s3(x)|

|s0(x)| = 0, Assumption 3 is satisfied.

Under these assumptions, we can state the following: as the lags (τ1, τ2, τ3) continu-

ously vary within R3
+, the number of roots of ∆2(x) = 0 lying on C+ can change if a root

appears on or crosses the imaginary axis (Lemma 1 in Gu and Naghnaeian (2011)).
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4.3 Crossing frequency set

Denote a pure imaginary root as x = iω, where ω > 0 is the imaginary part.11 In this

section, we characterize the values of ω > 0 that satisfy ∆2(iω) = 0 (crossing frequency).

Let

au(x) =
su(x)

s0(x)
, u = 0, 1, 2, 3. (22)

Obviously, a0(x) = 1. Moreover, we also define that

f0(x) = |a1(x)|+ |a2(x)|+ |a3(x)|, (23)

fu(x) = |au′(x)|+ |au′′(x)| − |au(x)|, u = 1, 2, 3. (24)

By using Equation (22), ∆2(iω) = 0 can be rewritten as follows:

∆3(iω) = 1 + a1(iω)e
−iωτ1 + a2(iω)e

−iωτ2 + a3(iω)e
−iωτ3 = 0. (25)

Furthermore, by considering each term of Equation (25) as a vector depicted on the

complex plane, the four terms form a rectangle, as shown in Figure 1.12

a0(iω) = 1

a1(iω)e−iωτ1

a2(iω)e−iωτ2

a3(iω)e−iωτ3

Figure 1: Rectangle formed by the four vectors

From the geometric fact that a rectangle can be formed only when the length of one

side does not exceed the sum of the other lengths, we can postulate that a crossing

frequency set comprises ω > 0 that satisfy the following four inequalities:

f0(iω) ≥ 1

fu(iω) ≥ −1, u = 1, 2, 3.

11We can assume that ω > 0 without loss of generality because the complex roots will always be

conjugated.
12Note that the length of each vector is independent of (τ1, τ2, τ3). ((τ1, τ2, τ3) determine the direction

of the vector.)
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Thus, when we depict fu(iω), u = 0, 1, 2, 3, against ω, the crossing frequency set Ω

comprises all ω > 0 that the curve f0(iω) is above 1 and the curves f1(iω), f2(iω), and

f3(iω) are above −1.

Moreover, if the sum of the longest side and the shortest side of a rectangle is smaller

than that of the other two sides, the rectangle is recognized as a Grashof rectangle. By

using this definition, we can classify ω ∈ Ω into the following four types:

Type 0 Grashof set: Ω0
G

Set of ω ∈ Ω that satisfies

fu(iω) > 1, u = 1, 2, 3. (26)

Type u Grashof set: Ωu
G

Set of ω ∈ Ω that satisfies

fu(iω) > 1, u = 1, 2, 3, (27)

fu′(iω) < 1, (28)

fu′′(iω) < 1. (29)

Type 0 Non-Grashof set: Ω0
N

Set of ω ∈ Ω that satisfies

fu(iω) ≤ 1, u = 1, 2, 3. (30)

Type u Non-Grashof set: Ωu
N

Set of ω ∈ Ω that satisfies

fu(iω) ≤ 1, u = 1, 2, 3, (31)

fu′(iω) ≥ 1, (32)

fu′′(iω) ≥ 1. (33)

Ωu
G, u = 0, 1, 2, 3, are open intervals and Ωu

N , u = 0, 1, 2, 3, are closed intervals.

(However, Ωu
N , u = 0, 1, 2, 3, become semi-open intervals when ω = 0 is a solution of

Equations 31–33 or Equation 30. See Proposition 3 in Gu and Naghnaeian (2011) for

details.)

Following Fujiwara (2008), we set the structural parameter values as shown in Table

1. Further, we set the target inflation rate at a realistic value of 2%, which implies that
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R̄ = 0.03. Finally, the monetary policy reaction parameters are set at their typical values,

as shown in Table 2, where the value of τq is set so that Equation 18 is satisfied (i.e., if a

policy lag is not present, the equilibrium is determinate).

η ϕ γ ψ ρ

21 6.0 27.454 1.0 0.01

Table 1: Structural parameters

αy απ αq

0.5 1.5 0.01

Table 2: Policy reaction parameters

Under these assumptions, we investigate the effects of policy lags on equilibrium de-

terminacy. The functions fu(iω), u = 0, 1, 2, 3, are depicted as shown in Figure 2. This

figure indicates that

Ω = [ω1, ω4] = [0.2203, 0.8176].

0 1 2
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0.5

1

1.5

2

ω
ω
1

ω
3

ω
4

ω
2

f

3

(i ω)

f

1

(i ω)

f

0

(i ω)

f

2

(i ω)

Figure 2: fu(iω), u = 0, 1, 2, 3

Moreover, the crossing frequency set Ω can be resolved into the following three com-
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ponents:

Ω =
3∪

h=1

Ωh

Ω1 = [ω1, ω2] = [0.2203, 0.3054] ⊂ Ω2
N ,

Ω2 = (ω2, ω3) = (0.3054, 0.5922) ⊂ Ω3
G,

Ω3 = [ω3, ω4] = [0.5922, 0.8176] ⊂ Ω0
N .

Gu and Naghnaeian (2011) show the geometric configurations of the stability crossing

sets (T h, h = 1, 2, 3) that correspond to all possible types of crossing frequency sets (Ωh,

h = 1, 2, 3) (see Theorem 1 in Gu and Naghnaeian (2011)). According to their study, T 1

and T 3 shape caps and T 2 shapes wavy sheets in the (τ1, τ2, τ3) space.

4.4 Concretization of the stability crossing sets

To illustrate the stability crossing sets T h, h = 1, 2, 3, in the (τ1, τ2, τ3) space, we present

their specific expressions.

Let {u, v, w} = Z+
3 ; then, Equation (25) can be rewritten as follows:

∆3(iω) = av(iω)e
−iωτv + aw(iω)e

−iωτw + ad(iω, τu) = 0, (34)

where

ad(iω, τu) = 1 + au(iω)e
−iωτu . (35)

Considering the three terms in Equation (34) as vectors on the complex plane and de-

picting them, a triangle can be formed, as shown in Figure 3.13

This figure indicates that θv and θw can be expressed as follows:

∓θv = arg (av(iω))− ωτv − arg (ad(iω, τu)) + 2rvπ,

±θw = arg (aw(iω))− ωτw − arg (ad(iω, τu)) + 2rwπ,

13For details of the discussion here, see Section 3 in Gu et al. (2005).
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ad(iω, τu)

1

au(iω)e−iωτu

av(iω)e−iωτv

aw(iω)e−iωτw

θw

θv

Figure 3: Triangle formed by |ad(iω, τu)|, |av(iω)|, and |aw(iω)|

where rv, rw = 0, 1, 2, 3, · · · . Thus, we obtain

τv = τ±v (ω, τu, rv)

=
arg (av(iω))− arg (ad(iω, τu))± θv + 2rvπ

ω
, (36)

τw = τ∓w (ω, τu, rw)

=
arg (aw(iω))− arg (ad(iω, τu))∓ θw + 2rwπ

ω
. (37)

By using the cosine theorem, θv and θw can also be expressed as

θv = cos−1

(
|ad(iω, τu)|2 + |av(iω)|2 − |aw(iω)|2

2|ad(iω, τu)| · |av(iω)|

)
,

θw = cos−1

(
|ad(iω, τu)|2 + |aw(iω)|2 − |av(iω)|2

2|ad(iω, τu)| · |aw(iω)|

)
,

which are substituted into Equations (36) and (37), respectively.

A similar procedure derives the following expression from Equation (35):

τu = τu(ω, ru)

=
arg (au(iω)) + (2ru − 1)π

ω
, ru = 0, 1, 2, 3, · · · . (38)

Equations (36)–(38) are used to express the stability crossing sets.

Incidentally, for the triangle shown in Figure 3 to exist, the following condition must

hold:

||av(iω)| − |aw(iω)|| ≤ |ad(iω, τu)| ≤ |av(iω)|+ |aw(iω)|. (39)
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These inequalities define the motion range of τu for the given values of ω. The motion

range depends on the type of Ωh. Hence, the representation of T h also differs accordingly.

When Ωh is a Grashof set (ΩG =
∪3
u=0Ω

u
G), the motion range of τu can be defined as

follows (see Appendix A.1):

Tu(ω, ru) = [τu(ω, ru), τu(ω, ru + 1)].

On the contrary, when Ωh is a Non-Grashof set (ΩN =
∪3
u=0 Ω

u
N), the motion range of τu

can be defined as follows (see Appendix A.2):

Tu(ω, ru) = [τum(ω, ru), τuM(ω, ru)],

where

θum = cos−1

(
1 + |au(iω)|2 − (|av(iω)|+ |aw(iω)|)2

2|au(iω)|

)
, (40)

τum(ω, ru) =
arg (au(iω)) + 2ruπ − θum

ω
,

τuM(ω, ru) =
arg (au(iω)) + 2ruπ + θum

ω
.

Thus, by defining the set T h± as

T h± =

(τ1, τ2, τ3)

∣∣∣∣∣∣∣
τu ∈ Tu(ω, ru),

τv = τ±v (ω, τu, rv),

τw = τ∓w (ω, τu, rw)

 , (41)

the stability crossing sets T h, h = 1, 2, 3, can be represented for the given (ru, rv, rw) and

{(ω, τu)|ω ∈ Ωh, τu ∈ Tu(ω, ru)}, as follows:

T h = (T h+
∪

T h−)
∩

R3
+. (42)

4.5 Drawing the stability crossing sets

Under the assumptions in Tables 1 and 2, T 1, T 2, and T 3 are drawn, as shown in Figures

4–6, respectively.14

14In the case of Ω1 ⊂ Ω2
N , u = 2, v = 1, and w = 3. Figure 4 shows the case of (ru, rv, rw) = (0, 0, 0).

In the case of Ω2 ⊂ Ω3
G, u = 3, v = 2, and w = 1. Figure 5 shows the case of ru = 0, 1, 2; rv = 1;

and rw = 1. Finally, in the case of Ω3 ⊂ Ω0
N , u = 1, v = 3, and w = 2. Figure 6 shows the case of

(ru, rv, rw) = (1, 1, 1).
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Figure 7: Stability crossing sets

The complete figure of T h, h = 1, 2, 3, corresponding to all combinations of ru = 0, 1, 2;

rv = 0, 1, 2; and rw = 0, 1, 2 (27 patterns) can be drawn as shown in Figure 7. At least

for positive values of (τ1, τ2, τ3) lying inside the surface of T h, h = 1, 2, 3, that enclose the

origin, the equilibrium is determinate. To capture the size and shape of the determinacy

region more clearly, we show some cross-section diagrams when τ1, τ2, or τ3 is fixed at

certain values (0, 10, and 20), as in Figures 8–16. Whenever τ1, τ2, or τ3 crosses these

curves (which we call the stability crossing curves), the sign of the real part of the complex

roots changes.

The direction of the change (i.e., whether it runs from positive to negative or vice versa)

can be examined as follows. In the case of a change in τ1, the direction is confirmed by

determining the sign of the following expression:

Re

[
∂x

∂τ1

]
(τ1,τ2,τ3)=(τ∗1 ,τ

∗
2 ,τ

∗
3 ),x=iω

∗
, (43)

where (τ ∗1 , τ
∗
2 , τ

∗
3 ) is a point lying on the surface of a stability crossing set and x = iω∗ is

a pure imaginary root that corresponds to the point. In addition, ∂x/∂τ1 can be derived
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from the implicit function ∆2(x, τ1, τ2, τ3) = 0 as follows:

∂x

∂τ1
=

s1(x)xe
−τ1x

s′0(x) +
∑3

j=1{s′j(x)− sj(x)τj}e−τjx
. (44)

If Re
[
∂x
∂τ1

]
> 0, a pair of complex roots moves from left to right on the complex plane

when τ1 crosses τ ∗1 ; therefore, the real part of the complex roots changes from negative

to positive. Conversely, if the inequality runs in the opposite direction, a pair of complex

roots moves from right to left on the complex plane; in this case, the real part of the

complex roots changes from positive to negative.

For example, at the point (τ ∗1 , τ
∗
2 , τ

∗
3 ) = (6.9689, 12.0174, 0) (see Figure 8), ω∗ = 0.5395

and Re[∂x/∂τ1] = 0.0158 > 0. Accordingly, when τ1 crosses this point from left to right,

the number of roots with positive real parts increases by two. We have already shown

that there are exactly three roots with positive real parts in the left-hand side of this

point (the equilibrium is determinate when policy lags are not present). Therefore, in the

right-hand side region of that point, there are five roots with positive real parts, implying

that the equilibrium is unstable. As for the other areas, we can reveal the number of roots

with positive real parts by using the same procedure. The values written in each area of

Figures 8–16 indicate the number of roots with positive real parts.
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