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Figure 8: τ3 = 0
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Figure 11: τ2 = 0
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Figure 12: τ2 = 10
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Figure 15: τ1 = 10
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In each of these figures, an increase in the value of some lag parameter may cause any

one of the following: determinacy, indeterminacy, or instability. For example, in Figure

11, if τ3 = 10, the dynamic property of the system changes with an increase in τ1 as

follows: determinate—indeterminate—determinate—unstable. Specifically, the regions

of τ1 that achieve determinacy are given by τ1 ∈ [0, 5.13] and τ1 ∈ [6.73, 16.4], which

implies that if an implementation lag does not present in inflation targeting and a lag

of approximately five years exists in asset-price targeting, then lags in output targeting

must be approximately 0–2.5 or 3.4–8.2 years.

Furthermore, moving on the vertical axis of Figures 11–16 does not change the number

of roots with positive real parts. This finding implies that a lag in asset-price targeting

does not affect equilibrium determinacy, at least when τ1 or τ2 is sufficiently small.

In addition, as shown in Section 3, in the case where a lag is not present, if the

condition in Equation (18) does not hold, the equilibrium is indeterminate. In this case,

the signs of the real parts of the three roots are necessarily + + − (the case of + − −
cannot occur). Accordingly, in the above case, there is no possibility that equilibrium

determinacy is achieved by introducing a lag in a policy response because the number of

roots with positive real parts necessarily changes by two in any case.

Moreover, cycles or other complex fluctuations may exist around the steady state

because on the stability crossing curves and thus all conditions for a Hopf bifurcation are

satisfied.

5 Conclusion

In this study, we used the NK model to analyze the effects of three policy lags on local

equilibrium determinacy. Unlike Tsuzuki (2014, 2015), who only studies the effect of

inflation targeting, the existence of multiple target variables in monetary policy (i.e., not

only the inflation rate but also output and asset prices) provides a new possibility for

a lag. In other words, even if the system includes only one lag, the lag can resolve the

problem of instability. For example, when τ1, which represents a lag in output targeting,

moves on the horizontal axis of Figures 8 and 11, the equilibrium changes as follows:

determinate—unstable—determinate. However, increases in τ2 and τ3, which denote lags

in inflation and asset-price targeting, respectively, do not have such an effect. In this

case, an increase in τ2 necessarily causes instability, whereas that in τ3 does not affect the

dynamic property.
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In cases where multiple policy lags coexist, the analysis becomes considerably more

complicated. All lags can have a stabilizing effect on the equilibrium. Specifically, in

Figures 13 and 16, τ1 or τ3 must be positive to achieve determinacy. If the values of these

lags are zero, the equilibrium is unstable. This finding suggests that the central bank may

be required to “purposefully” delay its policy implementation.

Moreover, the above results are valid only for the plausible parameter values assumed

in Section 4. They do not have anything like generality. Depending on the parameter

values, the type of Grashof set may change. Accordingly, the configuration of a stability

crossing set may also dramatically alter.

A more theoretical investigation of the effects of policy lags requires an algebraic

approach to differential equation systems with multiple delays. Unfortunately, such a

method has not thus far been established. Nonetheless, the analysis performed in this

study is helpful for policymakers. Indeed, the presented findings suggest that the central

bank should determine its target variables by considering not only the responsiveness of

the nominal interest rate to these variables but also the lag lengths associated with policy

implementations.

In addition, the present study argues that (i) if a delay exists only in asset-price

targeting, the Fed’s view would assert its validity at least for a slight change in policy

responsiveness, as in the case with no policy lags; and (ii) if multiple policy lags coexist,

the Bank of International Settlements’ view can become valid policy, depending on the

lag parameter set.

A Appendix

A.1 Motion range of τu: the case of Grashof sets

In the case of Ωh ⊂ Ωu
G, u = 0, 1, 2, 3, the expression in Equation (39) holds with strict

inequalities for all τu ∈ R+ (see Equations 26 and 27–29). Therefore, T h can be defined

for (ω, τu) ∈ Ωh × R+. Thus, the motion range of τu can be defined as

Tu(ω, ru) = [τu(ω, ru), τu(ω, ru + 1)].
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A.2 Motion range of τu: the case of Non-Grashof sets

In the case of Ωh ⊂ Ωu
N , u = 0, 1, 2, 3, the first inequality in Equation (39) holds for all

τu ∈ R+ (see Equations 30 and 31–33). However, the second inequality, |ad(iω, τu)| ≤
|av(iω)| + |aw(iω)|, is not ensured to hold. This inequality is equivalent to the following

expression: π − θum ≤ arg (au(iω)e
−iωτu) + 2ruπ ≤ π + θum, where

θum = cos−1

(
1 + |au(iω)|2 − (|av(iω)|+ |aw(iω)|)2

2|au(iω)|

)
.

Therefore, we obtain

τum(ω, ru) =
arg (au(iω)) + 2ruπ − θum

ω
,

τuM(ω, ru) =
arg (au(iω)) + 2ruπ + θum

ω
.

By using these expressions, the motion range of τu can be represented as follows:

Tu(ω, ru) = [τum(ω, ru), τuM(ω, ru)].
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