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1 Introduction

Persistent volatility is a prominent characteristic feature of �nancial markets. It
is, however, well-known that the e¢ cient market hypothesis cannot account for
the discrepancy between the observed market price and the fundamental value
of the asset. Recently, heterogeneous agent models (HAMs) have been devel-
oped to explain a wide variety of �nancial market behavior such as temporary
bubbles, sudden market crashes and price resistance in discrete-time as well
as continuous-time framework. In his survey of recent developments of HAMs,
Hommes (2006) discusses that nonlinear discrete-time HAMs can generate var-
ious dynamics ranging from cyclic �uctuations to chaotic behavior. Among
others there is Chiarella et al. (2006) that propose a discrete-time HAM with a
moving average (MA) rule having various memory lengths. Their main �nding
is that the length of the MA rule can be a source of complicated dynamics in
destabilized �nancial markets in deterministic and stochastic processes. On the
other hand, continuous-time HAMs are described by ordinary or delay di¤er-
ential equations. They have a long history since Zeeman (1974) and Beja and
Goldman (1980). Moreover Chiarella (1992), which is a development of Beja
and Goldman (1980), shows that the market price tends to a stable limit cycle
under a nonlinear demand function of the risky asset when the equilibrium is
unstable. More recently, He and Zheng (2010) reconstruct the discrete-time
model of Chiarella et al. (2006) in a continuous-time framework in which the
expected price is formed with a moving average of the past (delay) prices. Their
main result concerns a double edge e¤ect on the stability caused by the length of
the memory or delay: an increase in delay can destabilize the market price and
also stabilize it. In their model as well as in subsequent studies on continuous-
time HAMs such as He and Li (2012) and Xu et al. (2015), it is assumed that
in�nitely many past price data are available at no charge of cost. Needless to
remember the well-known line in economics, "there is no such thing as a free
lunch," it is to go too far to get necessary information for nothing. Two ways
are possible to render this extreme assumption to more realistic one, the �rst
is to introduce information cost and the second is to limit availability of the
past prices. In the present paper, we take the second way and then reconsider
the price dynamics when the chartists forecast an expected price, using only a
limited information on past prices.
Following the framework of Dibeh (2005), this paper constructs a dynamic

HAM of a speculative asset with three delays (i.e., three past prices) and in-
vestigates the e¤ect of time delays on the asset price dynamics. Dibeh (2005)
conducts mainly with numerical simulations. Analytical developments of a one-
delay version and a two-delay version of Dibeh�s model are already presented by
Qu and Wei (2010) and Matsumoto and Szidarovszky (2015), respectively. The
model we analyze is continuation of these preceding studies. One of our main
�ndings is that stability switches from stability to instability as well as from in-
stability to stability can occur in three delay framework. The double edge e¤ect
can also exist in continuous-time HAMs with a �nite number of delay prices.
The structure of the paper is as follows. Section 2 constructs a HAM model
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with the fundamentalists and chartists. The stability switching curve is an-
alytically derived, which divide the delay space into stability and instability
regions. Section 3 has three subsections, in each of which we conduct a stability
and bifurcation analysis under di¤erent circumstances. Section 4 concludes the
paper.

2 Model

We consider an asset pricing model with one risky asset and two traders, funda-
mentalists and chartists. Let p(t) be the price of the risky asset at time t. Since
the fundamentalists believe that p(t) eventually converges to �; the fundamental
(i.e., equilibrium) price of the asset, they will sell the asset if p(t) > � and buy
it if p(t) < �: The simplest form of the demand function of the fundamentalist
is

Df (p(t)) = m [� � p(t)]

where m 2 (0; 1) is the fraction of the fundamentalists in the market. On the
other hand, the chartists base their decisions of market participation on the
price trend of the asset. Their demand function is

Dc(s(t)) = �(1�m)g(s(t))

where � is a positive adjustment coe¢ cient and, for analytical simplicity, it is
assumed to be unity in the sequel. s(t) is a weighted average of the past price
trends formulated at time t;

s(t) =
nX
i=1

�i [p(t� � i�1)� p(t� � i)]

where � i � 0 is a time delay with �0 = 0 and �i � 0 denotes a weight of a
price change satisfying

Pn
i=1 �i = 1. The demand function g(s) is assumed to

be hyperbolic tangent as in Chiarella (1992) and Dibeh (2005),

g(s) = tanh(s):

The market demand is the sum of demands of the fundamentalists and chartists,

D(p(t); s(t)) = Dc(s(t)) +Df (p(t)):

The price dynamics follows Dibeh�s formulation in which the growth rate of
price is determined by the market demand,

_p(t)

p(t)
= D(p(t); s(t))

that is written as a nonlinear delay di¤erential equation,

_p(t) = (1�m)p(t) tanh [s(t)] +mp(t) [v � p(t)] : (1)
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Notice that s(t) can be rewritten as

s(t) = �1 [p(t)� �pn(t)]

where

�pn(t) =
nX
j=1

�jp(t� � j)

with

�j =
�j � �j+1

�1
for 1 � j � n� 1 and �n =

�n
�1

0@= 1� n�1X
j=1

�j

1A :
Since �pn(t) is considered to be the weighted (moving) average of the past
n prices, the chartists believe that the price will rise (fall) when the current
price is above (below) the average of the n delay prices. If in�nitely many price
data is available with �nite or in�nite memory length, the moving average can
be presented by continuously distributed time delay such as

p�(t) =

Z t

t��
�(s)p(s)ds

where 0 < � � 1 is the memory length and �(s) is a weighting function. This
form is used in He and Zheng (2010).
Concerning the speci�cation of s(t); Qu and Wei (2010) examine the case of

n = 1 in which the trend includes one delay price with �1 = 1

s(t) = p(t)� p(t� �1):

Matsumoto and Szidarovszky (2015) consider the case of n = 2 in which two
delay prices are used to formulate the trend,

s(t) = �1 (p(t)� p(t� �1)) + �2 (p(t� �1)� p(t� �2)) :

or
s(t) = �1 fp(t)� [(1� �)p(t� �1) + �p(t� �2)]g

with
� =

�2
�1
:

With two delay prices, the coe¢ cients are positive and add up to unity in
interpolation (i.e., �1 > �2) whereas one coe¢ cient is negative, the other greater
than unity and the sum is unity in extrapolation (i.e., �1 < �2).
In this study, we move one more step forward and draw attention to the case

of n = 3 for which the average trend is

s(t) = �1 [p(t)� p(t� �1)]+�2 [p(t� �1)� p(t� �2)]+�3 [p(t� �2)� p(t� �3)]
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or
s(t) = �1 fp(t)� [�1p(t� �1) + �2p(t� �2) + �3p(t� �3)]g

with
�1 =

�1 � �2
�1

; �2 =
�2 � �3
�1

and �3 =
�3
�1
:

For the sake of convenience, we adopt the following form,

s(t) = �1p(t)+(�2��1)p(t��1)+(1��1�2�2)p(t��2)�(1��1��2)p(t��3):

The unique stationary point of dynamic equation (1) is identical with the
equilibrium price,

pe = � = p(t) = p(t� � j) for all t � 0 and j = 1; 2; 3:

It is clear that at the stationary point there is no price trend, se = 0: Linearizing
the nonlinear dynamic equation in a neighborhood of the stationary point yields

_p�(t) = �p�(t) + �1p�(t� �1) + �2p�(t� �2)� �3p�(t� �3) (2)

where p�(t) = p(t)� pe and the coe¢ cients are de�ned as

� = � [(1�m)�1 �m] ;

�1 = �(1�m)(�2 � �1);

�2 = �(1�m)(1� �1 � 2�2);

�3 = �(1�m)(1� �1 � �2):

With condition
3P
i=1

�i = 1; it can be veri�ed that

�3 = 0 () �2 = 1� �1;

�3 = �1 () �2 = 1� 2�1;

�3 = �2 () �2 =
1

2
(1� �1):

The locus of �3 = 0 divides the �rst quadrant of the (�1; �2) plane into two
parts, upper and lower right triangles, and condition �3 � 0 eliminates the
upper one. The lower triangle is further divided into six subparts by the three
loci of �2 = �1; �3 = �2 and �3 = �1: Those divisions are depicted in Figure 1
in which the relations among the magnitudes of �1; �2 and �3 are determined
in the following way,

�1 > �2 > �3 in region I, �3 > �2 > �1 in region IV,

�1 > �3 > �2 in region II, �2 > �3 > �1 in region V,

�3 > �1 > �2 in region III, �2 > �1 > �3 in region VI.
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Region I is colored in gray as we will limit our analysis to it below. The line of
�2 = (2� 3m)=2(1�m)� �1 is shown to be dotted and downward sloping.1 It
is also checked that �1 = 0; �2 = 0 and �3 = 0 hold, respectively, on the
loci of �2 = �1; �3 = �2 and �3 = 0: On these boundaries the three-delay
equation (2) is reduced to one of three two-delay equations, depending on which
�i value becomes zero. Matsumoto and Szidarovszky (2015) consider a two delay
equation that corresponds to the one with �3 = 0: Their analytical method can
be applied to the other two equations as well. In this study, we will con�ne our
attention to the regions in which �i > 0.

Figure 1. Divisions of the (�1; �2) plane
with �3 � 0

Substituting an exponential solution p�(t) = e�tu into the linearized equation
(2) yields the corresponding characteristic equation

�� �� �1e���1 � �2e���2 + �3e���3 = 0 (3)

Dividing the left hand side of equation (3) by � � � and denote the result by
a(�);

a(�) = 1 + a1(�)e
���1 + a2(�)e

���2 + a3(�)e
���3 (4)

with

a1(�) =
��1
�� � , a2(�) =

��2
�� � , a3(�) =

�3
�� �:

Since � = 0 is not a solution of equation (3), a pair of pure imaginary roots
must exist if the stability of the stationary point switches. We thus assume

1m = 0:4 is assumed and we will refere to this line later.
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� = i!; ! > 0 is a solution of equation (3). For � = i!;

a1(i!) =
��1 + i�1!

�2 + !2
and ja1(i!)j =

j�1jp
�2 + !2

;

a2(i!) =
��2 + i�2!

�2 + !2
and ja2(i!)j =

j�2jp
�2 + !2

and

a3(i!) = �
��3 + i�3!

�2 + !2
and ja1(i!)j =

�3p
�2 + !2

:

Each term of a(i!) may be viewed as a vector in the complex plane. Hence
solving a(i!) = 0 analytically is equivalent to constructing a quadrangle geo-
metrically as shown in Figure 2 in which these four vectors are arranged from
head to tail.

Figure 2. 1 and jaj(i!)j for j = 1; 2; 3
forms a quadrangle

The determination of the stability switching surface in the (�1; �2; �3)
plane is challenging.2 In order to make the problem manageable, we reduce
the three-delay equation to a two-delay equation by �xing the value of �3 at
a certain positive level and then construct the stability switching curve in the
(�1; �2) plane in which we can apply the method used earlier in Matsumoto and
Szidarovszky (2015). Notice that vector 1 is connected to vector a3(i!)e�i!�3

in Figure 2. If the sum of these vectors is denoted by ad(i!; �3);

ad(i!; �3) = 1 + a3(i!)e
�i!�3 ;

2 It is possible to have a switching surface in the 3D space. See Almodaresi and Bozorg
(2009) and Gu et al. (2011).
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then a(�) with � = i! can be rewritten as

a(i!) = ad(i!; �3) + a1(i!)e
�i!�1 + a2(i!)e

�i!�2 :

As already shown in Figure 2, a(i!) = 0 means that these three vectors in a(i!)
must form a triangle having the dotted base with interior angles, �1 and �2.
Su¢ cient and necessary conditions for forming a triangle are given by

(i) fd(!) = ja1(i!)j+ ja2(i!)j � jad(i!; �3)j � 0;

(ii) f1(!) = ja2(i!)j+ jad(i!; �3)j � ja1(i!)j � 0;

(iii) f2(!) = jad(i!; �3)j+ ja1(i!)j � ja2(i!)j � 0:

(5)

Each inequality condition implies that the length of any segment of the triangle
is not greater than the sum of the lengths of the remaining two segments. De�ne
the crossing frequency set 
 as all ! > 0 such that a(i!) = 0 holds for at least
one delay combination (�1; �2; �3) � 0: For ! = 0 in a(i!) leads to

a(i!)j!=0 =
1

�
(�+ �1 + �2 � �3) < 0:

This inequality implies 0 =2 
:
By the law of cosine, we can determine the values of �1 and �2 of the triangle

in Figure 2,

�1(!) = cos
�1

"
jad(i!; �3)j2 + ja1(i!)j2 � ja2(i!)j2

2 jad(i!; �3)j ja1(i!)j

#
and

�2(!) = cos
�1

"
jad(i!; �3)j2 + ja2(i!)j2 � ja1(i!)j2

2 jad(i!; �3)j ja2(i!)j

#
:

Vertices A and B maybe located above or below the horizontal axis and the
slope of segment AB can be positive or negative. So we have eight possibilities
to construct a quadrangle. However, a simple geometric consideration shows
that there are only two di¤erent possibilities:

arg
�
a1(i!)e

�i!�1
�
+ (2k � 1)� � arg(ad(i!; �1))� �1(!) = 0

and
arg

�
a2(i!)e

�i!�2
�
+ (2n� 1)� � arg(ad(i!; �1))� �2(!) = 0:

Solving these equations for �1 and �2 yields the threshold values of the delays,

��1 (!; k) =
1

!
[arg(a1(i!)� arg(ad(i!; �3))) + (2k � 1)� � �1(!)] (6)

and

��2 (!; n) =
1

!
[arg(a2(i!)� arg(ad(i!; �3))) + (2n� 1)� � �2(!)] : (7)
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The stability switching curves consist of two sets of parametric segments,

L1(k; n) = f�+1 (!; k); ��2 (!; n)g for k; n = 0; 1; 2; ::: (8)

and
L2(k; n) = f��1 (!; k); �+2 (!; n)g for k; n = 0; 1; 2; ::: (9)

where the parameter ! runs through the crossing frequency set 
.
Substituting �1 = �2 = �3 = 0 into equation (3) presents

� = �+ �1 + �2 � �3 = ��m < 0:

This inequality implies that the steady state with no delays is stable. Next,
assuming that �1 = �2 = 0; we examine the existence of a threshold value of
�3 at which the system loses stability. Without loss of generality, assuming
� = i!; ! > 0 and then substituting it into (3) with �1 = �2 = 0 reduce the
characteristic equation to

i! � (�+ �1 + �2) + �3e�i!�3 = 0:

We denote �+ �1 + �2 by � where

� = v(1�m)
�
1� �1 � �2 �

m

1�m

�
and break down the characteristic equation into the real and imaginary parts,

��+ �3 cos!�3 = 0

! � �3 sin!�3 = 0:
(10)

Moving � and ! to the right hand side and adding the squared equations give

!2 = �23 ��2

where
�3 �� = vm > 0

and
�3 +� = 2v(1�m) ('(�1)� �2)

with
'(�1) =

2� 3m
2(1�m) � �1:

Notice that the dotted curve in Figure 1 is described by �2 = '(�1): It is clear
�rst that

�3 +� R 0 according to '(�1) R �2
and second that

�3 +� < 0 if m � 2=3:
This leads to the following result.

9



Proposition 1 Given �1 = �2 = 0; the solution of delay system (1) is stable
for any �3 � 0 if the fundamentalists dominate over the chartists in the sense
that m � 2=3.

If �3+� > 0; then there is a ! such as �! =
q
�23 ��2 > 0: In this case, loss

of stability for � = i�! can be shown in the following way. The characteristic
equation with �1 = �2 = 0 can be written as

�3e
���3 = �1 + �2 + �� �: (11)

Taking � as a function of �3 and di¤erentiating it with respect to �3 yield

d�

d�3
=

��3e
���3

1� �3�3e���3

=
�(�1 + �2 + �� �)

1� �3(�1 + �2 + �� �)

where the right hand side of equation (11) are used. Substituting � = i! and
taking the real part of the resulting expression give

d [Re�]

d�3

����
�=i!

= Re

�
�(�1 + �2 + �� �)

1� �3(�1 + �2 + �� �)

�

= Re

�
!2 + i!(�1 + �2)

1� �3(�1 + �2 + �)� i!
1 + �3(�1 + �2 + �)� i!
1 + �3(�1 + �2 + �)� i!

�

=
!2

[1� �3(�1 + �2 + �)]
2
+ !2

> 0:

This inequality implies that all roots cross the imaginary axis at i! from left
to right as �3 increases so stability is lost. Correspondingly, solving the �rst
equation of (10) for �3 presents the threshold value

��3(�1; �2;m) =
1

�!
cos�1

�
�

�3

�
> 0 (12)

and the system is stable for �3 < ��3 and unstable otherwise.3 We summarize
the results obtained so far.

Proposition 2 Given �1 = �2 = 0; the solution of delay system (1) is stable for
�3 < ��3(�1; �2;m); loses stability for �3 = ��3(�1; �2;m) and becomes unstable
for all �3 > ��3(�1; �2;m) if the following condition holds,

�2 < '(�1)

whereas it is always stable for any �3 > 0 otherwise.

3Solving the second equation of (10) for �3 gives the same solution in a di¤erent form.
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3 Dynamics

Central to this study is the problem of dynamics associated with three �xed de-
lays. This problem is complex and it seems unlikely that an analytical approach
to nonlinear delay di¤erential equation (1) would generate fruitful results on dy-
namics as it might be di¢ cult to solve the equation. In order to understand
global dynamics with delays better, it is useful to take a numerical approach.
To this end, we make several simplifying assumptions and numerically examine
dynamics of the asset price.

Assumption 1. v = 5; m = 0:4 and �3 = 5:

Assumption 2. �i for i = 1; 2; 3 satisfy �1 > �2 > �3 > 0:

Assumption 3. � i for i = 1; 2 satisfy �1 < �2 < �3:

Since the parameter values in Assumption 1 are determined only for compu-
tational conveniences, the main results to be obtained below hold for any other
values, provided that m < 2=3. Assumption 2 implies that the more recent
trend has the more weight. This is not necessary but simpli�es the analysis.
Under m = 0:4 of Assumption 1, region I is located above the line �2 = '(�1)
which is the dotted downward-sloping line passing through point (1=3; 1=3) in
Figure 1. Due to Proposition 2, the stationary point is always stable in region I
where �2 > '(�1) if �1 = �2 = 0: Thus it is easy to see how increasing values of
these delays a¤ect stability of the steady state. Assumption 3 imposes a natural
ordering among the three delays, that is, an older price has a longer delay.
We further divide the region I to determine the ordering among �i for

i = 1; 2; 3; the weights of the delay prices to calculate the moving average.
Notice that Assumption 2 implies �i > 0. By de�nition, the following equivalent
relations hold,

�1 R �2 () �2 Q
1

3
;

�2 R �3 () �2 R
2

3
(1� �1);

�1 R �3 () �1 R
1

2
:

Region I is divided into six subdivisions by the loci of �2 = 1=3; �2 = 2(1 �
�1)=3 and �1 = 1=2 and an enlarged part of the divided Region I is depicted in
Figure 3. Soon after, we will refer to the black and red dots that we select to
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conduct numerical simulations below.

Figure 3. Enlargement of Region I and
region division

Accordingly, the following inequality relations hold in the subregions.

I1: �1 > �2 > �3; I4: �3 > �2 > �1;

I2: �1 > �3 > �2; I5: �2 > �3 > �1;

I3: �3 > �1 > �2; I6: �2 > �1 > �3:

The rest of this section has three subsections. We will look at the �1-e¤ect
on dynamics casued by a change in �1 in Section 3.1, explore the �2-e¤ect in
Section 3.2 and focus on considerations of the �3-e¤ect in Section 3.3.

3.1 Delay E¤ect I: � 1-e¤ect

We start with the �1-e¤ect and present some numerical examples to see how
di¤erent values of �1 a¤ect dynamics of equation (1). We �rst check the triangle
conditions. Subtracting the third equation from the second equation in (5)
yields

f1(!)� f2(!) =
6�(1�m)p
�2 + !2

�
�2 �

1

3

�
(13)

implying that the relative location of the curves of f1(!) and f2(!) depends on
whether a value of �2 is larger or less than 1=3. To simplify the analysis, the
value of �2 is kept constant at 1=3 in this subsection, with which f1(!) = f2(!)
holds regardless of the value of �1: Further fi(!) > 0; i = 1; 2; for ! > 0
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will be numerically con�rmed below. Consequently, it is enough to verify only
the location and the shapes of the fd(!) curve. We consider dynamics over
an interval [�01; 2=3] of �1: The left hand side extreme value, �

0
1 ' 0:356 is

numerically determined so as to make the maximum of fd(!) equal to zero.
Thus for �1 < �01, fd(!) < 0 for all ! > 0; implying that one of the triangle
conditions is always violated. The other extreme value, �1 = 2=3; together with
�2 = 1=3 makes �3 = 0 via �2 = 1 � �1. For �1 > 2=3; the nonnegative
condition �3 � 0 is violated. In the following numerical analysis, �1 is increased
from 6=15 to 9=15 with an increment of 1=15: Each point is denoted as a red
dot along the horizontal line at �2 = 1=3 in Figure 3. The resultant four fd(!)
curves are colored in black in Figure 4 where the red curve with �1 = 1=2 and
the blue curves with those extreme values are also depicted. The corresponding
f1(!) = f2(!) curves are illustrated in the dotted curves with the same color
and are seen to be positive for all ! � 0. In the gray region below the lower
blue curve, no stability switch occurs and thus the steady state is stable. We do
not consider the �1-e¤ect there. On the other hand, the gray region above the
upper blue curve is not feasible and thus eliminated from consideration. Figure
4 illustrates various shapes of the fd(!) curves and shows that increasing �1
shifts the curve upward and removes its unevenness. Indeed, the lower blue
curve with �1 = �01 located at the bottom of the white region is high-wave
shaped while the higher blue curve with �1 = 2=3 at the top is monotonically
downward-sloping. In addition, as the red curve passes through the origin, we
then see that the curves below the red curve have two intersections with the
horizontal axis and the curves above have one intersection.

Figure 4. The fd(!) curves with various
values of �1

To be more speci�c, we pick up �1 = 6=15 and construct a stability switching
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curve. The corresponding fd(!) curve is the black one just above the lower blue
curve in Figure 4 and intersects the horizontal axis twice at

�!1 ' 0:438 and �!2 ' 0:582:

The triangle conditions in (5) hold for ! 2 
 = [�!1; �!2]: We now ready to
derive the stability switching curves, L1(k; n) and L2(k; n) de�ned in (8) and
(9). Taking k = n = 1; we obtain the points of ��1 (!; 1) and �

�
2 (!; 1) by changing

values of ! with increment 0:0002 inside the interval [�!1; �!2] and then plot these
points in the (�1; �2) plane. In Figure 5(A), segment L2(1; 1) is illustrated as
a real curve in the region above the diagonal and segment L1(1; 1) is a dotted
curve in the region below.4 Two segments form an elliptical-shaped closed curve
having the starting point S = (�+1 (�!1; 1); �

�
2 (�!1; 1)) and the ending point E =

(��1 (�!2; 1); �
+
2 (�!2; 1)) on the diagonal where, for i = 1; 2;

��i (�!1; 1) = �
s ' 8:478 and ��i (�!2; 1) = �e ' 2:789:

Since the delays have two constraints, � i � 5 for i = 1; 2 and �1 < �2 due
to Assumptions 1 and 3, the feasible region should be above the diagonal line
and subject to �2 � 5: It is colored in yellow and further sub-divided into two
sub-regions by the L2(1; 1) segment that intersects two lines, one is the diagonal
at (�e; �e) and the other is the horizontal line at �2 = 5.5

It is clear from the yellow region that stability is preserved for �1 and �2
such as 0 < �1 < �e and �1 < �2 < �e. When varying a pair (�1; �2) with
�2 > �

e crosses the L2(1; 1) segment, we have the stability switching as the real
part of at least one eigenvalue turns to be positive and then the the stationary
point loses stability. To see this, we perform a simulation by increasing the value
of �1 along the dotted horizontal line at �2 = 4 that crosses the L2(1; 1) curve at
point (� c1; 4) with �

c
1 ' 1:640.6 The numerical results are summarized in Figure

5(B) in which a bifurcation diagram with respect to �1 is depicted. For �1 � � c1,
a pair of (�1; 4) stays within the stability region. So the stationary point p� = v
is stable and the corresponding part of the bifurcation diagram is a horizontal
line at p(t) = �. Once �1 > � c1; the pair is in the instability region above the
L2(1; 1) segment. The stationary point, therefore, loses stability and bifurcates
to a limit cycle having two extreme values (i.e., maximum and minimum). The
existence of the limit cycle is con�rmed by the Hopf bifurcation theorem. Figure
5(B) further implies that the limit cycle becomes larger as �1 gets larger and the
stability is never regained for �1 � 4.7 The �1-e¤ect is summarized as follows:

4The segment Li(k; n) shifts upward if n increases and rightward if k increases. For (k; n) �
2 and (k; n) = 0; the switching segments are de�ned but located ouside of the region with
� i � 5 for i = 1; 2, so they are not depicted in Figure 5(A).

5The �1-value of the intersection is obtained in the following way: �rst solving �
+
2 (!; 1) = 5

for ! yields a solution !m ' 0:560 and then substituting it into ��1 (!; 1) gives �m1 ' 0:887: So
the black segment depicted in the yellow region is de�ned for ! 2 [!m; !2]:

6 It is possible to obtain this value by following the same procedure with which we obtain
the value of �m1 just above.

7Mathematically, it might be possible to regain stability for �1 > 4. However, economically
it is not the case as �1 � �2 � 5 is imposed by Assumptions 1 and 3.
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Proposition 3 Stability of dynamic equation (1) with respect to �1 depends on
the selected value ��2 of �2;

If ��2 � �e; then the steady state is stable for �1 < ��2;

If ��2 > � e;
then there is the threshold value � c1 such that the steady state is
stable for �1 < � c1 and loses stability for �1 � � c1:

where � c1 is the �1-point of the intersection of the switching curve and the hori-
zontal line at ��2.

(A) Stability region (B) Bifurcation diagram

Figure 5. Dynamics for �1 = 6=15 and �2 = 1=3

Taking various values of �1 out of the interval [�01; 2=3] and constructing
the stability switching curves, we detect the �1-e¤ect more. In Figure 6(A), the
switching curves with various values of �1 are illustrated and their end-points
on the diagonal are denoted by the red dots. The upper most blue curve has
�1 = �01 and the lower most blue curve has �1 = 2=3 while the curve shifts
downward as �1 increases from �01 to 2=3. As far as the curve is single-valued
in �2, we have essentially the same result on the �1-e¤ect as in the case of
�1 = 6=15: �xing the value of �2 at some level and increasing the value of �1,
the stability is preserved for �1 less than the threshold value, � c1 and it is lost
for �1 > � c1: As seen in Figure 6(A), this threshold value becomes smaller as the
value of �1 gets larger,8 a larger value of �1 reinforces the destabilizing �1-e¤ect.

8This is not the case of the non-monotonics curve with �1 = 9=15.
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(A) Switching curves (B) Bifurcation diagram

Figure 6. Delay destabilizing and stabilizing e¤ects

3.2 Delay E¤ect II: � 2-e¤ect

We are next concerned with the �2-e¤ect, how changes in the value of �2 a¤ect
dynamics. We �rst return to Figure 5(A) in which both values of �1 and �2
are �xed. The downward-sloping shape of the switching curve in the yellow
region indicates that changing the value of �2 with constant �1 may generate
the similar e¤ect as the �1-e¤ect. Let �m1 denote the �1-value of the intersection
of the stability switching curve and the horizontal line at �2 = 5.9 If �1 is
selected to be less than �m1 ; then the steady state is stable for any �2 that
should be above the diagonal and not greater than 5. If �m1 < �1 < �e1; then
the steady state is stable for �2 < � c2 and bifurcates to a limit cycle for �2 > �

c
2

where � c2 is de�ned in the same way as �
c
1 and depends on the value of selected

�1. One more case exists and is speci�c to the �2-e¤ect, namely, if �1 > �e1; any
feasible pair of �1 and �2 is in the unstable region so that the steady state is
unstable.
We now turn attention again to Figure 6(A) and consider the �2-e¤ect when

�1 is increased but �2 is still �xed at 1=3. It is already seen that the stationary
point is stable in the region left to the stability switching curve and increasing
the value of �1 shifts the switching curve shifts leftward. The stability switching
curve with � = �0 is not depicted as it is located outside Figure 6(A). The shift
of the curve implies that a larger value of �1 reinforces the destabilizing �2-
e¤ect in the sense that it makes the stability region smaller. In addition, we
have interesting dynamic phenomenon when the switching curve with �1 being
close to 2=3 has forward- and backward-bending parts. This shape suggests

9"�m1 " is not labelled in Figure 5(A) to avoid the �gure congestion.
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the stability loss and gain with respect to �2. If the initial point of (�1; �2) is
selected on the diagonal such that the stationary point is stable and the vertical
line standing at this value of �1 crosses the stability switching curve three times
as illustrated in Figure 6(A), then the stability is lost at the �rst intersection,
gained at the second and �nally lost again at the third. The corresponding
bifurcation diagram is given in Figure 6(B) in which the �2 values of the three
intersections are denoted as �a2 ; �

b
2 and �

c
2; respectively. The increasing delay

�2 can destabilize the market price, stabilize it and then destabilize it again.
Before analysing the �2-e¤ect under various values of �2, we assume away

�2 = 1=3 and look brie�y at a selection of the parameter values of �1 and
�2: According to equation (13), the relative location between the f1(!) and
f2(!) curves depends on whether �2 is greater or less than 1=3: It is also observed
in Figure 3 that dynamic behavior could be sensitive to the ordering of the
weight �i which is dependent on a combination of �1 and �2: Thus we examine
dynamics more closely in the following six cases where the parameter pair of �1
and �2 is selected from each of the regions Ii for i = 1; 2; :::; 6. In the �rst three
cases we �x �1 = 7=15 and take �2 = 3=10; �2 = 31=90 and �2 = 9=24. These
selected points are denoted by the black dots along the vertical line at �1 = 7=15
in Figure 3. Then in the last three cases, we increases the value of �1 to 3=5
and take �2 = 6=24; �2 = 7=24 and �2 = 9=24. These points are also denoted
by the black dots on the vertical line at �1 = 3=5.

Case 1: �1 = 7=15 and �2 = 3=10

Notice that this point is in region I3 in Figure 3. The value of �2 being less
than 1=3 leads to f1(!) > f2(!). As is seen in Figure 7(A), the U -shaped blue
(i.e., f2(!)) curve intersects the horizontal axis twice at

!2 ' 0:422 and !3 ' 0:553

and the U -shaped green (i.e., f1(!)) curve is located far above the horizontal
axis, implying that f1(!) > 0 for any ! > 0. On the other hand, the unimodal
red (i.e., fd(!)) curve intersects the horizontal axis also twice at

!1 ' 0:318 and !4 ' 0:643:

Consequently, the triangle conditions hold in [!1; !2] and [!3; !4] and 
 is a
union of these two intervals: The corresponding stability switching curves are
obtained by applying equations (8) and (9). However the switching curve de�ned
over [!1; !2] is located outside the feasible region with 0 < � i � 5 for i = 1; 2
and �1 < �2: Thus only the switching curve de�ned over [!3; !4] is illustrated
as the steepest black curve in the yellow region in Figure 8. As discussed above,
the stability is preserved in the region left to the curve whereas it is lost and a
limit cycle emerges in the region right to the curve.

Case 2: �1 = 7=15 and �2 = 31=90
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This point is in region I4. Making a value of �2 greater than 1=3 shifts the
blue curve upward enough to induce the inequality reversal, f1(!) < f2(!): As is
seen in Figure 7(B), both curves are over the horizontal axis and thus f1(!) > 0
and f2(!) > 0 for any ! > 0. On the other hand, the unimodal red curve
intersects it twice at

!1 ' 0:249 and !2 ' 0:682:

The triangle conditions hold over interval [!1; !2]. We can construct the sta-
bility switching curve by varying the value of ! from !1 to !2. It is located
to the left to the red curve in the yellow region in Figure 8. Although the de-
tailed derivation is skiped, the red curve denotes the stability switching curve
for �2 = 1=3. As in Case 1, the stability is preserved in the region left to the
curve whereas it is lost and a limit cycle emerges in the region right to the curve.

Case 3: �1 = 7=15 and �2 = 9=24

This point is in region I5: It can be seen in Figure 7(C) that an increment
of �2 shifts the blue curve more upward and the green curve downward enough
to intersect the horizontal axis twice. The triangle conditions are ful�lled in
the two intervals, [!1; !2] and [!3; !4]: By the same reason as in Case 1, only
the stability switching curve de�ned over [!3; !4] is illustrated. It is the �attest
black curve in yellow region in Figure 8.

(A) �2 = 3=10 (B) �2 = 31=90 (C) �2 = 9=24

Figure 7. Triangle conditions with �1 = 7=15

As already mentioned, we illustrate four di¤erent switching curves in Figure
8, the steepest curve with �2 = 3=10; the red curve with �2 = 1=3; the �atter
curve with �2 = 31=90 and the �attest curve with 9=24: The monotonic shape
of the curves implies that dynamics with respect to �2 is essentially the same
as the one given in Proposition 3.

Proposition 4 Given �1 and �2 such as �1 < 1=2 and (1 � �1)=2 < �2 <
�1; dynamic behavior in regions I3 [ I4 [ I5 is stable for �2 < � c2 and unstable
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for �2 > � c2 where �
c
2 is the threshold value on the stability switching curve

determined by the selected value of �1.

Figure 8 also suggests the following e¤ects caused by the change in the value
ofparameter �2. Decreasing the value of �2 from 1=3 to 3=10 moves the red
curve to the steeper black curve, a¤ecting the red curve in two steps: it rotates
the curve clockwisely around the point on the diagonal in the �rst step and
then shifts the rotated curve downward.10 Apparently the rotate operation
enlarges the stability region and the shift operation contracts it. As far as
Figure 8 is concerned in which the shift e¤ect seems very minor, the increase
is larger than the decrease. Hence, decreasing the value of �2 has a stabilizing
e¤ect as it enlarges the stability region. In the same way but in the opposite
direction, increasing the value of �2 from 1=3 to 31=90 or 9=24 rotates the red
curve counter-clockwisely in the �rst step and then shifts the rotated curve
upward in the second step. As a result, the red curves moves to the �atter
curve. A decrease of the stability region by the rotate operation is larger than
an increase by the shift operation, implying that increasing the value of �2 has
a destabilizing e¤ect as it enlarges the instability region.

Figure 8. Stability switching curves
with �1 = 6=15 and �2 = 19=60;

1=3; 9=24

Case 4: �1 = 3=5 and �2 = 6=24

The point is in I2: As �2 < 1=3; the blue curve shown in Figure 9(A) is
below the green curve and intersects the horizontal axis only once while the red

10This decomposition is a hypothetical and intuitive construction in which no mathematical
background is provided.
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fd(!) curve is strongly convexo-concave and intersects the horizontal axis three
times as seen in Figure 9(A). Thus the set 
 is de�ned as


 = [!1; !2] [ [!3; !4]

where
!1 ' 0:653; !2 ' 0:904; !3 ' 1:310 and !4 ' 1:703:

In Figure 10(A), the corresponding stability switching curve is depicted in green
and consists of two di¤erent segments, one de�ned over [!1; !2] is downward
sloping and the other de�ned over [!3; !4] is island-shaped. More precisely, the
downward sloping curve is described by L2(0; 1): The green part of the lower
island on the right are described by L2(0; 1) while the green part of the upper
island on the left are by L1(1; 1) and L2(1; 1). The small part of the island at
the upper-right corner is by L2(2; 1): Since the stationary point is stable in the
region left to the downward sloping curve and is outside the island, the �2-e¤ect
can generate the stability gain as well as the stability loss as will be seen below.

Case 5: �1 = 3=5 and �2 = 7=24

The point is in I1 and f2(!) > f1(!) still holds as �2 < 1=3: However
increasing �2 reduces the degree of convexity and concavity of the fd(!) curve.
As a result it intersects the horizontal axis only once as shown in Figure 9(A).
So the set 
 is identical with [!1; !2] where

!1 ' 0:526 and !2 ' 1:717:

Increasing the value of �2 qualitatively a¤ects the shape of the stability switching
curve that is illustrated as the black curve in Figure 10(A). The curve starting
on the diagonal �rst take a round-arch shape and then bends backward to
be downward-sloping. Comparing it with the green curves may suggests that
increasing the value of �2 induces the green downward-sloping curve and the
green island-shaped curve to merge to the connected black curve.

Case 6: �1 = 3=5 and �2 = 9=24

We further increase the value of �2 to move the point into region I6: The
locations of the blue and green curves are interchanged, f2(!) > f1(!) as shown
in Figure 9(C) and f2(!) > 0 for all ! > 0: In consequence the green curve and
the red curve intersect the horizontal axis once, respectively,

!1 ' 0:403 and !2 ' 1:763:

The resultant stability switching curve de�ned over [!1 !2] is depicted in blue
in Figure 10(A).

20



(A) �2 = 1=4 (B) �2 = 7=24 (C) �2 = 9=24

Figure 9. Triangle conditions with �1 = 3=5

In Figure 10(A) there are three (green, black and blue) stability switching
curves and the red curve with �2 = 1=3: To see the �2-e¤ect, we �x the value of
�1 at 1:1 and increase the value of �2 along the vertical line at �1 = 1:1: The line
intersects the green and black curves twice, respectively but does not intersect
the red curve and the blue curve. As a result, the bifurcation diagrams shown
in Figure 10(B) exhibit stability gain and loss for �2 = 6=24 and �2 = 7=24:
In particular, along the green curve with �2 = 6=24; the stability is gained at
�a2 ' 2:04 at which the upper and lower branches of the bifurcation diagram
merge and lost at � b2 ' 4:282 at which the horizontal line at p = � bifurcates to
the upper and lower branches. Similar phenomenon are observed with the black
bifurcation diagram for �2 = 7=24: The stability is gained at �A2 ' 1:893 and
lost at �B2 ' 4:444: The red bifucation diagram exhibits an interesting shape,
that is, the di¤erence between the upper and lower branches are su¢ ciently
close for some values of �2. This occurs, since the vertical line comes close to
but does not intersect the red curve in Figure 10(A)

Proposition 5 Given �1 and �2 such as �1 > 1=2 and (1 � �1)=2 < �2 <
1 � �2; new phenomena such as stability loss and gain might occur in region
I1 [ I2 [ I6.
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(A) �2 = 6=24 (B) �2 = 7=24

(B) �2 = 8=24 (D) �2 = 9=24

Figure 10. Various stability switching curves

3.3 Delay E¤ect III: � 3-e¤ect

We now look into the �3-e¤ect, the e¤ect caused by changing the value of �3.
To this end, �1 = (6� 0:1)=12 is taken, �2 = 1=3 is re-assumed to simplify the
analysis and dynamics with three di¤erent values of �3, �3 = 5, �3 = 6 and
�3 = 7; are considered. The corresponding switching curves are illustrated in
di¤erent colors in Figure 11(A) (that is, a blue curve with �3 = 5; red curves with
�3 = 6 and black curves with �3 = 7). As �3 increases, it is observed �rst that
the feasible region of �1 and �2 increases since the upper bound of �2 becomes
larger and second that the downward-sloping switching curve shifts upward,
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which implies an enlargement of the stability region. It is further observed that
island-shaped switching curves emerge for �3 = 6 and �3 = 7 and the steady
state is unstable inside of it. To detect the reason why the island-shaped region
is born, we draw the green f1(!) = f2(!) curve and the red fd(!) curve for
�3 = 7 in Figure 11(B). It is seen that f1(!) = f2(!) > 0 for ! > 0 and the
larger �3 value makes the second hump of the fd(!) curve high enough to cross
over the horizontal line. As a result, the red curve intersects the horizontal line
four times at

!1 ' 0:104; !2 ' 0:562; !3 ' 1:059 and !4 ' 1:256:

In consequence, the triangle conditions (5) hold in the two intervals, [!1; !2] and
[!3; !4]. It is veri�ed that the switching curve de�ned on [!1; !2] is downward-
sloping and the one on [!3; !4] forms an island shape. The existence of the
smaller red islands indicates that the fd(!) curve also intersects the horizontal
axis four times even when �3 = 6: A critical value of �3 for the birth of the
island is somewhere between �3 = 5 and �3 = 6; for which the maximum of the
second hump of fd(!) becomes zero.

Proposition 6 As far as �3 is relatively smaller, increasing the value of �3
stabilizes the steady state by shifting the switching curve upward whereas for a
relatively larger value, increasing value of �3 additionally generates an island-
shaped switching curve.

(A) Stability switching curves (B) Triangle conditions

Figure 11. �3-e¤ects on switching curves

To see the �3-e¤ect on dynamics, we perform two simulations. In the �rst
simulation, we increase the value of �1 along the horizontal line at �2 = �02. This
line successively crosses the stability switching curves, the blue curve at �� c1; the
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red curve at ~� c1 and the black curve at �̂
c
1 although these bifurcating values are

not labelled in Figure 11(A) to avoid confusion. The corresponding bifurcation
diagrams are illustrated in Figure 12(A) in which the black curve is depicted
�rst, the red curve is then put on it and �nally the blue curve is further placed
upon. Each diagram has a qualitatively similar shape as the one in Figure 4(B),
that is, the steady state loses stability at the bifurcation value and a limit cycle
emerges for a larger value of �1. Thus larger �3 value does not alter qualitative
aspects of the �1-e¤ect, however, does a¤ect its quantitative aspects because
the bifurcation value of �1 becomes larger as �3 increases. Increasing value of
�3 enhances the stabilizing �1-e¤ect by delaying the loss of stability.
In the second simulation, we shift the emphasis away from the �1-e¤ect to

the �2-e¤ect and then increase the value of �2 from 2 to 7 along the vertical
real line at �1 = 2 in Figure 11(A), �xing �3 = 7 and starting at point (2; 2)
on the diagonal. The line crosses the lower black island-shaped curve at �a2 , the
green downward sloping curve at � b2 and then upper circle-shaped curve at �

c
2.

These threshold values are not labelled in Figure 11(A) by the same reason as
before. The simulation results are given in Figure 12(B) in which stability gain
and loss occur in the following way:
(i) we initially have a unstable steady state (in other words, a stable limit

cycle) when the initial point is selected on the diagonal in Figure 11(A)11 that
is inside the half green circle. The real parts of one eigenvalue is positive.
(ii) the limit cycle becomes smaller as �2 increases from 2 to �a2 and merges

with the steady state for �2 = �a2 at which instability is switched to stability. The
positive real part turns to be negative when the delay �2 crosses the imaginary
axis from left to right.
(iii) for �a2 < �2 < �

b
2; the model has a stable steady state and stability loss

occurs for �2 = � b2;. The real parts of at least one eigenvalue turn to be positive
again when the delay �2 crosses the imaginary axis.
(iv) for �2 > � b2; Figure 12(B) suggests the existence of stable limit cycles and

the instability of the steady state. Although increasing �2 intersects the island
switching curve at point (2; � c2) at which the real part of another eigenvalue
changes sign. However no stability switch occurs, since there is at least one
other eigenvalue with positive real part.

Proposition 7 Changing the value of �3 does not a¤ect essentially dynamics
with respect to �1 and can a¤ect dynamics with respect to �2 as it can generate
multiple stability switching.

11More precisely, we select a constant initial function, g(t) = 2 for t � 0:
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(A) �1-e¤ect (B) �2-e¤ects

Figure 12. Delay e¤ects on dynamics

4 Concluding Remarks

This paper constructs a heterogeneous agent model with three �xed delays and
considers its dynamic behavior both analytically and numerically. The depen-
dence of the delay e¤ects on the changes in the lengths of the delays is also
studied. The common result is that a longer delay can destabilize the market
and can give rise to cyclic oscillations around the equilibrium (i.e., fundamental)
price. This result clari�es the instability condition and thus complements the
numerical study of Dibeh (2005). In addition, it is found that under multiple
delays, stability loss and gain repeatedly occur as the length of a delay in-
creases. He and Zheng (2010) observed this phenomenon in a �nancial market
model with continuously distributed time delay that involved in�nitely many
past price observations and called it the double edge e¤ect. It is thus shown
that the same e¤ect can occur even under �nite delay information. In our future
research the model of this paper will be extended to involve two risky assets and
the stability and instability of the equilibrium will be examined.
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