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Abstract

We investigate love dynamics of two individuals in a delay Romeo and
Juliet model in which both are assumed to be cautious, the most natural
romantic style. The local stability analysis proves �rst that the steady
state is fairly stable when there are no delays and second that solving
the characteristic equation generates a set of positive delays for which the
steady state loses stability. Through numerical analysis, we con�rm the
following three main results: (1) cyclic oscillations of love feeling emerge
via Hopf bifurcation; (2) multiple delays cause the double edge e¤ect
implying that alternation of stability and instability repeatedly occurs;
(3) complicated dynamics involving chaotic oscillations emerges and then
merges to a limit cycle as the length of one delay increases with �xed
values of the other delay.
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1 Introduction

This paper considers love a¤air dynamics with two distinct delays and extends
the study of Matsumoto and Szidarovszky (2016) that deals with love dynamics
with one delay. It presents a new characterization of love evolution by which
a wide spectrum of love dynamics can be constructed, ranging from monotonic
convergence to complicated oscillations including chaotic phenomena.
Di¤erential equations have been used to describe dynamic phenomena in var-

ious �elds of science; Navier-Stockes equations in physics, Schrödinger equation
in quantum chemistry, Lotka-Voltera equations in biology, price dynamic sys-
tem following the law of supply and demand in economics, to name only a few.
In social psychology, Strogatz (1988) could be the �rst to model the dynamics
of romantic feelings of two individuals named Romeo and Juliet with two di¤er-
ential equations. It is designed to evolve a love a¤air between Romeo and Juliet
through two routes. It may be very natural that one�s love grows more strongly
when the other expresses his/her love more passionately. It is, on the contrary,
also possible that one�s feeling gets gradually down when this individual is a
�ckle lover. So the �rst route describes a change in one�s own level of love feel-
ing a¤ected by the partner�s level. We say that time evolution of the love a¤air
through this route is nurtured in a cross-reaction process. Second, one�s own
level can change even in absence of the partner. If Juliet disappears by some
reasons, Romeo gradually loses his a¤ections as time goes on or he could live in
old days memories, preserving his a¤ections to Juliet. We say that love a¤ection
through this route evolves in a self-reaction process. Further, how love grows
or decays depends on the romantic styles of Romeo and Juliet. According to
Strogatz (1988), the styles are classi�ed into four speci�cations, "eager beaver"
if both of the self and cross reactions are positive, "cautious lover" if the self
reaction is negative and the cross-reaction is positive, "narcissistic nerd" if the
self-reaction is positive and the cross-reaction is negative and "hermit" or "stoic
lover" if both are negative.
Taking into account of the real-life fact that the majority of the population

is the cautious lover, we con�ne our main analysis to a case in which Romeo
and Juliet are cautious lovers. Further, real life observations often tell us two
distinguished evolutions of love after they meet for the �rst time. One is that
love stories develop monotonically and, sooner or later, stay at their plateau for
a long time (i.e., convergent dynamics). The other is that love stories arrive at a
oscillating regime in which the feelings of the individuals sometimes fall into the
bottomless pit, some other times rise up to the peak of happiness and these ups
and downs repeat themselves (i.e., cyclic dynamics). In the existing literature,
two types of models are known to explain these observations. On one hand, it
has been demonstrated that a variant of Romeo and Juliet model can interpret
various types of love stories described in "Pride and Prejudice," (Rinaldi et al.
(2014)) "Gone with the Wind" (Rinaldi at al. (2013a)) and "Beauty and the
Beast" (Rinaldi at al. (2013b)) by focusing on the appeals of the individuals.
On the other hand, following natural phenomena that interactions between the
individuals could be delayed, Liao and Ran (2007), Son and Park (2011) and
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Bielczyk et al. (2013) focus on a delay in a nonlinear cross-reaction process
and show the birth of cyclic dynamics through Hopf bifurcation. This �nding
indicates that the nonlinear delay model of Romeo and Juliet explains various
oscillatory dynamics of two individuals�romantic feelings. In the existing lit-
erature, however, not much has been revealed with respect to multiple delays
in reactions of the individuals to stimuli. In this paper we construct a class of
love dynamic models of cautious individuals in which there are delays in both
self-reaction and cross-reaction of love accumulation process and study the delay
e¤ects on love dynamics analytically as well as numerically.
In what follows, Section 2 presents the basic love dynamic model with no

delays. In the �rst half of Section 3, we review Liao and Ran (2007) in which
two delays are assumed in the cross-reaction process. Then in its latter half,
we additionally introduce the self-reaction delay to their model and analytically
derive a stability switching curve on which stability is switched to instability or
vice versa. Section 4 conducts numerical simulations and demonstrates that the
two delay model can generate rich dynamics to describe "many couples, many
ways to express their love and a¤ection". Section 5 concludes the paper and
provides directions of future research.

2 Basic Model

We now construct a Romeo and Juliet model without delays, which is called a
basic model. Let x(t) and y(t) denote levels of the romantic feelings of Romeo
to Juliet and that of Juliet to Romeo at time t, respectively, if x(t) > 0 and
y(t) > 0. The negativity of these state variables represents a level of the non-
romantic or dislike feelings such as antagonism and disdain. Then the rates of
change describe the feeling accumulation processes of the individuals and are
assumed to have the following forms according to Rinaldi (1998):

_x(t) = Ox(x(t)) +Rx(y(t)) + Ix

_y(t) = Oy(y(t)) +Ry(x(t)) + Iy

(1)

each of which is composed of three terms, oblivion denoted as Oz; for z =
x; y; return by Rz and instinct by Iz. First, Oz gives rise to a loss of interest
that describes the self-reaction process and depends on his/her own feeling level.
It characterizes decay of love at disappearance of the partner in the self-reaction
process. Second, Rz is a source of interest and describes the reaction of indi-
vidual z to the partner�s love in the cross-reaction process. Lastly, Iz is also
a source of interest and describes the reaction of individual z to the partner�s
appeal re�ecting physical, �nancial, educational, intellectual, well-born proper-
ties, the family background, etc. We adopt the following forms of these reaction
functions:

Assumption 1: Ox(x) = ��xx; �x > 0 and Oy(y) = ��yy; �y > 0:

Assumption 2: Rx(y) = �x tanh(y) and Ry(x) = �y tanh(x):
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Assumption 3: Ix = 
xAy; Ay � 0 and Iy = 
yAx; Ax � 0:

Assumption 1 con�nes attention to the case where the a¤ection vanishes
exponentially in the absence of the partner. Assumption 2 implies that the
reaction is determined by a product of two terms, the reaction coe¢ cient and
the hyperbolic reaction that is positive, increasing, concave and bounded from
above for positive values and is negative, increasing, convex and bounded from
below for negative values. The love a¤ection of individual z is encouraged or
discouraged by the partner according to whether �z > 0 or �z < 0. Assumption
3 implies that individuals have time-invariant appeal. Non-zero Az a¤ects not
only the location of the steady state but also love dynamics as mentioned in
the Introduction. In this study, since we con�ne attention to the delay e¤ects
on love evolution, Az = 0 is assumed to simplify the analysis.1 Under these
assumptions, equations (1) are reduced to a more speci�c system,

_x(t) = ��xx(t) + �x tanh[y(t)];

_y(t) = ��yy(t) + �y tanh[x(t)];
(2)

where �z is the self-reaction or forgetting coe¢ cient and �z is the cross-reaction
or return coe¢ cient. The basic structure of system (2) is the same as that of
the model Strogatz (1988) proposes. The minor di¤erence is that a linear return
function of Strogatz is replaced with a nonlinear hyperbolic function. We call
it a basic Romeo and Juliet model. Matsumoto and Szidarovszky (2016) have
already demonstrate that it has a unique zero steady state if �x�y � �x�y and
two more non- zero steady states if �x�y > �x�y: Accordingly, let (x

�
0; y

�
0) be

the zero steady state and (x�k; y
�
k) the positive steady state if k = 1 and the

negative steady state if k = 2:
To examine stability of the steady states, system (2) is linearized,

_x(t) = ��xx(t) + �xdkyy(t);

_y(t) = �yd
k
xx(t)� �yy(t)

(3)

where

dkx =
d tanh(x)

dx

����
x=x�k

and dky =
d tanh(y)

dy

����
y=y�k

:

Substituting exponential solutions x(t) = e�tu and y(t) = e�tv into system (3)
yields the corresponding characteristic equation

det

0@ �+ �x ��xdky

��ydkx �+ �y

1A = 0

1On the other hand a number of papers of Rinaldi treats the appeal as an ingredient factor
for love evolution. Since our approach could complement Rinaldi�s approach, a delay model
with the appeal could bring about more fruitful results.
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or
�2 + (�x + �y)�+ �x�y � �x�ydkxdky = 0; (4)

where �x + �y > 0 always by Assumption 1. It is also demonstrated in Mat-
sumoto and Szidarovszky (2016) that �x�y � �x�ydkxdky > 0 for k = 1; 2 and
dkx = d

k
y = 1 for k = 0: Hence we have the following result, which is a summary

of Theorem 2 of Matsumoto and Szidarovszky (2016);

Theorem 1 The non-zero steady states are stable nodes while the zero-steady
state is a saddle if �x�y > �x�y and stable otherwise.

The following numerical simulations con�rm Theorem 1 and are done with
�x = �y = 1, �x = �y = 3=2 in Figure 1(A) and �x = �y = 1=2 in Figure 1(B).
It is clearly seen that (x�0; y

�
0) is a saddle and (x

�
k; y

�
k) for k = 1; 2 are stable in

Figure 1(A) whereas the unique steady state (x�0; y
�
0) in Figure 1(B) is a stable

node.2

(A) �x�y > �x�y > 0 (B) �x�y > �x�y > 0

Figure 1. Stability properties of the basic model

3 Two Delay Model

We introduce time delays in the interactions of the individuals in the basic
model and consider how the delays a¤ect love evolutions just described above
by the nonlinear Romeo and Juliet model without any delays. Matsumoto
and Szidarovszky (2016) have already con�rmed the appearance of cyclic love
dynamics in the model with one delay. Henceforth we investigate the e¤ects
caused by two distinct delays in this study.

2 In the same way, it can be checked that the zero-steady state is stable in the cases of
0 > �x�y > ��x�x and 0 > ��x�x > �x�y :
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3.1 Liao and Ran Model

We �rst review the dynamic results provided by Liao and Ran (2007) that
introduce two delays �x and �y into the cross-reaction processes of the basic
model,

_x(t) = ��xx(t) + �x tanh[y(t� �y)];

_y(t) = �y tanh[x(t� �x)]� �yy(t):

The steady states of this model are the same as the ones of the basic model.
To examine the stability of the steady states, the model is linearized in the
neighborhood of the steady state (x�k; y

�
k)

_x(t) = ��xx(t) + �xdkyy(t� �y);

_y(t) = �yd
k
xx(t� �x)]� �yy(t):

(5)

Substituting exponential solutions x(t) = e�tu and y(t) = e�tv into system (5)
yields, after arranging the terms, the corresponding characteristic equation

�2 + (�x + �y)�+ �x�y � �x�ydkxdkye��� = 0 (6)

with � = �x + �y: Although Liao and Ran (2007) introduce two delays into the
cross-reaction processes, dynamics generated by their model is essentially the
same as the one by the model with one delay in the cross-reaction process since
only the sum of two delays plays a crucial role in determining dynamic behavior
in their model. Hence, following Matsumoto and Szidarovszky (2016), it can
be shown �rst that all pure complex eigenvalues of equation (6) are simple and
second that the non-zero steady states are locally asymptotical stable. Liao and
Rao (2007), on the other hand, concern with dynamics of the zero-steady state
and show the following result, which restates their Theorem 1:

Theorem 2 Concerning the zero-steady state, (x�0; y
�
0); no stability switch oc-

curs if �x�y � �x�y and �x�y>
���x�y�� while a stability switch occurs only once

at � = �0 if 0 > ��x�y > �x�y, implying that the zero stationary state is locally
asymptotically stable if � < �0, loses stability if � = �0 and bifurcates to a limit
cycle if � > �0 where the threshold value of � is de�ned as

�0 =
1

!0
sin�1

�
(�x + �y)!0

�x�y

�
with

!0 =
1p
2

rq
(�2x � �2y)2 + 4

�
�x�y

�2 � ��2x + �2y�:
A Hopf bifurcation resulting in cyclic dynamics occurs under two conditions,

(i) the product of the cross reaction coe¢ cients is larger than the product of the
self reaction coe¢ cients and (ii) one of the two individuals is a hermit and the
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other is cautious. The �rst one could be possible, however, the second might be
unusual, as already been pointed out by Son and Park (2011). To remedy this
de�cit, we will limit the styles of Romeo and Juliet to cautious lovers henceforth
and then pursue possible emergencies of cyclic oscillations:

Assumption 2�. �x > 0 and �y > 0:

3.2 Delay Romeo and Juliet Model

We introduce multiple delays into the self- and cross-reaction processes in such
a way that each delay has an independent role:

_x(t) = ��xx(t� � sx) + �x tanh[y(t� � cy)];

_y(t) = �y tanh[x(t� � cx)]� �yy(t)
(7)

where � sx > 0 is a self-reaction delay of Romeo3 while � cx � 0 and � cy � 0
cross-reaction delays of Romeo and Juliet satisfying � cx+ �

c
y > 0. The linearized

version of model (7) is

_x(t) = ��xx(t� � sx) + �xdkyy(t� � cy);

_y(t) = �yd
k
xx(t� � cx)� �yy(t);

and the analysis of the Jacobian as before reveals that the characteristic equation
is

�(�+ �y) + �x(�+ �y)e
���1 � �x�ydkxdkye���2 = 0 (8)

where �1 = � sx and �2 = �
c
x + �

c
y: Following the method provided by Gu et al.

(2005), we detect the location of the eigenvalues of this characteristic equation
in the same way as in Matsumoto and Szidarovszky (2015).
Since �x�y � �x�ydkxdky > 0 for k = 1; 2 is shown in Matsumoto and Szi-

darovszky (2016), � = 0 is not a solution of equation (8). Then dividing both
sides of the characteristic equation by �(�+�y)(6= 0) reduces the left hand side
to

a(�) = 1 + a1(�)e
���1 + a2(�)e

���2

where

a1(�) =
�x
�
and a2(�) = �

�x�yd
k
xd
k
y

�(�+ �y)
:

Theorem 1 ensures the stability of the non-zero steady state when there are
no delays (i.e., �1 = �2 = 0). We now examine whether the switching from
stability to instability or vice verse can occur at some positive values of the
delays. To this end, we check if the characteristic equation (8) has a pair of
pure imaginary solutions at the threshold values of the delays. Let us suppose

3The qualitatively same results will be obtained even if the self-reaction delay of Romeo is
replaced with a self-reaction delay of Juliet.
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that � = i!; ! > 0 where we have the same results under ! < 0 as the solutions
are conjugate. We then have

a1(i!) = �i
�x
!

and

a2(i!) =
�x�yd

k
xd
k
y!

!(!2 + �2y)
+ i
�y�x�yd

k
xd
k
y

!(!2 + �y)
:

Their absolute values are
ja1(i!)j =

�x
!

and

ja2(i!)j =
���x�ydkxdky��
!
q
!2 + �2y

:

Furthermore,

arg [a1(i!)] =
3�

2
and arg [a2(i!)] = tan�1

h�y
!

i
:

Solving a(i!) = 0 directly is not an easy job. However, if the three terms
in a(i!) are considered to be three vectors in the complex plane, then solving
it is equivalent to constructing a triangle from the three terms satisfying the
following (triangle) conditions,

(1) 1 � j�1(i!)j+ j�2(i!)j

(2) j�1(i!)j � 1 + j�2(i!)j

(3) j�2(i!)j � 1 + j�1(i!)j

Conditions (1) and (2) are written as

f(!) = (! � �x)2
�
!2 + �2y

�
�
�
�x�yd

k
xd
k
y

�2
and condition (3) as

g(!) = (! + �x)
2 �
!2 + �2y

�
�
�
�x�yd

k
xd
k
y

�2
:

Hence, the triangle conditions are satis�ed if

f(!) �
�
�x�yd

k
xd
k
y

�2 � g(!):
It is to be noticed that

f(0) = (�x�y)
2; f(�x) = 0; f(�1) =1 and f(!) < g(!):

Di¤erentiating f(!) yields

f 0(!) = (! � �x)(4!2 � 2!�x + 2�2y):
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The �rst factor is negative if ! < �x and positive if ! > �x while the sign of
the second factor seems to be ambiguous. Let

'(!) = 4!2 � 2!�x + 2�2y

and the roots of '(!) = 0 are

�!1;2 =
�x �

q
�2x � 8�2y
4

:

For simplicity, we make the following4 :

Assumption 4: �x ' �y such that �2x < 8�2y always.

The negative discriminant implies that '(!) � 0 for all !: Hence we have

f 0(!)

8<: < 0 if ! < �x;

> 0 if ! > �x:

So the domain for ! in which the triangle conditions are satis�ed is de�ned as
follows.

Theorem 3 Let B =
�
�x�yd

k
xd
k
y

�2
. Then the domain is between roots of f(!) =

B if B � (�x�y)2 and between roots of g(!) = B and f(!) = B if B > (�x�y)2:

Let the three terms in a(i!) be three vectors forming a triangle. We suppose
that j1j ; the absolute value of vector 1, is its base and denote the angle between
j1j and j�1(i!)j by �1 and the angle between j1j and j�2(i!)j by �2: Then by
the law of cosine, we have

cos �1 =
(!2 + �2x)(!

2 + �2y)� (�x�ydkxdky)2

2�x!(!2 + �2y)

and

cos �2 =
(!2 � �2x)(!2 + �2y) + (�x�ydkxdky)2

2�x�2!
q
!2 + �2y

:

4 If �2x � 8�2y holds, then the discriminant is nonnegative. Both roots �!1 and �!2 are real,
positive and less than �x: So we have

'(!)

8<: > 0 if ! < �!1 or ! > �!2;

< 0 if �!1 < ! < �!2:

Hence the sign of f 0(!) is determined such as

f 0(!)

8<: < 0 if ! < �!1 or �!2 < ! < �x;

> 0 if �!1 < ! < �!2 or ! > �x.

So domain of ! can be de�ned in various ways. However, it is numerically checked that
dynamics obtained under �2x � 8�2y is essentially the same as the one under �2x < 8�2y :
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Solving these two equations for �1 and �2 gives

�1(!) = cos
�1

"
(!2 + �2x)(!

2 + �2y)� (�x�ydkxdky)2

2�1!(!2 + �2y)

#
and

�2(!) = cos
�1

24 (!2 � �2x)(!2 + �2y)� (�x�ydkxdky)2
2�1�2!

q
!2 + �2y

35 :
Since the triangle may be located above and below the horizontal axis in the
complex plane, we have two possibilities,�

arg
�
�1(i!)e

�i!�1
�
+ 2k�

	
� �1(!) = �

and �
arg

�
�2(i!)e

�i!�2
�
+ 2n�

	
� �2(!) = �:

Using the formula arg[�k(i!)e�i!�k ] = arg[�k(i!)] + arg[e
�i!�k ] and solving

these equations for �1 and �2 yield the threshold values of the delays,

��1 (!; k) =
1

!
farg [�1(i!)] + 2(k � 1)� � �1(!)g

and
��2 (!; n) =

1

!
farg [�2(i!)] + 2(n� 1)� � �2(!)g

for (k; n) = 0; 1; 2; :::We can �nd the pairs of (�1; �2) constructing the partition
curves consisting of two sets of parametric segments for k; n � 0,

L1(k; n) =
�
�+1 (!; k); �

�
2 (!; n)

	
for ! 2 [!s; !e]

and
L2(k; n) =

�
��1 (!; k); �

+
2 (!; n)

	
for ! 2 [!s; !e]:

Here [!s; !e] denotes the domain of ! in which the triangle conditions hold.
According to Theorem 2, the left hand extreme value or the starting value !s
solves f(!) = B if B � (�x�y)2 and g(!) = B if B > (�x�y)

2 while the right
hand extreme value or the ending value !e always solves f(!) = B: The next
result con�rms that the segments of L1(k; n) and L2(k; n) with �xed k and
varying n smoothly connected to form one continuous curve.5

Theorem 4 With a �xed value of k; the segments of L1(k; n) and L2(k; n) form
a continuous curve as n increases.

Notice two issues, one is that characteristic equation (8) has a pair of pure
imaginary roots on these partition curves and the other is that given k and n;
the partition curve divides the (�1; �2) region into subregions according to the
number of the eigenvalues whose real parts are positive. In consequence, since
characteristic equation (8) is reduced to equation (4) as �1 = �2 = 0, the steady
state is locally stable for any pair of (�1; �2) in the separated region including
the origin.

5Applying Theorem 1 of Matsumoto and Szidarovszky (2015), we can demonstrate that
these segments from a continuous curve
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4 Numerical Simulations

In this section we specify the parameter values and perform numerical simula-
tions �rst to con�rm the conditions under which stability switching occurs and
then to detect what kind of dynamics emerges when stability is lost. Under
Assumptions 1, 2 and 2�, we can identify two cases, �x�y > �x�y > 0 and
�x�y > �x�y > 0: These cases are successively considered in the sequel.

4.1 �x�y > �x�y > 0

Under this parametric conditions, the following two issues have been already
shown in the basic or non-delay model:

(1) three steady states exist,

(2) the non-zero steady states are locally asymptotically stable and the zero-
steady state is a saddle.

In this section we are concerned with the delay e¤ects caused by changing
the values of �1 and �2 on dynamics. More precisely, specifying the parameter
values, we numerically examine whether the delays can destabilize the non-zero
steady states and what dynamics can emerge when the stability is lost. As in
Figure 1(A), we make the following:

Assumption 4: �1 = �2 = 1 and �1 = �2 = 3=2

Under Assumption 4, Figure 2 illustrates the segments of L1(k; n) in red and
L2(k; n) in blue with the values of ! varying from !s ' 0:883 to !e ' 1:104
for k = 0 and n = 0; 1; 2: The green and purple dots are connecting points
of the red and blue segments, the red segments start at the green points and
end at the purple points while the blue segments end at the green points and
start at the purple points.6 It is to be noticed that the red and blue segments
shift upward when n increases and rightward when k increases. The L1(0; 0)
segment is located below the horizontal axis so it is not depicted. In order to
keep �2 non-negative, the lower most blue segment of L2(0; 0) is illustrated only
for �1 � �01 ' 1:617:7 Increasing the value of �2 along the vertical dotted line
at �1 = �01 intersects the partition curve three times at

�a2 ' 2:618; � b2 ' 6:837 and � c2 ' 8:697

which are denoted by the black dots.
Concerning stability, we �rst examine dynamics in the following two regions

of Figure 2, the LHS (left hand side) region shaded by positive-sloping lines in

6 In the case of n = 1; segment L1(0; 1) starts at the end point (i.e., the lowest green point)
of L2(0; 0) and ends at the starting point (i.e., the lower purple point) of L2(0; 1):The same
connection is repeated as k increases.

7Taking k = n = 0 and solving �+2 (!; 0) = 0 yields ! = �!: Substituting into ��1 (!; 0)
presents approximately this threshold value.

11



which 0 � �1 < �m1 and �2 � 0 and the RHS (right hand side) region shaded
by the negative-sloping lines in which �1 � �M1 and �2 � 0. Here �m1 is the
minimum �1-value of the segments L2(0; n) and �M1 is the maximum �1-value
of the segments L1(0; n):8 Since the origin, �1 = �2 = 0 is in the LHS region,
any combination of the delays in the LHS region do not a¤ect stability of the
non-zero steady states and such a delay is called harmless. In order to arrive
at the RHS region for any value of �2, increasing �1 from zero must cross the
stability switching curve and then the vertical dotted line at �1 = �M1 : This
implies that at least one of the eigenvalues must have a positive real part for
any pair (�1; �2) in the RHS region. In other words, the stability is lost in the
RHS region. Roughly speaking, for any value of �2; the stability of the non-zero
steady states is preserved for smaller values of �1 and lost for larger values of
�1. These results are summarized as follows:

Proposition 5 The non-zero steady states of system (7) are locally asymptot-
ically stable if 0 � �1 < �m1 and �2 � 0 and always unstable if �1 � �M1 and
�2 � 0:

Figure 2. The stability switching curve
for k = 0 and n = 0; 1; 2.

We now turn attention to the remaining area in which �m1 � �1 � �M1 and
�2 � 0: The red-blue connected curve in Figure 2 is called a stability switching
curve since dynamics is switched from stability to instability (i.e., stability loss)
or from instability to stability (i.e., stability gain) on this curve. We numerically

8Solving d��1 =d! = 0 for ! to obtain the minimizer !m ' 1:084 and then substituting it
into ��1 (!; 0) yields �

m
1 ' 1:393: The other value �M1 ' 1:813 is determined in the similar

way.
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con�rm how the stability switch takes place on the stability switching curve and
what dynamics arises when a stability loss takes place.9 We �rst consider the
e¤ects caused by the change in �1 with a �xed value of �2 and then proceed to
the e¤ect caused by the change in �2; with a �xed value of �1.

Simulation 1: 1 � �1 � 3:5; �2 = 2:

The dotted horizontal line at �1 = 2 crosses the red segment L1(0; 1) at
the dotted point in Figure 2. Although it is not labelled, the �1-value of the
intersection will be denoted by �B1 ' 1:776 in which B implies bifurcation.
Figure 3 illustrates two bifurcation diagrams with respect to �1 in which delay
system (7) runs for 0 � t � 1000 and initial functions de�ned for t 2 [��1; 0] are
selected to be constant, x0(t) = x�1 + 0:1 and y0(t) = y

�
1 + 0:2. In Figure 3(A),

�1 is increased from 1 to 3:5 with an increment of 1=400 along the dotted line at
�2 = 2. The local maximum and minimum values of y(t) for 950 � t � 1000 are
plotted again each value of �1 to take away initial disturbances. The horizontal
part of the diagram for y = y�1 and 1 � �1 < �B1 implies that the positive steady
state is locally asymptotically stable. The stability is lost at �1 = �B1 and a
limit cycle oscillating around y�1 emerges for �1 > �

B
1 when the diagram has two

branches. It then gets complicated more through a period-doubling-like cascade
as �1 further increases. As �1 becomes closer to 3:5, the complicated dynamics
converges to a big limit cycle including two steady states inside. If we take
the values of the constant initial functions in the neighborhood of the negative
steady state, y�2 ; we then have exactly the same dynamics whose bifurcation
diagram is symmetric to the one in Figure 3(A) with respect to the horizontal
axis, which is not illustrated to avoid confusion.

Simulation 2: 1 � �1 � 4:5; �2 = �a2 :

In Figure 3(B), the �xed value of �2 is increased to �a2 and the same procedure
generates a di¤erent shape of the bifurcation diagram showing larger and more
complicated oscillations when stability is lost at �1 = �B1 (= �01) at which the
horizontal line at �2 = �a2 crosses the L1(0; 1) segment in Figure 2. It is to be
noticed that �B1 = �01 ' 1:617 in Figure 3(A) and �B1 ' 1:776 in Figure 3(B)

9 It is possible to analytically con�rm the direction of the stabililty switch. See Theorems
3 and 4 in Matsumoto and Szidarovszky (2015) and Proposition 6.1 in Gu et al. (2005).
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though the same notation is used.

(A) �2 = 2 (B) �2 = �a2

Figure 3. Bifurcation diagrams with respect to �1

Simulation 3: �1 = 2:5 and �2 = 2

In the next simulation, we keep �2 = 2 and �x the values of �1 at 2:5. By
doing so, we will see dynamics scattered along the dotted vertical line at �1 = 2:5
seen in Figure 3(A) from a di¤erent point of view. With these parameter values,
the dynamic system runs for 0 � t � 1000 with two di¤erent initial functions
de�ned for t � 0, one with x0(t) = x�1 + 0:1 and y0(t) = y�1 + 0:2 as before and
the other with x0(t) = x�2 � 0:1 and y0(t) = y�2 � 0:2: Two phase diagrams are
plotted in the (x; y) plane in Figure 4(A) in which a trajectory with the positive
initial functions converges to an upper attractor surrounding the positive steady
state y�1 and a trajectory with the negative initial functions approaches the
lower attractor surrounding the lower steady state y�2 . The attractors are point
symmetric with respect to the origin. The corresponding time trajectories of
y(t) for 900 � t � 1000 are depicted in Figure 4(B) in which both are symmetric
with respect to the horizontal axis.
These simulations explain well our two typical love experiences. The �rst

one is that love developments strongly depends on the �rst feelings that the
individuals obtain at their �rst meeting. When trajectories start in the �rst
quadrant of the (x; y) plane, both individuals are thought to have "good feeling"
and can develop their romantic feelings to more favorable situation. On the
contrary when both have "not good feelings," the developments grow into the
opposite direction. The second one is that love feelings are often �uctuating in
a wavering manner around their "true love" levels even if they fell in love. As
is seen in Figure 4(B), the romantic feeling of Rome and Juliet are alternating
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between staying and going.

(A) Phase diagrams (B) Time trajectories

Figure 4. Dynamics with �1 = 2:5 and �2 = 2

Simulation 4: �1 = 3 and �2 = 2

We increase �1 to 3 from 2:5; taking �2 = 2 in the next example. We again
observe love dynamics on the vertical line at �1 = 3 in Figure 3(A). Resultant
dynamics with the positive initial functions is depicted in red and dynamics
with the negative initial functions in black.10 A parametric di¤erence seems to
be minor, however, major di¤erent dynamics emerges. Comparing Figure 5(A)
with Figure 4(A), we can see that increasing the value of �1 makes two attractors
merge into one large attractor including the two steady states inside by enlarging
the size of each attractor. In Figure 5(A) two large attractors are depicted in
red and black. Due to the point symmetry, the attractors are not identical,
however, generated dynamics are essentially the same and line-symmetric with
respect to the horizontal axis as seen in Figure 5(B). Although love and hate are
opposite emotions, our daily-life experiences indicate that one can often turn
into the other and vice versa. These examples describe these alternative feelings
between love and hate. These results remind us of cyclical emotional feelings of
Petrach, an Italian poet of the 14th century to Laura, a beautiful but married
woman described by Jones (1995). Stimulated by this work, Rinaldi (1998) has
successfully described the poet�s regular cyclic behavior ranging from ecstasy to
despair with a dynamic system of three ordinary di¤erential equations without
delays but with instincts (i.e., appeals) which are assumed away in our model

10The initial functions x0(t) = 0:1 and y0(t) = 0:2 for t < 0 are selected for the red curve
and x0(t) = �0:1 and y0(t) = �0:2 for the black curve.
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by Assumption 3.

(A) Phase diagrarams (B) Time trajectories

Figure 5. Dynamics with �1 = 3 and �2 = 2

Simulation 5: �1 = 3 and �2 = �a1

We now turn attention to the bifurcation diagram in Figure 3(B) with
�2 = �a2 : Taking �1 = 3; Figure 6(A) depicts a phase diagram with the ini-
tial functions x0(t) = 0:4 and y0(t) = �y�2 � 0:1 for t � 0: Notice that dynamics
starts with the point (x0(0); y0(0)) denoted by the black dot in the fourth quad-
rant of the (x; y) plane, oscillates around the negative steady state for a while
and then converges to a limit cycle surrounding the positive steady state. This
numerical example provides a green light to the Beast, a witched young hand-
some prince, in "Beauty and the Beast." Even starting with a unfavorable point
where the Beast has good feelings to Beauty named Belle but Beauty has neg-
ative feelings due to the terrifying and ugly appearance of the Beast, their love
story described by delay system (7) with suitable parametric values arriving at
a regime where Belle is happy and the Beast can be transformed to a prince.11

It is also numerically con�rmed that a similar cyclic oscillation around the neg-
ative steady state is obtained when the initial point is selected in the second
quadrant where Romeo has negative feelings and Juliet has positive feeling when

11Rinaldi et al.(2013b) interprete this love story with non-delay model (1) without Assump-
tion 3. Positivity of the appeal Az is a key factor that brings Beauty and the Beast to their
plateau.
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they �rst meet.

(A) Phase diagram (B) Time trajectory

Figure 6. Dynamics with �1 = 3 and �2 = �a2

Simulation 6: �1 = 3:5 and �2 = �a2

In the last simulation with Figure 3(B), the value of �1 is increased to 3:5.
More realistic love-hate alternations are described in Figures 7(A) and 7(B).
Emotions oscillate around the positive steady state (i.e., love regime) for a
while and then suddenly change their directions, going toward the negative
steady state, around which emotions oscillate in the neighborhood sooner or
latter, a sudden change occurs again to bring back the negative oscillations to
the positive oscillations. This alternative oscillation continues. Contrary to a
regular cyclic pattern in Figure 5(A), a quite irregular pattern appears ranging
from one extreme to the other.

(A) Phase diagram (B) Time trajectory

Figure 7. Dynamics with �1 = 3:5 and �2 = �a2
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Simulation 7: 1 � �1 � 2; �2 = � b2:

Now the value of �2 is increased to � b2 from �a2 : In Figure 8(A) two blue
curves, one located slightly above the y = y�1 locus and the other below the
y = y�2 locus, present bifurcation diagrams with respect to �1: With this, it is
�rst observed that no more complicated dynamics appears but only a simple
limit cycle emerges when the stability of the non-zero steady states is lost for
�1 > �

B
1 (= �

0
1):

12 This result implies two issues. One is that given �1, a larger
value of �2 generates simpli�ed dynamics. The other is that multi-stability can
occur as two branches are illustrated for a small deviation of �1 from �B1 : A basin
of attraction is presented in Figure 8(B) with �1 = 3=2 and �2 = � b2: The region
of the initial points, (x0(0); y0(0)); is divided into three subregions, the light-red
region including the positive steady state denoted by the green dot, the light-
blue region including the negative steady state by the red dot and the white
region including the zero-steady state denoted by the yellow dot. This division
indicates an initial point dependency of dynamics, namely, dynamics converges
to the positive steady state, to the negative steady state or to a limit cycle
according to whether the point (x0(0); y0(0)) is selected from the red region, the
blue region or the white region of Figure 8(B). This dependency also explains
something that happens often in a love story, that is, even though Romeo and
Juliet are into something goods for example, a small misunderstanding described
by a small change in the initial functions can lead them to a di¤erent worlds in
which one�s love feeling �uctuates from one extrem to the other.

(A) Bifurcation diagrams (B) Basin of attraction

Figure 8. Dynamics with �1 = 3=2 and �2 = �a2

Simulation 8: 1 � �1 � 2; �2 = � c2:

In the last simulation in this section, the value of �2 is further increased
to � c2. It is con�rmed that multi-stability occurs in the neighborhood of the
12Although it is not illustrated in Figure 8(A), the simple shape of the bifurcation diagrams

is numerically con�rmed for larger values of �1:
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bifurcation value of �B1 (= �
0
1): As can be seen, small red limit cycles surrounding

the non-zero steady state coexist with a large blue limit cycle surrounding the
zero steady state and including the non-zero steady states inside. Concerning
the red cycle, we notice the followings: the positive steady state y�1 is stable for
�1 < �

B
1 and bifurcates to a limit cycle for �1 > �

B
1 ; a radius of the limit cycle

is sensitive to the value of �1; the red cycle suddenly disappears when the value
of �1 is larger than about roughly 1:9. Concerning the blue cycle, we also notice
the followings: the limit cycle can emerge for �1 < �B1 ; for �1 in the vicinity
of 1:8, the bifurcation diagram has a collection of the local maximum value,
indicating that the cycle repeats small �uctuations in the local maximum and
minimum, although �udtuations in the local minimum are not seen in Figure
9(A). These numerical simulations imply the inital point dependency with which
a small change in the initial point might result in largely di¤erent dynamics.

(A) Bifurcation diagrams (B) Time trajectories

Figure 9. Dynamics with �1 = 1:8 and � c2

4.2 �x�y > �x�y > 0

We now focus on the case in which the self reaction dominates the cross reaction.
Keeping the values of �x and �y �xed, we increase the values of �x and �y to
the extent that the direction of the inequality is reversed:

Assumption 5: �x = �y = 8=5.

Under these parametric conditions, two issues can be con�rmed: (1) the basic
model has the zero solution as the unique steady state and (2) the eigenvalues
of the characteristic equation (4) are real and negative indicating that the zero
steady state is a stable node, as shown in Figure 1(B). Our concerns are, as
before, upon the delay e¤ects on dynamics, in particular we are interested in
whether larger delays can destabilize the zero steady state and what dynamics
could emerge when the stability is lost.
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Figure 10 illustrates the parts of the segments of L1(k; n) in red and L2(k; n)
in blue for k = 0 and n = 0; 1; 2 under Assumption 5 and �x = �y = 3=2. The
stability switching curve is the outer envelope of the partition curves for various
values of n and its shape di¤ers from the one in Figure 2.13 Since the steady
state is stable without delays (i.e., �1 = �2 = 0) and the origin of Figure 10
is located left to the stability switching curve, the steady state with positive
delays is stable in the left part to the curve and unstable in the right. The value
of �B1 (= 0:6) is selected in such a way that the dotted vertical line at �1 = �

B
1

intersects the stability switching curve three times at

�a2 ' 1:771; � b2 ' 3:536 and � c2 ' 4:478:

Multiple intersections suggest that delay �2 has the double edge e¤ect for �1 =
�B1 , which is numerically con�rmed below.

Figure 10. Stability switching curves

Simulation 9: �1 = �B1 ; 0 � �2 � 6:

Figure 11(A) presents a bifurcation diagram with respect to �2 in which a
value of �2 is increased along the dotted vertical line at �1 = �B1 in Figure 10.
As is seen both in Figure 10 and Figure 11(A), the steady state loses stability
at �2 = �a2 and �2 = �

c
2 and regains it at �2 = �

b
2: Further, Figure 11(A) depicts

time trajectories of x(t) in blue and y(t) in red. It is seen that the steady
state bifurcates to a limit cycle surrounding the zero steady state whenever the
stability is lost and the cycle merges to the zero steady state when the stability
is regained. Provided a positive delay in �1; some positive value of �2 keeps both

13Under these speci�cations, the end points of the domain for the stability switching curves
are !s ' 0:805 and !e ' 1:163:
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Romeo and Juliet in suspense resulting in a cyclic behavior and some other value
makes them stay at the zero steady state.

Simulation 10: 0:5 � �1 � 1; �2 = �a2

Figure 11(B) gives bifurcation diagrams of x(t) in blue and y(t) in red with
respect to �1: Two issues are observed: (i) Given the �xed value of �2; di¤erent
values of �1 do not qualitatively a¤ect dynamics as the time trajectories in
Figure 11(B) exhibit similar behavior (i.e., limit cycles) and (ii) time trajectories
of x(t) exhibit huge oscillations for �1-values close to unity, indicating that the
model may be inappropriate to describe love evolutions of Romeo and Juliet.

(A) With respect to �2 (B) With respect to �1

Figure 11. Bifurcation diagrams

5 Concluding Remarks

We have investigated a delay Romeo and Juliet model in which both are sup-
posed to be cautious lovers, the most natural romantic style between two indi-
viduals. After checking that the no-delay version of the model exhibits fairly
stable dynamics, we theoretically derive the instability conditions of the delay
version by analyzing the characteristic equations and then use them to illus-
trate a stability switching curve on which stability of the delay version is lost.
Concerning global behavior, we perform numerical simulations to examine that
the unstable steady state turns to cyclic oscillations through Hopf bifurcation.
In comparison with a one-delay model, the stability switching curve has more
complicated shape and dynamics become more complicated in the two-delay
model. In consequence, it is con�rmed that the multiple delays have the dou-
ble edge e¤ect, implying the occurrence of multiple alternations of stability and
instability with increasing value of one delay and �xing the value of the other
delay at some level. Furthermore, various love evolutions ranging from simple
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to complex dynamics involving chaos can explain various types of love stories
between two individuals.
For further investigation, we �rst plan to introduce delays in the two self-

reaction processes, with which the delay model could be more realistic. Secondly,
it may be interesting to add one more individual to the model and consider a
triangle relation whose dynamics could be much more complicated and therefore
much more interesting.
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