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Abstract

An extended n-�rm oligopoly with product di¤erentiation is consid-
ered. It is assumed that the government selects an emission standard for
the industry and based on the output and technology of each �rm it se-
lects a maximum allowed amount of emission for each �rm. If the actual
amount is higher than the allowed maximum, then the �rm has to pay a
constant multiple of the excess to the government, otherwise it is rewarded
similarly based on the saved emission amount. The existence of the unique
interior equilibrium is �rst proved, and then time delay is introduced into
the penalties the �rms have to pay and into the rewards the �rms receive.
In analyzing the stability of the equilibrium both continuous and discrete
time scales are considered. For mathematical simplicity the case of sym-
metric �rms is analyzed. In the continuous case the equilibrium is either
always stable or stable if the delay is su¢ ciently small and at the critical
value Hopf bifurcation occurs. In the discrete case the delay is assumed
to be unity. The equilibrium is stable if either the total industry output
is su¢ ciently large or the common speed of adjustment of the �rms is
su¢ ciently small. The e¤ect of the level of penalty or reward and that of
the emission standard on the industry output and therefore on the total
emission level is also examined.
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1 Introduction

The e¤ect of di¤erent environmental regulation policies has been investigated by
many researchers (Downing and White, 1986; Jung et al., 1996; Montero, 2002
among others). Mostly single �rms were considered in relation to environmental
R&D, and very few works were devoted to the extension of oligopoly models in
this direction. Montero (2002) examined the e¤ect of R&D investment for pol-
lution abatement technology with di¤erent environmental policies in duopolistic
product markets. Static models were investigated in earlier stages, the existence
of equilibrium in Cournot oligopoly with pollution treatment cost sharing was
proved by Okuguchi and Szidarovszky (2002), which work was further extended
by including emission standard and R&D in the oligopoly model (Okuguchi
and Szidarovszky, 2007). If the government is unable to assess the individual
emission levels of the di¤erent �rms, then it can measure only the total level of
pollution, and ambient charges are introduces. In this policy (Segerson, 1988)
the government de�nes a cut-o¤ for the total pollution level and regardless of
the speci�c emission level of each �rm, all are equally punished or rewarded.
Ganguli and Raju (2012) demonstrated that in a Bertrand duopoly increas-
ing ambient charges could lead to greater pollution, however Raju and Ganguli
(2013) showed the opposite e¤ect in a Cournot duopoly framework when the
increase of ambient charges reduce pollution. This result was further general-
ized by Matsumoto et al. (2017) for n-�rm oligopolies where the stability of the
dynamic model with naive expectation was also examined. If the government
is familiar with the used technology and production output of each �rm, then
it is able to assess the proportion of each �rm from the total pollution level.
Therefore each �rm can be punished or rewarded according to its assessed indi-
vidual emission level compared to its allowed proportional maximum from the
government de�ned cut-o¤ threshold. In this paper this idea will be elaborated.
After the formulation of the mathematical model the existence of the static
equilibrium will be proved. Assuming gradient adjustment of the �rms, dy-
namic models will be developed with both continuous and discrete time scales,
and conditions will be derived for the stability of the equilibrium. The stability
conditions will be then analyzed and compared. And �nally the e¤ect of penalty
and reward parameters on the industry output and the total pollution level will
be investigated.

2 Model and Cournot-Nash Equilibrium

Consider n �rms in an oligopoly with di¤erentiated products. Let qk be output
of �rm k: The price of the product of �rm k is seen as

pk = �k � qk � 
k
nX
i 6=k

qi (1)

with n � 2 and �k > 0 and 0 < 
k < 1: Firm k emits pollution ekqk in
connection to its production with ek > 0. The government can measure the
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total emission quantity and has an exogenously selected environmental standard
�E. So the maximum allowed emission of �rm k is clearly

ekqkPn
i=1 eiqi

�E: (2)

If a �rm exceeds this amount then it has to pay a penalty of m times the
exceeded amount, and if its emission amount is below the maximum allowed
amount, then the �rm is rewarded by m times the saved emission amount. So
the payo¤ of �rm k becomes

�k = (pk �Kk) qk �m
�
ekqk �

ekqkPn
i=1 eiqi

�E

�
(3)

where Kk is the marginal cost of �rm k. Using equation (1),

�k =

0@�k � qk � 
k nX
i 6=k

qi �Kk

1A qk � �mek � mekPn
i=1 eiqi

�E

�
qk: (4)

The �rst term corresponds to revenue and production cost and the second term
refers to emission penalty or reward. Assuming interior optimum, the �rst order
condition implies that

@�k
@qk

=

0@�k � 2qk � 
k nX
i 6=k

qi �Kk

1A� mek � mekPn
i 6=k eiqi

(
Pn

i=1 eiqi)
2
�E

!
= 0: (5)

Notice that (5) strictly decreases in qk with �xed values of qi (i 6= k): At qk = 0;
its value is

�k � 
k
nX
i 6=k

qi �Kk �mek +
mekPn
i 6=k eiqi

�E:

If this value is nonpositive, then qk = 0 is optimum, which is not interior. As
qk !1, the value of (5) tends to �1, so there is always a unique best response.
For mathematical simplicity, let us assume symmetric �rms in the sense

that 
1 = 
2 = ::: = 
n = 
 and e1 = e2 = ::: = en = e, that is, �rms have
identical substitutability and technology in emission production. Then equation
(5) becomes

�k � 2qk � 

nX
i=1

qi + 
qk �Kk �me+
m (
Pn

i=1 qi � qk)
(
Pn

i=1 qi)
2

�E = 0

and with notation Q =
Pn

i=1 qi, we have

�k � 
Q�Kk �me+
m �E

Q
= qk

�
2� 
 + m

�E

Q2

�
:
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So

qk =
(�k �Kk �me)Q2 � 
Q3 +m �EQ

(2� 
)Q2 +m �E
: (6)

By adding these equations for k = 1; 2; :::; n and dividing by Q;

(2� 
)Q2 +m �E =
 

nX
k=1

�k �
nX
k=1

Kk � nme
!
Q� n
Q2 + nm �E

which is a quadratic equation for Q;

[(2� 
) + n
]Q2 �
 

nX
k=1

�k �
nX
k=1

Kk � nme
!
Q+ (1� n)m �E = 0: (7)

At Q = 0; the left hand side is negative and as Q!1; it converges to +1, so
there is real root. Since the constant term is negative, one root is positive and
the other is negative. So only the positive root has economic meaning. Then
the corresponding equilibrium levels of the �rms are given by (6).

3 Dynamic Extensions and Stability Analysis

Assume the government has a time delay � > 0 in posing penalty or giving
reward to the �rms, and the �rms use gradient adjustments in continuous time
scales. Then the resulting dynamic system becomes

_qk(t) = Sk

�
(�k � 2qk(t)� 
Q(t) + 
qk(t)�Kk)�

�
me� m

�E (Q(t� �)� qk(t� �))
Q(t� �)2

��
:

(8)
It is a nonlinear delay di¤erential equation. Let gk denote the right hand side,
then

@gk
@qk(t)

= �Sk (2� 
) < 0;

@gk
@qk(t� �)

= � Skm �E

Q(t� �)2 < 0;

@gk
@Q(t)

= �Sk
 < 0

and
@gk

@Q(t� �) =
Skm �E [2qk(t� �)�Q(t� �)]

Q(t� �)3 < 0:

if there is no dominant term. Let these derivatives be denoted by Ak; Bk; Ck
and Dk; respectively, then the linearized equation has the form, where qk and
Qk are now their distances from equilibrium levels:

_qk(t) = Akqk(t) +Bkqk(t� �) + CkQ(t) +DkQ(t� �): (9)
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By looking for the solution as usual,

qk(t) = e
�tuk;

we have

uk
�
��Ak �Bke���

�
�

nX
i=1

ui
�
Ck +Dke

���� = 0: (10)

For the sake of simplicity, we assume in addition that S1 = S2 = ::: = Sn = S;
the equilibrium is symmetric and the initial output levels are identical. Then
the coe¢ cients Ak; Bk; Ck and Dk are also identical. Then the uk coe¢ cients
must be also the same, therefore we have a delay equation:

��A�Be��� � nC � nDe��� = 0

or
�� (A+ nC)� (B + nD)e��� = 0: (11)

At the equilibrium

A+ nC = �S [(n� 1)
 + 2] < 0

and

B + nD =
Sm �E(1� n)

Q2
< 0:

As � = 0; when the system is without delay,

� = A+ nC +B + nD < 0;

implying that the system is asymptotically stable. Stability switch occurs if
� = i! with some ! > 0. With the notation

U = A+ nC < 0 and V = B + nD < 0;

we have
i! � U � V (cos!� � i sin!�) = 0:

Separating the real and imaginary parts,

�U � V cos!� = 0 (12)

and
! + V sin!� = 0: (13)

So
!2 = V 2 � U2 = (V � U)(V + U):

In our case

V � U =
Sm �E(1� n)

Q2
+ S [(n� 1)
 + 2] (14)
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The �rst term is negative and the second positive. Since V +U < 0, there is no
solution for ! if (14) is nonnegative, and therefore there is no stability switch.
If (14) is negative, then there is a unique value of !;

! =
p
V 2 � U2:

Hopf bifurcation is used to �nd the direction of the stability switch. Let � be the
bifurcation parameter and consider � as function of � : � = �(�): By implicitly
di¤erentiating equation (11) with respect to � ; we have

d�

d�
� V e���

�
��� d�

d�
�

�
= 0

showing that
d�

d�
=

�V e����
1 + V e����

;

=
��(�� U)
1 + �(�� U) ;

where equation (11) is used. When � = i!;

d�

d�
=

!2 + i!U

1� �U + i!� ;

=
(!2 + i!U) (1� �U � i!�)

(1� �U)2 + (�!)2

with real part having the same sign as

!2(1� �U) + !U(�!) = !2 > 0

showing that the sign of the real part changes from negative to positive, so
stability is lost. That is, at the smallest stability switching point, stability
is lost and it cannot be regained later. If there is positive solution for !, then
jV j > jU j ; and since from (12) and (13) we know that sin!� > 0 and cos!� < 0,
the smallest (critical) value of � is the following:

�� =
1p

V 2 � U2
cos�1

�
�U
V

�
:

At the critical value of � there is the possibility of the birth of limit cycles. From
(14), we know that the system is always asymptotically stable if

m �E(1� n) + [(n� 1)
 + 2]Q2 � 0: (15)

From (7), the left hand side equals 
nX
k=1

�k �
nX
k=1

Kk � nme
!
Q (16)
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so the system is stable if multiplier of Q is nonnegative. Notice that the multi-
plier of Q is the total marginal pro�t of the �rms at zero environmental standard
when all �rms have zero production levels.
If discrete time scales are assumed and the government delay is unity, then

the continuous time scales di¤erential equation (8) is modi�ed to a second order
di¤erence equation,

qk(t+1) = qk(t)+Sk

�
(�k � 2qk(t)� 
Q(t) + 
qk(t)�Kk)�

�
me� m

�E [Q(t� 1)� qk(t� 1)]
Q(t� 1)2

��
(17)

and after linearization it becomes

q(t+ 1) = q(t) + [Aq(t) +Bq(t� 1) + nCq(t) + nDq(t� 1)] (18)

where we again assume symmetric �rms. By introducing the new variables

a(t) = q(t� 1) and b(t) = q(t);

we have
a(t+ 1) = b(t)

b(t+ 1) = (B + nD)a(t) + (A+ nC + 1)b(t)
(19)

with coe¢ cient matrix 0@ 0 1

V U + 1

1A
leading to a quadratic characteristic polynomial

��(U + 1� �)� V = �2 � (U + 1)�� V: (20)

Asymptotic stability is guaranteed by

U + 1� V + 1 > 0;

�U � 1� V + 1 > 0;

�V < 1:

The second condition is clearly satis�ed. The �rst inequality can be rewritten
as

V � U = S

Q

 
nX
k=1

�k �
nX
k=1

Kk � nme
!
< 2 (21)

and the third condition has the form

�V = Sm �E(n� 1)
Q2

< 1: (22)

In comparing the stability conditions in the continuous and discrete case we
notice the following.
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(a) If
Pn

k=1 �k �
Pn

k=1Kk � nme < 0, then (21) holds and (22) is satis�ed if
Q is su¢ ciently large or the speed of adjustment S is su¢ ciently small.
The continuous system loses stability if � is su¢ ciently large.

(b) If
Pn

k=1 �k �
Pn

k=1Kk � nme � 0, then the continuous system is stable.
The discrete system is stable if Q is su¢ ciently large or the value of S is
su¢ ciently small.

An equivalent condition can be given by rewriting (21) and (22) as

Q >
S

2

 
nX
k=1

�k �
nX
k=1

Kk � nme
!

and
Q >

q
Sm �E(n� 1):

Letting

Q� = max

"
S

2

 
nX
k=1

�k �
nX
k=1

Kk � nme
!
;
q
Sm �E(n� 1)

#
; (23)

the stability condition becomes

P (Q�) < 0 (24)

where P (Q) denotes the left hand side of equation (7).

4 E¤ect of Penalty or Reward on Pollution Lev-
els

We can analyze how the total production level (and therefore the total emission
level) depends on the penalty factor m. Considering Q as a function of m, and
implicitly di¤erentiating equation (7) with respect to m; we have

[(2� 
) + n
] 2QdQ
dm

+ neQ�
 

nX
k=1

�k �
nX
k=1

Kk � nme
!
dQ

dm
+ (1� n) �E = 0

implying that

dQ

dm
=

�neQ+ (n� 1) �E
2Q [(2� 
) + n
]� (

Pn
k=1 �k �

Pn
k=1Kk � nme)

: (25)

Based on equation (7), the denominator can be rewritten as

Q [(2� 
) + n
] + (n� 1)m
�E

Q
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which is positive. So the sign of dQ=dm depends on the sign of the numerator.
The �rst term is negative, the second term is positive. Using again equation
(7), we see that the m-multiple of the numerator equals

�
 

nX
k=1

�k �
nX
k=1

Kk

!
Q+ [(2� 
) + n
]Q2:

It is reasonable to assume that the �rst term is negative. Therefore dQ=dm > 0
if and only if

Q >

Pn
k=1 �k �

Pn
k=1Kk

(2� 
) + n
 : (26)

Let �Q denote the right hand side of this inequality and P (Q) again the left hand
side of equation (7), then this is the case when P ( �Q) < 0 meaning that

�E >
[(2� 
) + n
] �Q2 � (

Pn
k=1 �k �

Pn
k=1Kk � nme) �Q

(n� 1)m : (27)

It is easy to see that the numerator is positive. This inequality means that
increase in the value of m has an increasing e¤ect on the total industry output
as well as in the total emission level if the emission standard �E is su¢ ciently
large. Otherwise the opposite e¤ect can be observed.
Next we examine the e¤ect of increasing in the value of �E. Considering now

Q as function of �E and implicitly di¤erentiating equation (7) we have

[(2� 
) + n
] 2QdQ
d �E

�
 

nX
k=1

�k �
nX
k=1

Kk � nme
!
dQ

d �E
+ (1� n)m = 0

showing that

dQ

d �E
=

(n� 1)m
2Q [(2� 
) + n
]� (

Pn
k=1 �k �

Pn
k=1Kk � nme)

: (28)

We already established that the denominator is positive, so dQ=d �E > 0 showing
that the increase in the emission standard always has an increasing e¤ect on the
industry output as well as on the total emission level.

5 Concluding Remarks

This paper examined n-�rm oligopolies with product di¤erentiation when the
�rms face penalties or rewards depending on the amounts of their pollution
levels. The government selects an emission standard for the entire industry,
and based on the speci�c technology and output of each �rm the government
determines its maximum allowed emission level. The amount of penalty or that
of the reward is determined by the di¤erence of the actual emission level and the
maximum allowed amount. This simple mathematical model can be considered
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as the counterpart of models with ambient pollution charges discussed earlier
in the literature. The existence of the unique interior equilibrium was �rst
proved, and then dynamic extensions were introduced and the stability of the
equilibrium was examined with both discrete and continuous time scales. In
the continuous time scales a positive delay was introduced in the penalty and
reward terms and in the case of discrete time scales unit delay was assumed. In
the case of continuous time scales the equilibrium is always stable if the total
marginal pro�t of the �rms at zero output levels is non-negative, otherwise it is
stable if the length of the delay is su¢ ciently small. At the critical value of the
delay Hopf bifurcation occurs. In the case of discrete time scales the equilibrium
is stable if either the industry output is su¢ ciently large or the common speed
of adjustment of the �rms is su¢ ciently small. We also established that an
increase in the value of m has an increasing e¤ect on the total pollution level
if the emission standard �E is su¢ ciently large, otherwise the opposite e¤ect
occurs. An increase in the value of �E always has an increasing e¤ect on the
total pollution level of the industry.
Symmetric �rms were assumed for mathematical simplicity, in which case

the equilibrium could be given analytically, however in the non-symmetric case
it is not possible making the further analysis much more complicated. This issue
will be the subject of our next project.
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