区分的微分可能関数と一般化自動微分 Piecewise Smooth Function and Generalized Algorithmic Differentiation

概要: 区分的微分可能関数と呼ばれる微分不可能点を含む関数に対して,自動微分を用いた最適化を行う. 区分的微分可能関数はその 構成要素や特徴ごとにレベル付けすることができ,本研究ではその中 でも絶対値関数により表現されるものを対象とする. 対象とする関 数は,微分不可能点の周辺で A. Griewank らにより提唱されている Abs-Normal Form により一般化勾配を導出することができる. これ を利用して従来手法の拡張を行い,その収束の安定性を評価をする. キーワード: 区分的微分可能. 区分線形近似,一般化勾配,自動微分

1 はじめに

非線形最適化問題を解く種々の反復解法は、その目的関数や 制約式の微分情報に依存していることが多い.しかし、工学問 題ではしばしば区分的微分可能 (Piecewise Smooth, Piecewise Differentiable) なモデルを用いることがあり、そういったモデ ルを表す目的関数は至るところで微分不可能となっているた め、従来の手法では解軌道がジグザグになるなど収束が不規則 になる、または収束しないといったことが起こる.このような 挙動を回避する、区分的微分可能なモデルに対した安定した手 法が必要である.

本研究では、区分的微分可能なモデルの中でも、絶対値関数 によって表現されるものに対する微分情報を用いた最適化手法 の提案とその収束の安定性の評価を行う.

2 自動微分 [1]

自動微分 (Algorithmic Differentiation) とは, 関数値を計算 するある数値アルゴリズム α_f が与えられたとき, その偏導関 数値を計算する数値アルゴリズム α_g を導出する算法である. 自動微分による微分係数の導出は合成関数の微分則である連鎖 律 (chain rule) に従う.

2.1 基本演算と要素的偏導関数

基本演算 (Basic Operation, Elementary Function) φ とは, プログラム中で扱うことのできる以下のような演算 (関数) の ことである.

- •四則演算(+,-,*,/)
- べき乗 (pow)
- 開平 (sqrt)
- 初等超越関数 (log, exp, sin, ...)

2.2 計算過程と中間変数

入力を定めてアルゴリズムを実行すると、アルゴリズム中の 基本演算と引数の関係を表す計算の履歴が定められる.この履 歴を計算過程 (Computational Process) と呼ぶ.

中間変数 (Intermediate Variables) とは, 基本演算と1対1 に対応 (単一代入) し, その基本演算の実行結果を格納する変 数のことである. $\boldsymbol{y} = f(\boldsymbol{x}) (f : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^m)$ を自動微 分により実行したときの計算過程は 表 1 のようになる. ここ で, \boldsymbol{x} は入力変数 (Input Variables), \boldsymbol{y} は出力変数 (Output Variables) と呼ばれる.

情報工学専攻 15N8100018J 吉田 北斗

表 1	計簋渦程
- M I	

v_{i-n}	=	x_i	$i=1,\ldots,n$
v_i	=	$\varphi_i(v_j)_{j\prec i}$	$i=1,\ldots,l$
y_{m-i}	=	v_{l-i}	$i = 0, \ldots, m - 1$

基本演算 φ_i に対応する中間変数が v_i である. φ_i の添字の i は i 番目に実行された基本演算であることを表している.

計算過程に現れる任意の二つの変数 u, vの間に "uの値を計算するには, vの値が計算されていることが必要" という関係があるとき、二つの変数には半順序関係があり、 このとき $u \prec v$ と表記する.

3 区分的微分可能関数

3.1 区分的微分可能関数 [2]

開集合 $\mathcal{D} \subset \mathbb{R}^n$ が与えられたとき, $f : \mathcal{D} \to \mathbb{R}^m$ が \mathcal{N} 上 で連続する点 x の開近傍 $\mathcal{N} \subset \mathcal{D}$ と, \mathcal{C}^1 級関数 $f_i : \mathcal{N} \to \mathbb{R}^m$ (i = 1, ..., k) が存在するとき, f_i を f の点 x 周辺での selection function と呼ぶ.

式 (3.1) を満たすとき, f は点 $x \in \mathcal{D}$ で区分的微分可能で あるという.

 $f(\boldsymbol{x}) \in \{f_1(\boldsymbol{x}), \dots, f_k(\boldsymbol{x})\}$ for $\boldsymbol{x} \in \mathcal{N}$ (3.1) さらに、このとき selection function f_i がすべて線形である ならば、f は区分的線形関数と呼ばれる.

3.2 局所リプシッツ連続 [2, 3, 4]

 $f: \mathbb{R}^n \to \mathbb{R}$ が点 $\boldsymbol{x} \in \mathbb{R}^n$ で局所リプシッツ連続 (Locally Lipschitz Continuous) であるとは, ある $K > 0, \epsilon > 0$ ($K, \epsilon \in \mathbb{R}$) が存在して, \boldsymbol{x} の ϵ 近傍 $B(\boldsymbol{x}; \epsilon)$ に対して式 (3.2) が成り 立つことをいう.

は、*D* に属するすべての点で 式 (3.2) が成り立つことをいう. 区分的微分可能関数は局所リプシッツ連続であることが知ら れている.

3.3 区分的微分可能関数の構成要素

区分的微分可能関数をその構成要素からいくつかのレベルに 分けることにする.

レベル 0 (Smooth)

定義域内に微分不可能点を含まない滑らかな関数.

レベル1 (Piecewise Smooth)

局所リプシッツ連続であるが、定義域内に微分不可能点を 含む関数.その微分不可能点は abs, min, max 関数によっ て表される.

レベル 2 (Piecewise Semismooth)

局所リプシッツ連続であるが,定義域内に微分不可能点を 含む関数. その微分不可能点は レベル 1 にユークリッド ノルムを加えたものによって表される.

レベル3 (Discontinuous Piecewise Smooth) 非連続な関数. その微分不可能点は レベル 2 に sign 関数 と条件分岐を加えたものによって表される. このレベルの順に,その関数の微分不可能周辺での扱いは困難にある.本研究では,レベル1の区分的微分可能関数を対象 としている.

3.4 区分線形関数の min/max による書き換え

ある区分的線形関数 $f : \mathbb{R}^n \to \mathbb{R}$ と, f と区分的に一致する 線形関数 $f_1(\mathbf{x}) = \mathbf{a}_1^T \mathbf{x} + b_1, \dots, f_k(\mathbf{x}) = \mathbf{a}_k^T \mathbf{x} + b_k$ に対して, 以下を満たす有限な添字集合 $M_1, \dots, M_l \subseteq \{1, \dots, k\}$ が存在 することが知られている [2].

$$f(\boldsymbol{x}) = \max_{1 \le i \le l} \min_{j \in M_i} \boldsymbol{a}_j^T \boldsymbol{x} + b_j$$
(3.3)

すなわち, あらゆる区分的線形関数 $f: \mathbb{R}^n \to \mathbb{R}$ は min/max で表現することができる.

3.5 min/max の絶対値関数による書き換え

ℝ 上で, min/max は絶対値関数を用いて以下のように書き 換えられることが知られている.

$$\min(u, w) = \frac{1}{2}(u + w - |u - w|), \qquad (3.4)$$

$$\max(u, w) = \frac{1}{2}(u + w + |u - w|)$$
(3.5)

4 Abs-Normal Form [5, 6, 7]

Abs-Normal Form とは A. Griewank らにより提唱されて いる区分的微分可能関数を自動微分で扱うための手法の一つで ある.

4.1 Increment Function

各基本演算の増分の近似を以下のように考える.

$$\Delta v_{i} = \Delta v_{j} \pm \Delta v_{k} \qquad \text{when} \qquad v_{i} = v_{j} \pm v_{k}$$

$$\Delta v_{i} = v_{j} * \Delta v_{k} + v_{k} * \Delta v_{j} \qquad \text{when} \qquad v_{i} = v_{j} * v_{k}$$

$$\Delta v_{i} = \varphi'_{i}(v_{j})_{j \prec i} * \Delta (v_{j})_{j \prec i} \qquad \text{when} \qquad v_{i} = \varphi_{i}(v_{j})_{j \prec i} \neq |v_{j}|$$

$$\Delta v_{i} = |v_{j} + \Delta v_{j}| - v_{i} \qquad \text{when} \qquad v_{i} = |v_{j}|$$

$$(4.1)$$

このとき,目的関数 f の点 x での方向 Δx への増分の近似を

$$\Delta f(\boldsymbol{x}; \Delta \boldsymbol{x}) \tag{4.2}$$

と表し, increment function と呼ぶ. 式 (4.2) が計算可能であるとすると, fの区分線形近似を

$$f_{\text{PL},\boldsymbol{x}}(\Delta \boldsymbol{x}) \equiv f(\boldsymbol{x}) + \Delta f(\boldsymbol{x};\Delta \boldsymbol{x})$$
 (4.3)
と表すことができる.

4.2 Abs-Normal Form

絶対値関数を含む方程式 $y = f(\mathbf{x})$ $(f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R})$ を, 自動微分によって実行したときの計算過程を 表 2 のように, 絶対値関数の実行結果である中間変数 w_i, w_i の引数となる中 間変数 z_i に分けて考える.

表 2 絶対値関数を特殊化した計算過程

w_{i-n}	=	x_i	$i = 1, \ldots, n$
z_i	=	$\varphi_i(w_j)_{j\prec i}$	
σ_i	=	$\operatorname{sign}(z_i)$	$i = 1, \ldots, s$
w_i	=	$\sigma_i z_i = z_i $	
y	=	$\varphi_{s+1}(w_j)_{j\prec s+1}$	

表 2 中の関数 sign は

$$\operatorname{sign}(z) = \begin{cases} -1 & (z < 0) \\ 0 & (z = 0) \\ 1 & (z > 0) \end{cases}$$

で定義される.また, φ_i は絶対値関数以外の基本演算, s は f に含まれる絶対値関数の個数である.

絶対値関数の引数となる中間変数 z_i を,対応する φ_i が実行 された順番に並べたベクトル z を switching vector と呼ぶ.

$$oldsymbol{z}\equivoldsymbol{z}(oldsymbol{x})\in\mathbb{R}^{s}$$

switching vector z が 0 を含むような x の集合 Ω は関数 f の微分不可能点の集合である.

$$\Omega \equiv \{ \boldsymbol{x} \, | \, 0 \in \boldsymbol{z}(\boldsymbol{x}), \ \boldsymbol{x} \in \mathcal{D} \}$$

また, switching vector の符号を表すベクトル σ を signature vector と呼ぶ.

 $\sigma \equiv \sigma(x) \equiv \operatorname{sign}(z(x)) \in \{-1, 0, 1\}^s$ 中間変数 w を入力変数と考えれば,表 2 より

$$\boldsymbol{z} \equiv \Phi(\boldsymbol{x}, \boldsymbol{w}) \equiv \Phi(\boldsymbol{x}, |\boldsymbol{z}|) \quad (\Phi : \mathbb{R}^{n+s} \to \mathbb{R}^{s}), \quad (4.4)$$

$$\begin{array}{l} f(\boldsymbol{x}) \equiv \tilde{f}(\boldsymbol{x}, \boldsymbol{w}) \equiv \tilde{f}(\boldsymbol{x}, |\boldsymbol{z}|) \quad (\tilde{f} : \mathbb{R}^{n+s} \to \mathbb{R}) \quad (4.5) \\ \mathfrak{Z} \quad \tilde{f} \quad \mathcal{L} \succeq \mathfrak{H} \end{array}$$

$$y \equiv \tilde{f}(\boldsymbol{x}, |\boldsymbol{z}|) \tag{4.6}$$

と定義することができる. このような方程式の再解釈を Abs-Normal Form と呼ぶ.

4.3 Piecewise Linearization

とな

式 (4.4), 式 (4.6) より, z, y の増分を以下のように定義する.

$$\Delta \boldsymbol{z} = \frac{\partial \Phi}{\partial \boldsymbol{x}} \Delta \boldsymbol{x} + \frac{\partial \Phi}{\partial |\boldsymbol{z}|} \Delta |\boldsymbol{z}|,$$

 $\Delta \boldsymbol{y} = \frac{\partial \tilde{f}}{\partial \boldsymbol{x}} \Delta \boldsymbol{x} + \frac{\partial \tilde{f}}{\partial |\boldsymbol{z}|} \Delta |\boldsymbol{z}|$
き $\boldsymbol{z} = \boldsymbol{0}$ であるような基準点と考えると、

さらに, $x \in z = 0$ であるような基準点と考えると, 式 (4.1) より

$$\begin{split} \Delta \boldsymbol{z}(\boldsymbol{x}; \Delta \boldsymbol{x}) &= \boldsymbol{\Phi}(\boldsymbol{x}, \boldsymbol{0}) + \frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{x}} \Delta \boldsymbol{x} + \frac{\partial \boldsymbol{\Phi}}{\partial |\boldsymbol{z}|} (|\boldsymbol{z} + \Delta \boldsymbol{z}| - |\boldsymbol{z}|), \\ \Delta \boldsymbol{y}(\boldsymbol{x}; \Delta \boldsymbol{x}) &= \tilde{f}(\boldsymbol{x}, \boldsymbol{0}) + \frac{\partial \tilde{f}}{\partial \boldsymbol{x}} \Delta \boldsymbol{x} + \frac{\partial \tilde{f}}{\partial |\boldsymbol{z}|} (|\boldsymbol{z} + \Delta \boldsymbol{z}| - |\boldsymbol{z}|) \end{split}$$

$$\frac{\partial |z|}{\partial z} = \frac{\partial |z|}{\partial z} = \frac{\partial |z|}{\partial z} = \frac{\partial |z|}{\partial z}$$

 $\Sigma \equiv \text{diag}(\boldsymbol{\sigma}(\Delta \boldsymbol{x}))$ として、式 (4.7) を行列の形でまとめる と以下のようになる.

$$\begin{bmatrix} \Delta \boldsymbol{z} \\ \Delta \boldsymbol{y} \end{bmatrix} = \begin{bmatrix} \Phi(\boldsymbol{x}, \boldsymbol{0}) \\ \tilde{f}(\boldsymbol{x}, \boldsymbol{0}) \end{bmatrix} + \begin{bmatrix} \frac{\partial \Phi}{\partial \boldsymbol{x}} & \frac{\partial \Phi}{\partial |\boldsymbol{z}|} \\ \frac{\partial \tilde{f}}{\partial \boldsymbol{x}} & \frac{\partial \tilde{f}}{\partial |\boldsymbol{z}|} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x} \\ |\boldsymbol{z} + \Delta \boldsymbol{z}| - |\boldsymbol{z}| \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{c}_{\boldsymbol{z}} \\ \boldsymbol{c}_{\boldsymbol{y}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{Z} & \boldsymbol{L} \\ \boldsymbol{a}^{T} & \boldsymbol{b}^{T} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x} \\ \Sigma \Delta \boldsymbol{z} \end{bmatrix}$$
(4.8)

 $c_z \equiv \Phi(x, 0), \ c_y \equiv \tilde{f}(x, 0),$

 $Z \in \mathbb{R}^{s \times n}, L \in \mathbb{R}^{s \times s}, a \in \mathbb{R}^{n}, b \in \mathbb{R}^{s}$ 以降では、この式 (4.8) を指して Abs-Normal Form と呼ぶ ことにする.

4.4 Selection Function

式 (4.8) を Δx について整理する.

 $\Delta \boldsymbol{z} = (I - L\Sigma)^{-1} (\boldsymbol{c}_{\boldsymbol{z}} + Z\Delta \boldsymbol{x}),$

 $\Delta y = c_y + \boldsymbol{b}^T \Sigma (I - L\Sigma)^{-1} \boldsymbol{c}_{\boldsymbol{z}} + (\boldsymbol{a}^T + \boldsymbol{b}^T \Sigma (I - L\Sigma)^{-1} Z) \Delta \boldsymbol{x}$ 区分線形近似 $f_{\text{PL},\boldsymbol{x}}$ を以下で定義する.

 $f_{\text{PL},\boldsymbol{x}}(\Delta \boldsymbol{x}) \equiv \Delta y$ ある $\boldsymbol{\sigma}$ を定めたときの区分線形近似 $f_{\text{PL},\boldsymbol{x}}$ を $f_{\boldsymbol{\sigma},\boldsymbol{x}}$ と表し, これを selection function と呼ぶ.

$$f_{\sigma,x}(\Delta x) \equiv \gamma_{\sigma} + g_{\sigma}^{T} \Delta x$$
(4.9)
式 (4.9) の $\gamma_{\sigma}, g_{\sigma}$ はそれぞれ

 $\gamma_{\sigma} = c_y + \boldsymbol{b}^T \Sigma (I - L\Sigma)^{-1} \boldsymbol{c}_{\boldsymbol{z}}, \ \boldsymbol{g}_{\sigma}^T = \boldsymbol{a}^T + \boldsymbol{b}^T \Sigma (I - L\Sigma)^{-1} Z$ である.また、定義より明らかに

$$\nabla f_{\sigma,x} = g_{\sigma}$$

である.

 $f_{\sigma,x}$ は $\sigma \equiv \sigma(\Delta x) \in \{-1,0,1\}^s$ によって分割された $f_{\text{PL},x}$ のある多面体領域を表す.

式 (4.10) を例として, 点 (1,1) を基準に分割された多面体 領域の図を載せる.

 $f(x_1, x_2) = (x_2^2 - (x_1)_+)_+$ with $x_+ \equiv \max(x, 0)$ (4.10)

図 2 $f_{\text{PL},\boldsymbol{x}}(\Delta \boldsymbol{x})$ (左) と $\boldsymbol{\sigma}(\Delta \boldsymbol{x})$ による領域分割 (右)

以下では, σ によって決まる多面体領域を

 $P_{\boldsymbol{\sigma}} = \{\Delta \boldsymbol{x} : \boldsymbol{\sigma}(\Delta \boldsymbol{x}) = \boldsymbol{\sigma}\}$

と表すことにする. σ には以下のような半順序関係を定義できる.

 $\sigma \leq \tilde{\sigma} \iff \sigma_i^2 \leq \tilde{\sigma}_i \sigma_i \quad (i = 1, ..., s)$ (4.11) 式 (4.11) で等号が成り立つとき P_{σ} と $P_{\tilde{\sigma}}$ は同一であり, そ の他のとき P_{σ} と $P_{\tilde{\sigma}}$ は隣接している. また, この多面体領域 の中でも P_{σ} ($\sigma \in \{-1,1\}^{s}$) は開集合であり, その閉集合は

$$\bar{P}_{\boldsymbol{\sigma}} = \operatorname{cl} P_{\boldsymbol{\sigma}} = P_{\boldsymbol{\sigma}} \cup \{ \boldsymbol{\sigma}' \mid \boldsymbol{\sigma}' \prec \boldsymbol{\sigma}, \ \boldsymbol{\sigma}' \in \{-1, 0, 1\} \setminus \{-1, 1\} \}$$

となる.

表3 P_σ が表す領域 (図 2)

σ	P_{σ}	$\preceq ilde{oldsymbol{\sigma}}$
(0, 0)	$\Delta x_1 = -1, \Delta x_2 = 0$	$^{\forall} \{-1, 0, 1\}^2$
(0, 1)	$\Delta x_1 = -1, \Delta x_2 > 0$	$(0,0), (0,1), (\pm 1,1)$
(1, 0)	$\Delta x_1 > -1, \Delta x_2 = \frac{\Delta x_1 + 1}{2}$	$(0,0),(1,0),(1,\pm 1)$
(0, -1)	$\Delta x_1 = -1, \Delta x_2 < 0$	$(0,0), (0,-1), (\pm 1,-1)$
(-1,0)	$\Delta x_1 < -1, \Delta x_2 = 0$	$(0,0), (-1,0), (-1,\pm 1)$
(1, 1)	$\Delta x_1 > -1, \Delta x_2 > \frac{\Delta x_1 + 1}{2}$	(1, 1)
(1, -1)	$\Delta x_1 > -1, \Delta x_2 < \frac{\Delta x_1 + 1}{2}$	(1, -1)
(-1, 1)	$\Delta x_1 < -1, \Delta x_2 > 0$	(-1, 1)
(-1, -1)	$\Delta x_1 < -1, \Delta x_2 < 0$	(-1, -1)

5 制約なし連続最適化

対象とする区分線形な目的関数 $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ は凸であるか, 局所最適解が存在することを仮定する.

Abs-Normal Form による区分的線形関数 f の区分線形近似 とその selection function は [2] での selection function に一 致する. Abs-Normal Form により, 各 selection function の 関数と定義域

$$f_{\boldsymbol{\sigma},\boldsymbol{x}}(\Delta \boldsymbol{x}) \equiv \gamma_{\boldsymbol{\sigma}} + \boldsymbol{g}_{\boldsymbol{\sigma}}^T \Delta \boldsymbol{x}$$

 $\Sigma \Delta \boldsymbol{z} = \Sigma (I - L\Sigma)^{-1} (\boldsymbol{c}_{\boldsymbol{z}} + Z \Delta \boldsymbol{x}) \stackrel{\leq}{>} 0$ が得られているので, $P_{\boldsymbol{\sigma}}$ に対して線形計画問題 (以下 LP)

$$\begin{array}{ll} \min & f_{\boldsymbol{\sigma}, \boldsymbol{x}}(\Delta \boldsymbol{x}) \\ \text{s.t.} & \Delta \boldsymbol{z} \stackrel{<}{>} 0 \\ & -\infty < \Delta x_i < \infty \quad (1 < j < n) \end{array}$$
 (5.1)

を解くことで、反復中の解 x_k が属する P_{σ} の中で f_{σ,x_k} を最小にする方向 Δx を求めることが可能であり、これを繰り返すことで局所最適解へと収束することができる.

区分的微分可能関数に対する微分不可能点での最適性 条件は一般化勾配 $\partial^C f(\mathbf{x}) \equiv \operatorname{conv} \left\{ \partial^B f(\mathbf{x}) \right\} (\partial^B f(\mathbf{x}) :$ Bouligand Differential) [3] を用いて

$$\mathbf{0} \in \partial^C f(\mathbf{x})$$
で定義される. Abs-Normal Form による一般化勾配を

$$\partial f(\boldsymbol{x}) \equiv \{
abla f_{\boldsymbol{\sigma}, \boldsymbol{x}} \, | \, \boldsymbol{\sigma}_0 \preceq \boldsymbol{\sigma} \}$$

とすれば, 同様の条件が定義される.

また, $\sigma \ge \sigma'$ の共通項の集合 $\sigma \cap \sigma' = \tilde{\sigma} \neq \emptyset$ について以下の LP を考える.

$$\begin{array}{ll} \min & F(\Delta \boldsymbol{x}) \\ \text{s.t.} & \tilde{\Sigma} \Delta \tilde{\boldsymbol{z}} \ge 0 \\ & -\infty < \Delta x_j < \infty \quad (1 \le j \le n) \end{array}$$
(5.2)

 $F: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ は任意でよい. $\Sigma, \Delta \tilde{z}$ はそれぞれ $\tilde{\sigma}$ に対応する Σ の部分対角行列と Δz の部分 switching vector である.

この LP が解をもたない場合, $\hat{\sigma} \subseteq \hat{\sigma}$ となるすべての多面体 領域 $P_{\hat{\sigma}}$ は降下方向をもたない.これを利用して, 分枝限定法 を行うことで LP を解く回数を 2^s 回から減らすことが期待で きる.これにより, 一般化勾配の列挙と最適性条件の判定を効 率化する. 以下に, 本研究でのアルゴリズムを記す.

Algorithm 1 Piecewise Linear Minimization

procedure PLMIN(f, x) $x_0 \leftarrow x$ for $k \leftarrow 1, 2, \dots$ do $f_{\text{PL}, x_k} \leftarrow \text{ABSNORMALFORM}(f, x)$ $\sigma \leftarrow \text{sign}\Delta z(\mathbf{0})$ $\Delta x \leftarrow \operatorname{argmin} \{f_{\tilde{\sigma}, x_k}(\Delta x) \mid \Delta x \in P_{\tilde{\sigma}}, \sigma \preceq \tilde{\sigma}\}$ if $\Delta x = \mathbf{0}$ or $f(x_k + \Delta x) \ge f(x_k)$ then STOP $x_{k+1} \leftarrow x_k + \Delta x$ return $f(x_k), x_k$

5.1 数值実験·結果

以下に, [4] に掲載されているベンチマーク関数に対して行っ た実験を抜粋して載せる.

Hiriart-Urruty and Lemaréchal Example

$f(x_1, x_2)$	$= \max\{$	-100,	$3x_1 -$	$-2x_2$,	$3x_1 +$	$-2x_2$,	$2x_1$	$-5x_2,$	$2x_1$	+	$5x_2$	
											(5.3)	

Dimension	2
Optimum Point	$x^* \in \{x \in \mathbb{R}^2 \mid x_1 \le -50, \ x_2 \ge 0, \ 2x_1 \ge 5x_2\}$
	$\cup \left\{ \boldsymbol{x} \in \mathbb{R}^2 \middle x_1 \le -50, x_2 \le 0, 2x_1 \ge -5x_2 \right\}$
Optimum Value	$f(x^*) = -100$
Starting Point	$\boldsymbol{x}_0 = (9, -3)$
± 4	

	表 4 式 (5.3) に対する実験結果									
	f^*	#f	$\#\nabla f$	#LP	反復数	時間 [sec]				
ĺ	-99.999999	2	2	3	2	0.00				

Goffin

$$f(\boldsymbol{x}) = 50 \max_{1 \le i \le 50} x_i - \sum_{i=1}^{50} |x_i|$$
(5.4)

Dimension Optimum Point Optimum Value Starting Point

 $\begin{array}{ll} \mathbf{p} & 50 \\ \text{Point} & \mathbf{x}^* = (0, \dots, 0) \\ \text{Value} & f(\mathbf{x}^*) = 0 \\ \text{Point} & x_i^\flat = i - 25.5 \, (1 \le i \le 50) \end{array}$

ting i onit		$x_0 - i - $	- 20.0 (1 <u></u>	$\iota \ge 50)$
	+) _ L L _ 7	

表 5 式 (5.4) に対する実験結果								
f^*	#f	$\#\nabla f$	#LP	反復数	時間 [sec]			
1.2×10^{-5}	2	2	2	2	0.29			

L1 hlib

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} \left| \sum_{j=1}^{n} \frac{x_j}{i+j-1} \right|$$
(5.5)

Dimension Optimum Point Optimum Value Starting Point $\begin{array}{l} 3,4,5,6,7,8,9,10\\ \boldsymbol{x^*}=(0,\ldots,0)\\ f(\boldsymbol{x^*})=0\\ \boldsymbol{x}_0=(1,\ldots,1) \end{array}$

表 6 式 (5.5) に対する実験結果

n	f^*	#f	$\#\nabla f$	#LP	反復数	時間 [sec]				
3	3.0×10^{-12}	2	2	2	2	0.02				
4	4.0×10^{-12}	2	2	2	2	0.02				
5	5.0×10^{-12}	3	3	9	3	0.14				
6	6.0×10^{-12}	5	5	103	5	1.16				
7	7.0×10^{-12}	8	8	209	8	3.03				
8	8.0×10^{-12}	7	7	425	7	8.48				
9	9.0×10^{-12}	9	9	857	9	23.92				
10	1.0×10^{-11}	5	7	769	5	27.80				

表の #f は目的関数 f を評価した回数, # ∇f は目的関数 f の勾配を評価した回数, #LP は LP を解いた回数である.

6 考察

6.1 実験結果について

区分的線形関数に対するこの手法は、各反復で微分不可能 点を表す kink [6] と呼ばれる超平面を伝って降下していく. このため、収束までの反復回数は理論上は $3^{s} - 2^{s}$ (= $|\sigma \in \{-1,0,1\}^{s} \setminus \{-1,1\}^{s}|$) 回以下となる.実験結果からもこれは 正しいと考えられ、収束の様子は非常に安定している.

しかし,目的関数に含まれる絶対値関数の個数 s が増える ことで,隣接する多面体領域が指数関数的に増えるため LP を 解く回数が著しく増えてしまう.目的関数の変数の次元 n が 上がることよりも s が増えることによる計算量の増加が激し いため, LP を解く回数を減らす, すなわち, 効率的に一般化勾 配を列挙する方法を考える必要がある.[8] では, Abs-Normal Form を表す行列のうち絶対値関数の入れ子構造を表す行列 L から最適性条件を考察することも行われている.今回は多面体 領域を表す制約式の特徴から分枝限定法を行うことである程度 現実的な処理時間で収束させることができている.

6.2 区分的非線形関数に対する手法と数値実験

また,今回のアルゴリズムを拡張し,隣接する多面体領域間 での移動を踏まえた直線探索や,LPの目的関数に $\frac{q}{2}||\Delta x||^2$ の 項を追加した QP (2次計画問題)を解くことで x_k の近傍で 目的関数を2次近似しながら降下方向を探索する手法を[4]の 区分的非線形関数に対して実験を行ったが収束が安定しなかっ た.この拡張手法はいわば,信頼領域法をもとにする Bundle Method であったが,他にも準ニュートン法,非線形共役勾配 法などをもとにした拡張も考えられる.しかし,各反復におい て多面体領域間で移動が発生した場合にはヘッセ行列や共役方 向の近似がリセットされてしまうため,まだ考察と実験が必要 である.

7 今後の課題

区分的微分可能関数に対する劣微分や一般化勾配の定義は他 にも複数あり,今後はそれらの自動微分との関係や導出方法に ついて考察していく.また,制約付き最適化問題や方程式系へ の応用を最終的な課題とする.

参考文献

- 久保田 光一, 伊理 正夫, アルゴリズムの自動微分と応用. Automatic differentiation of algorithms and applications, 東京, Japan: コロナ 社, 1998.7 1998.
- [2] S. Scholtes, *Piecewise Differentiable Functions*, pp. 91–111. New York, NY: Springer New York, 2012.
- [3] F. Clarke, Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, 1990.
 [4] A. Bagirov, N. Karmitsa, and M. M. Mkel, Introduction to Non-
- [4] A. Bagirov, N. Karmitsa, and M. M. Mkel, Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer Publishing Company, Incorporated, 2014.
- [5] A. Griewank, "On stable piecewise linearization and generalized algorithmic differentiation," *Optimization Methods Software*, vol. 28, pp. 1139–1178, Dec. 2013.
- [6] A. Griewank, J.-U. Bernt, M. Radons, and T. Streubel, "Solving piecewise lineare equations in abs-normal form," *Documenta Mathematica*, vol. Optimization Stories, 2015.
- [7] A. Griewank, A. Walther, S. Fiege, and T. Bosse, "On Lipschitz optimization based on gray-box piecewise linearization," *Mathematical Programming*, vol. 158, no. 1, pp. 383–415, 2016.
- matical Programming, vol. 158, no. 1, pp. 383–415, 2016.
 [8] A. Griewank and A. Walther, "First and second order optimality conditions for piecewise smooth objective functions," *Optimization Methods and Software*, vol. 31, no. 5, pp. 904–930, 2016.