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Abstract

Delay has been considered as one of destabilizing factors in macroeconomic dynamics since
the seminal work of Kalecki (1935). In this paper introducing two �xed delays into the tra-
ditional neoclassical growth model, we �rst rigorously determine the conditions for which the
stability is lost and then numerically con�rm the analytical results. We add one interesting
feature of the delay dynamics. Stability loss and gain repeatedly occur as a delay parameter
increases. This implies that the delay is not only a destabilizer but also a stabilizer.
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1 Introduction

For more than a half-century, the neoclassical growth model of Solow (1956) and Swan (1956) has
been a prototype model for analyzing long-run economic growth. It has the general equilibrium
structure although very simple and brings out how an economy can enjoy positive growth rates in
a very clear way. On the other hand, business cycles have been often observed in a real economy,
however, the neoclassical model fails to explain such dynamics since its steady state is locally
asymptotically stable implying that its dynamics is monotonic. There are several turning points at
which its basic structure is modi�ed so as to give rise to cyclical �uctuations. Among others, Day
(1982) incorporates the two opposite e¤ects of increasing capital stock into the neoclassical model,
the positive e¤ect that is an essential source of economic growth and the negative e¤ects caused
by environmental distortion of high economic growth such as pollutions It is demonstrated in a
discrete-time framework that persistent irregular �uctuations can be generated when nonlinearities
due to the two e¤ects get stronger. Since the seminal work of Kalecki (1935), it has been conjectured
that a production delay could be a source of economic �uctuations. Zak (1999) rebuilds the model
in which the current capital stock is adjusted by the savings at some preceding time and shows
an emergence of a cycle via a Hopf bifurcation. Matsumoto and Szidarovszky (2011) reconsider
Day�s discrete time model in a continuous-time framework with production delay and numerically
con�rm the birth of chaotic dynamics through ala period-doubling cascade. Recently Bianca et
al. (2013) extend analysis to the case in which the neoclassical model has two distinct delays,
one refers to the time when capital is used for production and the other to the necessary time
for the capital to be depreciated. By applying the normal theory and center manifold argument,
they demonstrate the existence, the direction and stability of a Hopf bifurcation. However, their
approach can be improved more as it does not allow to obtain analytical results on couples of two
delays that generate a stable or an unstable stationary state. The aim of this study is to recon�rm
and extend their results in more systematic way by applying the mathematical method developed
by Gu et al. (2005) to deal with two delay models, through the use of the stability crossing curves,
which are de�ned as the curves that separate the stable and unstable regions in the two delay plane.
The rest of the paper is organized as follows. Section 2 derives the complete form of the

stability switching curve under two delays and determines the direction of crossing the imaginary
axis. Section 3 con�rms the analytical results numerically in our own example and reexamine two
other examples provided by Bianca et at. (2013) in our way. Finally, concluding remarks are given
in Section 4.

2 The model

We consider two �xed delays in the neoclassical growth model,
:

k(t) = sf(k(t� �1))� �k(t� �2); (1)

where s 2 (0; 1); � 2 (0; 1] and f(k) is well-behaved neoclassical production function implying
that it is continuous, increasing, strictly concave, f(0) = 0 and satis�es Indada�s conditions. An
equilibrium point of Eq. (1) is a solution of sf(k)��k = 0, where existence and number of equilibria
depend on properties of function f . To examine stability of an equilibrium point of (1), say k�; Eq.
(1) is linearized at k = k�,

:

k(t) = s�[k(t� �1)� k�]� �[k(t� �2)� k�]; (2)
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where � = f 0(k�) and s� < � due to Inada�s conditions. Looking for exponential solutions of (2),
that is solutions of the form k(t) = e�tu with u a constant, then, substituting it into (2), we obtain
the corresponding characteristic equation

�� s�e���1 + �e���2 = 0: (3)

In case of absence of delays, Eq. (3) becomes � = s� � � < 0: Thus, the equilibrium k� of (1)
is locally asymptotically stable. Let �1 > 0 and �2 > 0.1 As �1 and �2 change, Eq. (1) can
switch from stability to instability, or vice versa, only when at least one characteristic root moves
to the imaginary axis. Thus, the stability analysis of (1) requires calculating the characteristic
roots � = i! of the characteristic equation (3). To study the change of stability when �1 and �2
both vary, we will follow the methodology of Gu et al. (2005) with the use of the stability crossing
curves, which are de�ned as the curves that separate the stable and unstable regions in the (�1; �2)
plane. To apply this method, we rewrite Eq. (3) as

p(�; �1; �2) = p0(�) + p1(�)e
���1 + p2(�)e

���2 = 0; (4)

where
p0(�) = �; p1(�) = �s�; p2(�) = �:

Next we check the following assumptions on p(�; �1; �2) to exclude some obvious trivial cases:

I) deg[p0(�)] � max fdeg[p1(�)]; deg[p2(�)]g] (existence of a principal term).

II) p0(0) + p1(0) + p2(0) 6= 0 ("0" is not a solution of (4) for any pair (�1; �2)):

III) The polynomials p0(�); p1(�) and p2(�) do not have common roots (in order to simplify the
expressions).

IV) lim
�!1

�����p1(�)p0(�)

����+ ����p2(�)p0(�)

����� < 1 (restriction on di¤erence operator).
Now, conditions I), II) and IV) hold since deg[p0(�)] = 1 and deg[p1(�)]=deg[p2(�)]] = 0,

p0(0)+ p1(0)+ p2(0) = �s�+ � 6= 0; and the limit as �!1 is equal to zero, respectively. Finally,
condition III) is clearly satis�ed.
A pair (�1; �2) 2 R2+ is said to be a crossing point if p(�; �1; �2) = 0 has at least one solution for

� on the imaginary axis. The set of all crossing points is known as the stability crossing set, and is
denoted by T . An ! > 0 is known as a crossing frequency if there exists at least one pair (�1; �2)
such that p(i!; �1; �2) = 0. The set 
 of all crossing frequencies is called the crossing frequency
set, i.e.,


 = f! > 0 : p(i!; �1; �2) = 0 for some (�1; �2) 2 R2+g
Considering that p0(�) has no nonzero roots on the imaginary axis, the stability analysis of (4)

can be reduced to the analysis of the equation

a(�; �1; �2) = 1 + a1(�)e
���1 + a2(�)e

���2 = 0; (5)

where

a1(�) =
p1(�)

p0(�)
= �s�

�
; a2(�) =

p2(�)

p0(�)
=
�

�
:

1See Zak (1999) for the model with �1 = �2 = �:
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The form of Eq. (5) allows to replace the investigation on crossing the imaginary axis into the
geometric problem of a triangle. Speci�cally, for each given � = i!; ! > 0; the term a(�; �1; �2)
is represented in the complex plane as the sum of three vectors 1; a1(�)e���1 and a2(�)e���2 ;
with magnitudes 1; ja1(i!)j and ja2(i!)j ; respectively, which are independent of �1 and �2: If these
vectors create a triangle (i.e., a(�; �1; �2) = 0), then the characteristic equation has a solution
� = i! for some delays �1 and �2: Since the length of each edge of a triangle cannot exceed the
sum of the length of the remaining two edges, we derive that the range of ! to parameterize T are
the solution of the following three inequalities:

ja1(i!)j+ ja2(i!)j � 1; �1 � ja1(i!)j � ja2(i!)j � 1: (6)

Since

ja1(i!)j =
����s�
i!

��� = s�

!
and ja2(i!)j =

���� �i!
���� = �

!
;

the triangle conditions (6) give

s�+ � � !; �! � s�� � � !:

Recalling s�� � < 0; we obtain
�s�+ � � ! � s�+ �: (7)

As a result, we get

 = [�s�+ �; s�+ �] :

For any ! 2 
, the characteristic equation (2) has a pair of purely imaginary roots and it is now
possible to identify solutions (�1; �2) of p(�; �1; �2) = 0 as the following two sets of curves in the
�rst quadrant of the (�1; �2)-region:

C+(m;n) :

8>><>>:
�+1;m = �

+
1;m(!) =

arg[a1(i!)] + (2m� 1)� + �1(!)
!

�+2;n = �
+
2;n(!) =

arg[a2(i!)] + (2n� 1)� � �2(!)
!

(8)

and

C�(m;n) :

8>><>>:
��1;m = �

�
1;m(!) =

arg[a1(i!)] + (2m� 1)� � �1(!)
!

��2;n = �
�
2;n(!) =

arg[a2(i!)] + (2n� 1)� + �2(!)
!

(9)

form = m�
0 ;m

�
0 +1;m

�
0 +2; :::; and n = n

�
0 ; n

�
0 +1; n

�
0 +2; :::; where n

+
0 ; n

�
0 ;m

+
0 ;m

�
0 (n

+
0 � n�0 and

m+
0 � m�

0 ) are the smallest possible integers such that the corresponding �
n+0 +
1 ; �

n�0 �
1 ; �

m+
0 +

2 ; �
m�
0 �

2

values are nonnegative.
In the expressions (8) and (9), the terms arg[a1(i!)] and arg[a2(i!)] denote the argument of

a1(i!) and a2(i!); respectively, and are given by

arg[a1(i!)] = arg
h
�s�
i!

i
= arg

hs�
!
i
i
=
�

2

and

arg[a2(i!)] = arg

�
�

i!

�
= arg

�
� �
!
i

�
=
3�

2
;
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while �1; �2 2 [0; �] represent the internal angles of the triangle, and are determined by the law of
cosines as follows,

�1(!) = cos
�1

 
1 + ja1(i!)j2 � ja2(i!)j2

2 ja1(i!)j

!
= cos�1

�
!2 + s2�2 � �2

2s�!

�
and

�2(!) = cos
�1

 
1 + ja2(i!)j2 � ja1(i!)j2

2 ja2(i!)j

!
= cos�1

�
!2 � s2�2 + �2

2�!

�
:

The inequalities in (7) yield that the arccosines functions are well-de�ned being

�1 � !2 + s2�2 � �2

2s�!
� 1 and � 1 � !2 � s2�2 + �2

2�!
� 1:

In conclusion, Eqs. (8) and (9) are given by

C+(m;n) :

8>><>>:
�+1;m(!) =

1

!

h
��
2
+ 2m� + cos�1(A)

i
�+2;n(!) =

1

!

h�
2
+ 2n� � cos�1 (B)

i (10)

and

C�(m;n) :

8>><>>:
��1;m(!) =

1

!

h
��
2
+ 2m� � cos�1 (A)

i
��2;n(!) =

1

!

h�
2
+ 2n� + cos�1 (B)

i
;

(11)

where

A = A(!) =
!2 + s2�2 � �2

2s�!
, B = B(!) =

!2 � s2�2 + �2

2�!
> 0:

Furthermore, noticing that cos�1(A); cos�1 (B) 2 [0; �], one has !�+1 ; !�
+
2 2 [��=2; �=2] with

m = n = 0.

Theorem 1 Let n be �xed. Then the segments of C+(m;n) and C�(m;n) form a continuous curve
as m increases.

Proof. In order to understand the possible con�gurations of stability crossing curves of our model,
we analyse the behavior of C+(m;n) and C�(m;n) at the initial and end points of 
. Since

�1(�s�+ �) = cos�1(�1) = �; �2(�s�+ �) = cos�1(1) = 0

and
�1(s�+ �) = cos

�1(1) = 0; �2(s�+ �) = cos
�1(1) = 0;

(10) gives that the initial and end points of C+(m;n) are

I+(m;n) =

�
1

�s�+ �

�
3�

2
+ (2m� 1)�

�
;

1

�s�+ �

�
3�

2
+ (2n� 1)�

��
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and

E+(m;n) =

�
1

s�+ �

��
2
+ (2m� 1)�

�
;

1

s�+ �

�
3�

2
+ (2n� 1)�

��
:

As well, it follows from (11) that the initial and end points of C�(m;n) are

I�(m;n) =

�
1

�s�+ �

��
2
+ (2m� 1)� � �

�
;

1

�s�+ �

�
3�

2
+ (2n� 1)�

��
and

E�(m;n) =

�
1

s�+ �

��
2
+ (2m� 1)�

�
;

1

s�+ �

�
3�

2
+ (2n� 1)�

��
:

Since I+(m;n) = I�(m + 1; n) and E+(m;n) = E�(m;n); we arrive at the conclusion that the
curves C+(m;n) and C�(m;n) are connected at the endpoint of 
, while C+(m;n) and C�(m+1; n)
are connected at the initial point of 
:

After having determined the stability crossing curves corresponding to 
; we will discuss the
direction in which the solutions of (5) cross the imaginary axis as (�1; �2) deviates from a curve in
T and �nd the directions of crossing as one moves along the curve. Before doing this, we examine
the case with �1 = 0 in (5).

Proposition 1 Let �1 = 0: Then there exists �02 > 0 such that the equilibrium k� of (1) is locally
asymptotically stable when �2 2 [0; �02) and unstable when �2 > �02: Furthermore, Eq. (1) undergoes
a Hopf bifurcation at k� when �2 = �02:

Proof. To determine the stability of the system, we need �rst to �nd the roots � = i!; ! > 0 of
the characteristic equation when �1 = 0: Letting � = i!; ! > 0; in 1+ a1(�)+ a2(�)e���2 = 0; and
separating real and imaginary parts leads to

! = � sin!�2; s� = � cos!�2: (12)

Adding the squares of these equations implies ! to be a root of !2 = �2 � s2�2: Thus, we get the
unique positive root

!0 =
p
�2 � s2�2:

Hence, we obtain from (12) the critical value,

�02 =
1

!0
tan�1

�!0
s�

�
:

Selecting �2 as the bifurcation parameter, we consider � as function of �2: � = �(�2). Di¤erenti-
ating the characteristic equation with respect to �2, we obtain

[1� (s�� �) �2]
d�

d�2
= � (s�� �) :

It is immediate to check that i!0 is a simple root. In fact, if it were a repeated root, then � = i!
would satisfy both equations

�� s�+ �e���2 = 0 and 1 + �e���2 (��2) = 0

6



implying that 0 = 1� �2(s�� �), which is impossible if � is purely imaginary.
Next, we have

sign

�
d (Re�)

d�2

�
�=i!0; �2=�02

= sign

"
Re

�
d�

d�2

��1
�=i!0; �2=�02

#
= sign

�
1

!20 + s
2�2

�
> 0;

which completes the proof.

For discussing the direction of crossing, we need some de�nitions. We call the direction of the
stability switch curve with increasing ! the positive direction, while the region on the left hand side,
as we head in the positive direction of the curve, is called the region on the left, denoted by L. The
region on the right hand side is called the region on the right, denoted as R.
Gu et al. (2005) proved (see Proposition 6:1) that if � = i! is a simple solution of Eq. (5), as

(�1; �2) moves from R to L of the corresponding curve in T ; then a pair of solutions of (5) cross
the imaginary axis to the right if Q > 0, where

Q = Im
h
a1(i!)a2(�i!)ei!(�2��1)

i
; (13)

and the crossing is in the opposite direction if Q < 0:

Theorem 2 As (�1; �2) moves from R to L, we have

1) a stability loss if ! < � � s� on C+(m;n) or if ! > � � s� on C�(m;n);

2) a stability gain if ! > � � s� on C+(m;n) or if ! < � � s� on C�(m;n):

Proof. In the �rst part of the proof we show by contradiction that the root � = i! is simple.
Suppose � = i! is a root of (5) which is repeated. Then, the derivative of (5) with respect to �
evaluated at � = i! must also be zero, and we have the following two equations(

i! � s�e�i!�1 + �e�i!�2 = 0;

1 + s��1e
�i!�1 � ��2e�i!�2 = 0:

(14)

From (14), we get

e�i!�1 =
1 + i!�2
s�(�2 � �1)

; e�i!�2 =
1 + i!�1
�(�2 � �1)

: (15)

Separating real and imaginary parts in (15), and then comparing, we obtain

sin!�1 = �!�2 cos!�1; sin!�2 = �!�1 cos!�2:

Consequently,
tan!�1 = �!�2; tan!�2 = �!�1: (16)

If we are on C+(m;n); we notice from (10) that, being cos�1(A); cos�1 (B) 2 [0; �], one has that
with m = n = 0; !�+1 ; !�

+
2 2 [��=2; �=2]. Using (16), and recalling that the tangent function is

an odd function, we arrive at the identity

tan!�+1 = tan
�1 !�+1 :
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On the other hand, a graphical inspection shows that this two functions do not have zero intersection
when !�+1 2 (��=2; �=2): The proof when we are on C�(m;n) is similar. In conclusion, we have
shown that the root � = i! is simple. In this second part of the proof we �nd the conditions for
Q > 0 (stability loss) and for Q < 0 (stability gain). From (13),we have

Q = Im

�
�s��
!2

[cos!(�2 � �1) + i sin!(�2 � �1)]
�
= �s��

!2
sin!(�+2 � �+1 ): (17)

On C+(m;n); it is

!(�+2 � �+1 ) = [2(n�m) + 1]� �
�
cos�1(A) + cos�1(B)

�
: (18)

Therefore, from (17) and (18), using the angle-sum and angle-di¤erence identities for trigonometric
functions, i.e. sin(u� v) = sinu cos v� cosu sin v and cos(u� v) = cosu cos v� sinu sin v; it follows

Q = �s��
!2

sin
�
cos�1(A) + cos�1(B)

�
=
s��

!2

n
�B

p
1�A2 �A

p
1�B2

o
:

On C+(m;n); one has

sign (Q) = sign
�
�B

p
1�A2 �A

p
1�B2

�
.

Since B > 0; and so �B < 0; we see that Q < 0 if A � 0; i.e. if ! �
p
�2 � s2�2: Let A < 0; i.e.

! <
p
�2 � s2�2. Then Q < 0 if B > �A; i.e. if ! > � � s�: Since

p
�2 � s2�2 > � � s�, we have

that Q < 0 if ! > � � s�: As well, we have that Q > 0 for ! < � � s�:
Similarly, on C�(m;n); one has

!(��2 � ��1 ) = [2(n�m) + 1]� +
�
cos�1(A) + cos�1(B)

�
;

yielding

Q =
s��

!2
sin
�
cos�1(A) + cos�1(B)

�
=
s��

!2

n
B
p
1�A2 +A

p
1�B2

o
:

Hence,

sign (Q) = sign
�
B
p
1�A2 +A

p
1�B2

�
on C�(m;n):

Proceeding as before, we derive Q < 0 if ! < � � s� and Q > 0 if ! > � � s�:

3 Numerical Simulations

We numerically con�rm the analytical results obtained above by assuming the Cobb-Douglas pro-
duction function

f(k) = Ak�

with � 2 (0; 1) and A = 1: Since the equilibrium per capita k� solves s(k�)� = �k�, the marginal
product at the equilibrium point satis�es the following relation,

� (k�)
��1

=
��

s
(= �)

8



implying that s� = �� at the equilibrium point.
In the �rst numerical example, we specify the parameter values as follows:

s = 0:3; � = 0:5 and � = 0:1:

Figure 1(A) shows the stability switching curve in which the red segments are described by C�(m; 0)
form = 1; 2; 3; 4 and the left most blue segment by C+(0; 0) and the other blue segments by C+(m; 0)
for m = 1; 2; 3. Notice that m is a horizontal-shift parameter and n is a vertical-shift parameter.
The curve divides the non-negative (�1; �2) plane into two regions. The equilibrium point is stable
in the region including the origin2 and unstable in the other region. We immediately observe the
two results that Bianca et al. (2013) have already shown in their Proposition 1 and the �rst half of
Theorem 3,

(1) the equilibrium point is always stable for �2 = 0 because it is locally asymptotically stable for
�1 = 0 and no stability switch occurs for any �1 > 0 as the stability switching curve does not
intersect the horizontal axis.

(2) for �1 = 0; the equilibrium point is locally asymptotically stable for �2 < �02; loses stability at
�2 = �

0
2 and unstable for �2 > �

0
2 where �

0
2 ' 12:09 is the intersection of the most left blue

curve with the vertical axis as shown in Figure 1(A). Our Proposition 1 formally proves this
observation.

We can observe further results. First notice that since the blue curves take U -shaped form, it
has a minimum value denoted by �m2 , which is obtained by di¤erentiating �2;m(!) with respect to
! and solving the resultant expression being equal to zero.

(3) for �2 < �m2 ; any �1 � 0 is harmless implying that the equilibrium point is locally asymptoti-
cally stable where �m2 ' 9:35.

We now turn attention to Figure 1(B) that is an enlargement of the shaded rectangular region
in Figure 1(A). According to Theorem 1, both C+(0; 0) and C�(1; 0) start but in the opposite
direction at the green point where I+(0; 0) = I�(1; 0) holds and both C+(1; 0) and C�(1; 0) �nally
arrive at the yellow point where E+(1; 0) = E�(1; 0) holds. As shown by arrows, the point of
(�1; �2) on the red curve moves from the green point to the yellow point as the value of ! increases.
By the same token, the point on the lower blue curve moves forward to the yellow point and the
point on the upper blue curve moves away from the yellow point as the value of ! increases. As
seen in Figure 1(B), the vertical line standing at ��1 = (�m1 + �

M
1 )=2 crosses the stability switching

curve three time at points a; b and c. The �2-value of point a is calculated as follows. Solving
�+1;1(!) = ��1 gives !a ' 0:145 that is, in turn, substituted into ��2;0(!) to determine �a2 ' 9:56. In
the same way, we have !b ' 0:092 and � b2 ' 22:63 at point b and !c ' 0:051 and � c2 ' 33:14 at
point c. At each point, the stability switch occurs according to Theorem 2:

(4-a) Since the lower blue curve is described by C+(1; 0) and passes through point a from right
to left in the positive direction, the R-region is above the curve and the L-region is below.
The speci�ed values of the parameters lead to � � s� = � � �� = 0:05 < !a, the value of !
at point a. Theorem 2 (1) implies that as (�1; �2) moves downward from R to L along the
vertical line passing though point a; the stability is gained.

2We have already con�rmed that k� is stable in case of absence of delays (i.e., �1 = �2 = 0).
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(4-b) The red curve is described by C�(1; 0). With the positive direction in the neighborhood of
point b, the pair of the delay moves right to left along the downward part of the red curve as
the arrows exhibit. The R-region is above the curve and the L-region is below. Hence, as in
the same way as above, Theorem 2 (1) indicates that the stability is lost when the pair of the
delays moves downward from R to L along the vertical line passing through point b at which
!b > � � s� on C�(1; 0):

(4-c) The positive direction is reversed in the neighborhood of point c so that the R-region is
below the positive sloping part of the red curve and the L-region is above. Theorem 2 (1)
also indicates that the stability is lost when the pair of the delay moves upward from R to L
along the vertical line passing thorough point c at which !c > � � s� on C�(1; 0):

The last results are summarized as follows: when the value of �2 increases along the vertical line
at �1 2 (�m1 ; �M1 ), the switch from stability to instability occurs at the �rst intersection, the stability
is regained at the second intersection and the stability is lost again at the third intersection. No
stability switch occurs for further increase of �2:

(A) Stability switching curve (B) Enlargement

Figure 1. Stability switching curve

We now visit the numerical examples considered by Bianca et al. (2013) and con�rm their
results in our way. We examine their �rst and second examples together that have the following
parameter values

s = 0:11; � = 0:1 and � = 0:8

and two sets of the delay combination (�1; �2);

A = (1; 2) and B = (3; 2):

The stability switching curve is illustrated in Figure 2(A) in which the blue and red curves are
described by C+(m; 0) and C�(m; 0) for m = 1; 2. Let us examine dynamics at point A. For
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�1 = 1; we can calculate the corresponding value of �2 to be on the stability switching curve by
two steps. At the �rst step we solve �+1;0(!) = 1 to obtain !1 ' 0:744. At the second step this
!1 is substituted into �

�
1;0(!1) ' 2:013: This threshold value is slightly larger than 2: Thus time

trajectories under the A-speci�cation converges to the equilibrium point as shown by Bianca et
al. We now move to point B: Although we would not calculate the threshold value of �2 on the
stability switching curve under the B-speci�cation, it is apparent that point B is located under the
stability switching curve and thus the equilibrium is also locally asymptotically stable under the
B-speci�cation. We have two more results. One is that �1 becomes harmless when �2 < �m2 ' 1:751
and the other is that stability loss and gain can occur repeatedly as the stability switching curve
is wave-shaped. In particular, when the value of �1 is increased along the horizontal line at �2 = 2;
the stability is gained whenever the horizontal line crosses the positive sloping blue curve whereas
the stability is lost whenever the horizontal line crosses the negative sloping red curve.
In their third example, the parameter values are changed to

s = 0:41; � = 0:8 and � = 0:35

and the combination of delays is selected

C = (10; 2)

The corresponding stability switching curves are illustrated by the blue curve and blue-red curve.
For �1 = 10; the corresponding �2-value of C+(1; 0) is approximately 2:018; slightly larger than 2:
Therefore point C is actually located in the stable region below the stability switching curve. In
consequence, although it takes much longer time to arrive at the equilibrium point, as point C is
very close to the switching curve, the equilibrium point is locally asymptotically stable, oscillations
can occurs for a long time. In this example, the multiple stability loss and gain can occur if �1 is
�xed and �2 increases as indicated by the multiple intersection of the dotted vertical line at �1 = 10
with the stability switching curve. In fact, if we increase the value of �2 along the dotted vertical
line at �1 = 10; we have three intersections, stability is lost at the �rst intersection at �2 ' 2:018;
regained at crossing point a with the red curve and �nally lost again at crossing point b with the
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upper blue curve.

(A) (B)

Figure 2. Examples of Bianca et al. (2013)

4 Concluding Remarks

Stability of the traditional neoclassical model of Solow and Swan were examined under the assump-
tion that there were two distinct delays, one is the production delay and the other is the depreciation
delay. Con�rming that the neoclassical growth model is locally asymptotically stable without time
delays, we demonstrate that it could generate qualitatively di¤erent dynamics once the delays were
introduced:

(1) a delay can be harmless meaning that the delays do not a¤ect dynamics at all.

(2) con�rmation of the instability e¤ect of the delay in the neoclassical growth model.

(3) In the two delay case, we can have the repetition of stability loss and gain, implying that the
delay not only stabilizes macrodynamics but also can destabilize it.
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