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2 MAXSATOOOOOO

MAX SAT, one of the most well-studied NP-hard
problems, is stated as follows: given a set of clauses
with weights, find a truth assignment that maximizes
the sum of the weights of the satisfied clauses. More
precisely, an instance of MAX SAT is defined by (C,w),
where C is a set of boolean clauses, each clause C € C be-
ing a disjunction of literals and having a positive weight
w(C). Let X = {z1,...

variables in the clauses of C. A literal is a variable

,Zn} be the set of boolean

xz € X or its negation Z. For simplicity we assume
Tnti = Ti (i = Tpyi). Thus, X = {Z | 2z € X} =
{Znt1,Tnt2y- -, Tant and X UX = {z1,...,22,}. We
assume that no literals with the same variable appear

more than once in a clause in C. For each x; € X, let

xz; =1 (z; = 0, resp.) if z; is true (false, resp.). Then,
Tnti = T; =1 —x; and a clause C; = x5, Vaj, V-V
Tjy, € C can be considered to be a function

kj

Gy =Ci(@) =1-[Ja-=)

i=1
on & = (x1,...,22,) € {0,1}*". Thus, C; = Cj(x) =
0 or 1 for any truth assignment & € {0,1}*" with z; +
Tnti =1 (i =1,2,...,n) and C} is satisfied if Cj(x) = 1.

The wvalue of a truth assignment « is defined to be

cjec
That is, the value of & is the sum of the weights of
the clauses in C satisfied by x. Thus, the goal of MAX
SAT is to find an optimal truth assignment (i.e., a truth
assignment of maximum value). We will also use MAX
kSAT, a restricted version of the problem in which each

clause has at most k literals.

MAX SAT is known to be NP-hard and many approx-
imation algorithms for it have been proposed. Hastad
[5] has shown that no approximation algorithm for
MAX SAT can achieve performance guarantee better
than 7/8 unless P = NP. On the other hand, Asano
and Williamson [1] have presented a 0.7846-approxi-
mation algorithm and an approximation algorithm
whose performance guarantee is 0.8331 if a conjectured
performance guarantee of 0.7977 is true in the Zwick’s
algorithm [9]. Both algorithms are based on their sharp-
ened analysis of Goemans and Williamson’s LP-relax-
ation for MAX SAT [3].

In this paper, we present an improved analysis which
is simpler than the previous analysis by Asano and
Williamson [1]. Furthermore, we show that this analysis
will lead to approximation algorithms with better per-
formance guarantees if combined with other approxima-
tion algorithms which were (or will be) presented. Ac-
tually, algorithms based on this analysis lead to approx-

imation algorithms with performance guarantee 0.7877



and conjectured performance guarantee 0.8353 which
are slightly better than the best known corresponding
performance guarantees 0.7846 and 0.8331 respectively,
if combined with the MAX 2SAT and MAX 3SAT algo-
rithms by Halperin and Zwick [6] and the Zwick’s algo-
rithm [9], respectively. Thus, algorithms based on this
analysis will be used as a building block in designing an
improved approximation algorithm for MAX SAT.

To explain our result in more detail, we briefly re-
view the 0.75-approximation algorithm of Goemans and
Williamson based on the probabilistic method [3]. Let
x? = («f,...,28,)) be a random truth assignment with
0<al=p; <1 (xfl“.: 1—a? =1—p; = pnyi). That
is, P is obtained by setting independently each variable
x; € X to be true with probability p; (and zny: = T; to
be true with probability pn4+; = 1 —p;). Then the prob-
ability of a clause C; = x;, Vaj, V- - Vg, € C satisfied
by the random truth assignment «? = (zf,...,25 ) is

kj

Ci(@") =1- [ -a%).

i=1
Thus, the expected value of the random truth assign-

ment P is

Fe(@”) = > w(Cy)Cy(a”).
cjec
The probabilistic method assures that there is a truth
assignment x? € {0,1}>" of value at least F¢(«?). Such
a truth assignment x? can be obtained by the method
of conditional probabilities [3].

Using an IP (integer programming) formulation of
MAX SAT and its LP (linear programming) relaxation,
Goemans and Williamson [3] obtained an algorithm for
finding a random truth assignment x? of value F¢ (")
at least

S a-- o> %)W ~ 0.63211,

k
k>1

where e is the base of natural logarithm, Wi, = ZCeck
w(C)O(#), and Fe () =, -, Wy for an optimal truth
assignment & of (C,w) (Ci denotes the set of clauses in
C with k literals). Goemans and Williamson also ob-
tained a 0.75-approximation algorithm by using a hy-

brid approach of combining the above algorithm with

Johnson’s algorithm [7]. It finds a random truth as-

signment of value at least

0.750W1 + 0.750W> + 0.789Ws + 0.810W,
+0.820W5 + 0.824Ws + Zk>7 B Wi,

5k_%<2%(1%)k).

Asano and Williamson [1] showed that one of the non-

where

hybrid algorithms of Goemans and Williamson finds a

random truth assignment x” with value Fe(x?) at least

0.750W1 + 0.750W> + 0.804Ws + 0.851W,
+0.888Ws + 0.915Ws + >, - 76 W,

. k—1
w=1-3() (- 5mm)

for k>3 (vyk > B for k > 3). Actually, they obtained

where

a 0.7846-approximation algorithm by combining this al-
gorithm with known MAX kSAT algorithms. They also
proposed a generalization of this algorithm which finds
a random truth assignment P with value Fc¢(xF) at
least

0.914W; + 0.750W> + 0.750W5 + 0.766W,
+0.784W5 + 0.801W5s + Zk27 ’Y;ICWIW

where
k 1\*
Ve =1-0.914 (1 - —)
k

for K > 7. They showed that if this is combined with
Zwick’s MAX SAT algorithm with conjectured 0.7977
performance guarantee then it leads to an approxima-
tion algorithm with performance guarantee 0.8331.

In this paper, we show that another generalization of
the non-hybrid algorithms of Goemans and Williamson
finds a random truth assignment x? with value F¢(«”)
at least

0.750W; + 0.750Wa + 0.815Ws + 0.859W,
+0.894Ws5 + 0.920Ws + Y, o G Wi,

L

for k > 3 and (x > ~v,x. We also present another algo-

where

rithm which finds a random truth assignment @” with

value Fc(xP) at least

0.914W1 + 0.750W> + 0.757Ws + 0.774Wy
+0.790Ws5 + 0.804Ws + 3, . v W

This will be used to obtain a 0.8353-approximation

algorithm.



The remainder of the paper is structured as follows.
In Section 3 we review the algorithms of Goemans and
Williamson [3] and Asano and Williamson [1]. In Sec-
tion 4 we give our main results and their proofs. In
Section 5 we briefly outline improved approximation al-

gorithms for MAX SAT obtained by our main results.

3 Goemans O Willamson OO OO OOO

Goemans and Williamson considered the following LP

relaxation (GW) of MAX SAT [3]:
max w(Cj)z;
3

st.00ooon
k

J
ZyjiszVCjzle\/---\/mjkj eC

i=1

Yi + Ynti =1 Vie{l,2,...,n}
0<y: <1  Vie{l,2 .., 2n}
0<z2 <1 vC; eC.

In this formulation, variables y = (y;) correspond to the
literals {x1, ..., 22, } and variables z = (z;) correspond
to the clauses C. Thus, variable y; = 1 if and only if
z; = 1. Similarly, z; = 1 if and only if C; is satisfied.
The first set of constraints implies that one of the lit-
erals in a clause must be true if the clause is satisfied
and thus IP formulation of this (GW) with y; € {0,1}
(Vi € {1,2,...,2n}) and z; € {0,1} (VC; € C) exactly
corresponds to MAX SAT.

Throughout this paper, let (y*,z*) be an optimal
solution to this LP relaxation (GW) of MAX SAT.
Goemans and Williamson set each variable x; to be true
with probability y;. Then a clause C; = z; V zj, V
eV Tj, is satisfied by this random truth assignment

xP = y* with probability

Ci(y") > (1 - (1 - %)k) E

Thus, the expected value F(y*) of y* obtained in this

way satisfies

cjec
1\* .
>Z(1_(1_E) )Wk
k>1
(-t
e

where W™ = chec w(Cj)z; and
Wy = check w(Cj)z;. Since (GW) is an LP relax-
ation of MAX SAT, we have W* = chec w(Cj)z; >
W= ch cc W(C;j)z; for an optimal solution (g, £) to
the IP formulation of MAX SAT. Thus, this is a 0.632-
approximation algorithm for MAX SAT, since (1— %) ~
0.632.

Goemans and Williamson [3] also considered three
other non-linear randomized rounding algorithms. In
these three algorithms, each variable z; is set to be true

with probability f,(y;) defined as follows (£ = 1,2, 3).

Sy+1 ifo<y<i
Aly) =1 3 if $<y<3

3 . 2

3y if 2<y<1,

po)=@a-vy+1-a (§cas o).
1—47" < fy(y) <4¥7"
Note that fe(y;) + fe(yn4:) = 1 hold for £ = 1,2 and
that f3(y;) has to be chosen to satisfy fs(y;)+ f3(yn1:)
= 1. They then proved that all the random truth assign-
ments ” = fo(y*) = (fe(yi),. .., fe(ys,)) obtained in
this way have the expected values at least %W* and lead
to %—approximation algorithms. Asano and Williamson
[1] sharpened the analysis of Goemans and Williamson
to provide more precise bounds on the probability of
a clause C; = zj, Vxj, V---V zj, with k literals be-
ing satisfied (and thus on the expected weight of sat-
isfied clauses in Ci) by the random truth assignment
z? = fo(y*) for each k (and ¢ = 1,2). From now on,
we assume by symmetry, x;, = x; for each i =1,2,...,k
since fe(z) =1 — fo(Z) and we can set = := T if neces-
sary. They considered clause C; = x1 V2 V- - Vxy cor-
responding to the constraint y1 +y2+- - -+yx > z; in the
LP relaxation (GW) of MAX SAT, and gave a bound
on the ratio of C;(fe(y™)) to zj, where C;(fe(y™)) is
the probability of clause C; being satisfied by the ran-
dom truth assignment & = fo(y*) (£ =1,2). Actually,
they analyzed parametrized functions f{ and f$ with

% < a <1 defined as follows:

ay+1l—a ifOSyglf%
Tw)=9q 3 if 145 <y<gq;
ay if 5-<y<1,



f2y)=QR2a-1)y+1-a.

Note that f; = f2/* and fo = f§. Let

k—1
1 1— 1
a1 _ gk (1o _2a
Vk,1 2‘1 E—1 s

if k=1

=137
k {713,1:’YZ,2} it k>2,

2 - L\*
¢=1-ad"(1- a
e (1- )

Then their results are summarized as follows.

and

Proposition 3.1 [1] Let 1 <a < 1and let C;(f{(y*))
be the probability of clause C; = x1 Va2 V- --- Vo, € C
satisfied by the random truth assignment o = f/'(y™*)
(¢ =1,2). Then C;(ff(y™) =1 — [T, (1 — f2(y))
and the following statements hold.
1. Ci(fi'(y")) > ~rzj and the expected value
F(f{'(y")) satisfies F'(f'(y")) > Zk21 YEW .
2. Ci(fs(y")) > 0pz; and the expected value
F(f3(y")) satisfies F(f5(y") = ¥, 02W5.
3. 75 > 64 hold for all £ > 3 and for all a with % <
a <1 Af =6 (9 = 6% = a, 4§ = 6% = 2) hold
for k =1,2.

4 0O0OO

Asano and Williamson did not consider a parametriz-
ed function of fs. In this section we consider a paramet-
rized function f§ of f3 and show that it has better per-
formance than f{' and f5. Furthermore, its analysis
(proof) is simpler. We also consider a generalization of

both f* and f5.

For % <a<1,let f§ be defined as follows:

1 — oy if 0<y<41
f3(y) = ,
Y
(a) if 1<y<l.
For%gagl,let
11
Ya=0 "3

Then the other parametrized function ff is defined as

follows:

if 0<y<1l-uy,

fi(y) = if1—ya<y<ya

ay if yo <y<1

Thus, f5(y) + f31 —y) =1 fi(y) + fil—y) =1
hold for 0 < y < 1. Furthermore, f$ and f{ are both
continuous functions which are increasing with y. Thus,
fg(%) = ff(%) = % Let (i and ni be the numbers

defined as follows.

P if k=1
ET) 1— 102 it k>2,

k—2
a
7713,2 =1 4 )
k k—1
a a l—ya>
=1-2 (1-
77k:,3 2 ( — )
1

na _ a if k=1
. min {771[;,17771%,27771%,37771%,4} if k>2
(Me,1 = Yk,2 and nf. 5 = ¢i). Then we have the following

theorems for the two parameterized functions f5 and

i

Theorem 4.1 For 1 < a < ¥ = 0.82436, the proba-
bility of C; = 21 Va2 V- Vi € C being satisfied by the
random truth assignment z? = f§(y*) = (f$(y1),...,
f3(ysn)) is

k

s =1-[Ja-rw) =ds.

i=1
Thus, the expected value F(f5(y*)) of F = f5(y™) sat-

Theorem 4.2 For %2 =0.82436<a <1, the probability

of Cj = x1VaxaV---Vay, € C being satisfied by the random

truth assignment 2 = f£(y*) = (f£(y1),..., fi(ysn)) is

k

Ci(fiw) = 1= - fiwh) = ni=.

i=1
Thus, the expected value F(f{(y*)) of F = f{(y™) sat-
isfies F(£5(y")) 2 oy WS



Theorem 4.3 The following statements hold for ~{, dy,

Ci, and 7.
1 If L <a < ¥ =0.82436, then ¢ > 7 > 8¢ hold
for all k > 3.

2. If X8 =0.82436 < a < 1, then 7{ > v > &7 hold
for all k > 3. In particular, if X = 0.82436 < a <
0.881611, then ng; > ~i > d; hold for all £ > 3.

3. Fork=1,2, ¢ = 8§ = ¢ hold if 1 <a < ¥ =
0.82436, and 7§ = 67 = 7 hold if X = 0.82436 <
a<1.

5 JO0UOOooooo

In this section, we briefly outline our improved app-
proximation algorithms for MAX SAT based on a hy-
brid approach which is described in detail in Asano
and Williamson [1]. We use a semidefinite program-
ming relaxation of MAX SAT which is a combination
of ones given by Goemans and Williamson [4], Feige and
Goemans [2], Karloff and Zwick [8], Halperin and Zwick
[6], and Zwick [9]. Our algorithms pick the best so-
lution returned by the four algorithms corresponding
to (1) f§ in Goemans and Williamson [3], (2) MAX
2SAT algorithm of Feige and Goemans [2] or of Halperin
and Zwick [6], (3) MAX 3SAT algorithm of Karloff and
Zwick [8] or of Halperin and Zwick [6], and (4) Zwick’s
MAX SAT algorithm with a conjectured performance
guarantee 0.7977 [9]. The expected value of the so-
lution is at least as good as the expected value of an
algorithm that uses Algorithm (i) with probability p;,
where p1 + p2 + p3s +psa = 1.

Our first algorithm pick the best solution returned
by the three algorithms corresponding to (1) f§ in
Goemans and Williamson [3], (2) Feige and Goemans’s
MAX 2SAT algorithm [2], and (3) Karloff and Zwick’s
MAX 3SAT algorithm [8] (this implies that ps = 0).
From the arguments in Section 3, the probability that
a clause C; € Cy, is satisfied by Algorithm (1) is at least
Chzi, where (i is defined in Eq.(1). Similarly, from
the arguments in [4, 2], the probability that a clause
C; € Cy, is satisfied by Algorithm (2) is

at least  0.93109 - %z;
and at least 0.97653z]

for k> 2,

for k=1.

By an analysis obtained by Karloff and Zwick [8] and
an argument similar to one in [4], the probability that a

clause C; € Cy, is satisfied by Algorithm (3) is at least

at least %gz; for k> 3,

and at least 0.87856z; for k=1,2.

Suppose that we set a = 0.74054, p1 = 0.7861, p2 =
0.1637, and p3 = 0.0502 (ps = 0). Then

ap1 + 0.97653p2 + 0.87856ps > 0.7860
for k=1,
%pl + 0.93109p2 + 0.87856p3 > 0.7860

for k=2,
2 x 0.93109 37
- - — > 0.
A p2+k8p3_07860

for k > 3.

Cep1 +

Thus this is a 0.7860-approximation algorithm. Note
that, under same conditions in Asano and Williamson
[1], the algorithm picking the best solution returned by
the three algorithms corresponding to (1) f{ witha = 2
in Goemans and Williamson [3], (2) Feige and Goemans
[2], and (3) Karloff and Zwick [8] only achieves the per-
formance guarantee 0.7846.

Suppose next that we use three algorithms (1) f$ in
Goemans and Williamson [3], (2) Halperin and Zwick’s
MAX 2SAT algorithm [6], and (3) Halperin and Zwick’s
MAX 3SAT algorithm [6] instead of Feige and Goemans
[2] and Karloff and Zwick [8]. If we set a = 0.739634,
p1 = 0.787777, po = 0.157346, and p3 = 0.054877, then

we have
ap1 + 0.9828p2 + 0.9197p3 > 0.7877
for k=1,
Zpl + 0.9309p2 + 0.9197ps > 0.7877
for k=2,
. 2 x 0.9309 37
Cep1 + ————po + ——p3 > 0.7877
k k8
for k> 3.

Thus we have a 0.7877-approximation algorithm for
MAX SAT (note that the performance guarantees of
Halperin and Zwick’s MAX 2SAT and MAX 3SAT al-
gorithms are based on the numerical evidence [6]).
Suppose finally that we use two algorithms (1) ff
in Goemans and Williamson [3] and (4) Zwick’s MAX

— 81 —



SAT algorithm with a conjectured performance guaran-
tee 0.7977 [9]. If we set a = 0.907180, p1 = 0.343137
and ps = 0.656863 (p2 = p3 = 0), then the probability
of clause C; with k literals being satisfied can be shown
to be at least 0.8353z; for each k > 1. Thus, we can
obtain a 0.8353-approximation algorithm for MAX SAT
if a conjectured performance guarantee 0.7977 is true in

Zwick’s MAX SAT algorithm [9)].
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