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1 はじめに

情報ネットワークや VLSIの物理設計等で生じる自然な

問題はNP-困難であることが多く，厳密解を求めるのは長

い計算時間を要する。そこで近似解を求めて利用すること

になるが，その際重要になるのが解の品質である。厳密解

に匹敵する高品質な解を求める研究が近似アルゴリズムの

研究であるが，最近数理計画法に基づく系統的設計法の有

用性が注目を浴びてきている。一般にNP-困難な問題の多

くは整数計画問題をして定式化できる。その整数条件を外

して線形計画問題や半正定値計画問題に緩和して解き，そ

の最適解の値を元の整数計画問題の最適解の値の下界ある

いは上界として用いて，解の品質を保証するというものが，

数理計画法に基づく近似アルゴリズム設計法である。緩和

問題にすることにより，数理計画法の双対理論に基づいた

手法が，近似アルゴリズムでも適用可能になり，従来の近

似性能が最近大幅に改善されてきている。

本研究では，上記の研究背景に基づいて，高性能近似ア

ルゴリズムの系統的設計法の有用性を明らかにすることを

目的としている。この目的を達成するための研究を実行し

てきたが，今回は，情報科学の最も基本的な問題である最

大充足化問題 (MAX SAT)に対して高性能アルゴリズム

を与える。

2 MAX SAT の研究の概要

MAX SAT, one of the most well-studied NP-hard

problems, is stated as follows: given a set of clauses

with weights, find a truth assignment that maximizes

the sum of the weights of the satisfied clauses. More

precisely, an instance of MAX SAT is defined by (C, w),
where C is a set of boolean clauses, each clause C ∈ C be-
ing a disjunction of literals and having a positive weight

w(C). Let X = {x1, . . . , xn} be the set of boolean

variables in the clauses of C. A literal is a variable

x ∈ X or its negation x̄. For simplicity we assume

xn+i = x̄i (xi = x̄n+i). Thus, X̄ = {x̄ | x ∈ X} =

{xn+1, xn+2, . . . , x2n} and X ∪ X̄ = {x1, . . . , x2n}. We

assume that no literals with the same variable appear

more than once in a clause in C. For each xi ∈ X, let

xi = 1 (xi = 0, resp.) if xi is true (false, resp.). Then,

xn+i = x̄i = 1− xi and a clause Cj = xj1 ∨ xj2 ∨ · · · ∨
xjkj

∈ C can be considered to be a function

Cj = Cj(x) = 1−
kj∏
i=1

(1− xji)

on x = (x1, . . . , x2n) ∈ {0, 1}2n. Thus, Cj = Cj(x) =

0 or 1 for any truth assignment x ∈ {0, 1}2n with xi +

xn+i = 1 (i = 1, 2, ..., n) and Cj is satisfied if Cj(x) = 1.

The value of a truth assignment x is defined to be

FC(x) =
∑
Cj∈C

w(Cj)Cj(x).

That is, the value of x is the sum of the weights of

the clauses in C satisfied by x. Thus, the goal of MAX

SAT is to find an optimal truth assignment (i.e., a truth

assignment of maximum value). We will also use MAX

kSAT, a restricted version of the problem in which each

clause has at most k literals.

MAX SAT is known to be NP-hard and many approx-

imation algorithms for it have been proposed. H̊astad

[5] has shown that no approximation algorithm for

MAX SAT can achieve performance guarantee better

than 7/8 unless P = NP . On the other hand, Asano

and Williamson [1] have presented a 0.7846-approxi-

mation algorithm and an approximation algorithm

whose performance guarantee is 0.8331 if a conjectured

performance guarantee of 0.7977 is true in the Zwick’s

algorithm [9]. Both algorithms are based on their sharp-

ened analysis of Goemans and Williamson’s LP-relax-

ation for MAX SAT [3].

In this paper, we present an improved analysis which

is simpler than the previous analysis by Asano and

Williamson [1]. Furthermore, we show that this analysis

will lead to approximation algorithms with better per-

formance guarantees if combined with other approxima-

tion algorithms which were (or will be) presented. Ac-

tually, algorithms based on this analysis lead to approx-

imation algorithms with performance guarantee 0.7877
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and conjectured performance guarantee 0.8353 which

are slightly better than the best known corresponding

performance guarantees 0.7846 and 0.8331 respectively,

if combined with the MAX 2SAT and MAX 3SAT algo-

rithms by Halperin and Zwick [6] and the Zwick’s algo-

rithm [9], respectively. Thus, algorithms based on this

analysis will be used as a building block in designing an

improved approximation algorithm for MAX SAT.

To explain our result in more detail, we briefly re-

view the 0.75-approximation algorithm of Goemans and

Williamson based on the probabilistic method [3]. Let

xp = (xp1, . . . , x
p
2n) be a random truth assignment with

0 ≤ xpi = pi ≤ 1 (xpn+i = 1− xpi = 1− pi = pn+i). That

is, xp is obtained by setting independently each variable

xi ∈ X to be true with probability pi (and xn+i = x̄i to

be true with probability pn+i = 1−pi). Then the prob-

ability of a clause Cj = xj1 ∨xj2 ∨· · ·∨xjkj
∈ C satisfied

by the random truth assignment xp = (xp1, . . . , x
p
2n) is

Cj(x
p) = 1−

kj∏
i=1

(1− xpji).

Thus, the expected value of the random truth assign-

ment xp is

FC(x
p) =

∑
Cj∈C

w(Cj)Cj(x
p).

The probabilistic method assures that there is a truth

assignment xq ∈ {0, 1}2n of value at least FC(x
p). Such

a truth assignment xq can be obtained by the method

of conditional probabilities [3].

Using an IP (integer programming) formulation of

MAX SAT and its LP (linear programming) relaxation,

Goemans and Williamson [3] obtained an algorithm for

finding a random truth assignment xp of value FC(x
p)

at least

∑
k≥1

(1− (1− 1

k
)k)Ŵk ≥ (1− 1

e
)Ŵ ≈ 0.632Ŵ ,

where e is the base of natural logarithm, Ŵk =
∑

C∈Ck

w(C)C(x̂), and FC(x̂) =
∑

k≥1
Ŵk for an optimal truth

assignment x̂ of (C, w) (Ck denotes the set of clauses in
C with k literals). Goemans and Williamson also ob-

tained a 0.75-approximation algorithm by using a hy-

brid approach of combining the above algorithm with

Johnson’s algorithm [7]. It finds a random truth as-

signment of value at least

0.750Ŵ1 + 0.750Ŵ2 + 0.789Ŵ3 + 0.810Ŵ4

+0.820Ŵ5 + 0.824Ŵ6 +
∑

k≥7
βkŴk,

where

βk =
1

2

(
2− 1

2k
−
(
1− 1

k

)k)
.

Asano and Williamson [1] showed that one of the non-

hybrid algorithms of Goemans and Williamson finds a

random truth assignment xp with value FC(x
p) at least

0.750Ŵ1 + 0.750Ŵ2 + 0.804Ŵ3 + 0.851Ŵ4

+0.888Ŵ5 + 0.915Ŵ6 +
∑

k≥7
γkŴk,

where

γk = 1− 1

2

(
3

4

)k−1
(
1− 1

3(k − 1)

)k−1

for k ≥ 3 (γk > βk for k ≥ 3). Actually, they obtained

a 0.7846-approximation algorithm by combining this al-

gorithm with known MAX kSAT algorithms. They also

proposed a generalization of this algorithm which finds

a random truth assignment xp with value FC(x
p) at

least

0.914Ŵ1 + 0.750Ŵ2 + 0.750Ŵ3 + 0.766Ŵ4

+0.784Ŵ5 + 0.801Ŵ6 +
∑

k≥7
γ′
kŴk,

where

γ′
k = 1− 0.914k

(
1− 1

k

)k
for k ≥ 7. They showed that if this is combined with

Zwick’s MAX SAT algorithm with conjectured 0.7977

performance guarantee then it leads to an approxima-

tion algorithm with performance guarantee 0.8331.

In this paper, we show that another generalization of

the non-hybrid algorithms of Goemans and Williamson

finds a random truth assignment xp with value FC(x
p)

at least

0.750Ŵ1 + 0.750Ŵ2 + 0.815Ŵ3 + 0.859Ŵ4

+0.894Ŵ5 + 0.920Ŵ6 +
∑

k≥7
ζkŴk,

where

ζk = 1− 1

4

(
3

4

)k−2

for k ≥ 3 and ζk > γk. We also present another algo-

rithm which finds a random truth assignment xp with

value FC(x
p) at least

0.914Ŵ1 + 0.750Ŵ2 + 0.757Ŵ3 + 0.774Ŵ4

+0.790Ŵ5 + 0.804Ŵ6 +
∑

k≥7
γ′
kŴk.

This will be used to obtain a 0.8353-approximation

algorithm.
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The remainder of the paper is structured as follows.

In Section 3 we review the algorithms of Goemans and

Williamson [3] and Asano and Williamson [1]. In Sec-

tion 4 we give our main results and their proofs. In

Section 5 we briefly outline improved approximation al-

gorithms for MAX SAT obtained by our main results.

3 Goemans と Williamson のアルゴリズム

Goemans andWilliamson considered the following LP

relaxation (GW ) of MAX SAT [3]:

max
∑
Cj∈ C

w(Cj)zj

s.t.　　　　　　
kj∑
i=1

yji ≥ zj ∀Cj = xj1 ∨ · · · ∨ xjkj
∈ C

yi + yn+i = 1 ∀i ∈ {1, 2, ..., n}

0≤ yi ≤ 1 ∀i ∈ {1, 2, ..., 2n}

0≤ zj ≤ 1 ∀Cj ∈ C.

In this formulation, variables y = (yi) correspond to the

literals {x1, . . . , x2n} and variables z = (zj) correspond

to the clauses C. Thus, variable yi = 1 if and only if

xi = 1. Similarly, zj = 1 if and only if Cj is satisfied.

The first set of constraints implies that one of the lit-

erals in a clause must be true if the clause is satisfied

and thus IP formulation of this (GW ) with yi ∈ {0, 1}
(∀i ∈ {1, 2, ..., 2n}) and zj ∈ {0, 1} (∀Cj ∈ C) exactly
corresponds to MAX SAT.

Throughout this paper, let (y∗,z∗) be an optimal

solution to this LP relaxation (GW ) of MAX SAT.

Goemans and Williamson set each variable xi to be true

with probability y∗i . Then a clause Cj = xj1 ∨ xj2 ∨
· · · ∨ xjkj

is satisfied by this random truth assignment

xp = y∗ with probability

Cj(y
∗) ≥

(
1−
(
1− 1

k

)k)
z∗j .

Thus, the expected value F (y∗) of y∗ obtained in this

way satisfies

F (y∗) =
∑
Cj∈C

w(Cj)Cj(y
∗)

≥
∑
k≥1

(
1−
(
1− 1

k

)k)
W ∗
k

≥
(
1− 1

e

)
W ∗,

where W ∗ =
∑

Cj∈C w(Cj)z
∗
j and

W ∗
k =

∑
Cj∈Ck

w(Cj)z
∗
j . Since (GW ) is an LP relax-

ation of MAX SAT, we have W ∗ =
∑

Cj∈C w(Cj)z
∗
j ≥

Ŵ =
∑

Cj∈C w(Cj)ẑj for an optimal solution (ŷ, ẑ) to

the IP formulation of MAX SAT. Thus, this is a 0.632-

approximation algorithm for MAX SAT, since (1− 1
e
) ≈

0.632.

Goemans and Williamson [3] also considered three

other non-linear randomized rounding algorithms. In

these three algorithms, each variable xi is set to be true

with probability f0(y
∗
i ) defined as follows (F = 1, 2, 3).

f1(y) =




3
4
y + 1

4
if 0 ≤ y ≤ 1

3

1
2

if 1
3
≤ y ≤ 2

3

3
4
y if 2

3
≤ y ≤ 1,

f2(y) = (2a− 1)y + 1− a

(
3

4
≤ a ≤ 3

3
√
4
− 1

)
,

1− 4−y ≤ f3(y) ≤ 4y−1.

Note that f0(y
∗
i ) + f0(y

∗
n+i) = 1 hold for F = 1, 2 and

that f3(y
∗
i ) has to be chosen to satisfy f3(y

∗
i )+f3(y

∗
n+i)

= 1. They then proved that all the random truth assign-

ments xp = f0(y
∗) = (f0(y

∗
1), . . . , f0(y

∗
2n)) obtained in

this way have the expected values at least 3
4
W ∗ and lead

to 3
4
-approximation algorithms. Asano and Williamson

[1] sharpened the analysis of Goemans and Williamson

to provide more precise bounds on the probability of

a clause Cj = xj1 ∨ xj2 ∨ · · · ∨ xjk with k literals be-

ing satisfied (and thus on the expected weight of sat-

isfied clauses in Ck) by the random truth assignment

xp = f0(y
∗) for each k (and F = 1, 2). From now on,

we assume by symmetry, xji = xi for each i = 1, 2, ..., k

since f0(x) = 1− f0(x̄) and we can set x := x̄ if neces-

sary. They considered clause Cj = x1∨x2∨· · ·∨xk cor-
responding to the constraint y1+y2+· · ·+yk ≥ zj in the

LP relaxation (GW ) of MAX SAT, and gave a bound

on the ratio of Cj(f0(y
∗)) to z∗j , where Cj(f0(y

∗)) is

the probability of clause Cj being satisfied by the ran-

dom truth assignment xp = f0(y
∗) (F = 1, 2). Actually,

they analyzed parametrized functions fa1 and fa2 with

1
2
≤ a ≤ 1 defined as follows:

fa1 (y) =




ay + 1− a if 0≤ y ≤ 1− 1
2a

1
2

if 1− 1
2a

≤ y ≤ 1
2a

ay if 1
2a

≤ y ≤ 1,
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fa2 (y) = (2a− 1)y + 1− a.

Note that f1 = f
3/4
1 and f2 = fa2 . Let

γak,1 = 1− 1

2
ak−1

(
1−

1− 1
2a

k − 1

)k−1

,

γak,2 = 1− ak
(
1− 1

k

)k
,

γak =

{
a if k = 1
{γak,1, γak,2} if k ≥ 2,

and

δak = 1− ak
(
1−

2− 1
a

k

)k
.

Then their results are summarized as follows.

Proposition 3.1 [1] Let 1
2
≤ a ≤ 1 and let Cj(f

a
0 (y

∗))

be the probability of clause Cj = x1 ∨ x2 ∨ · · · ∨ xk ∈ C
satisfied by the random truth assignment xp = fa0 (y

∗)

(F = 1, 2). Then Cj(f
a
0 (y

∗)) = 1 −
∏k

i=1
(1 − fa0 (y

∗
i ))

and the following statements hold.

1. Cj(f
a
1 (y

∗)) ≥ γakz
∗
j and the expected value

F (fa1 (y
∗)) satisfies F (fa1 (y

∗)) ≥
∑

k≥1
γakW

∗
k .

2. Cj(f
a
2 (y

∗)) ≥ δakz
∗
j and the expected value

F (fa2 (y
∗)) satisfies F (fa2 (y

∗)) ≥
∑

k≥1
δakW

∗
k .

3. γak > δak hold for all k ≥ 3 and for all a with 1
2
<

a < 1. γak = δak (γa1 = δa1 = a, γa2 = δa2 = 3
4
) hold

for k = 1, 2.

4 主成果

Asano and Williamson did not consider a parametriz-

ed function of f3. In this section we consider a paramet-

rized function fa3 of f3 and show that it has better per-

formance than fa1 and fa2 . Furthermore, its analysis

(proof) is simpler. We also consider a generalization of

both fa1 and fa2 .

For 1
2
≤ a ≤ 1, let fa3 be defined as follows:

fa3 (y) =




1− a
(4a2)y if 0≤ y ≤ 1

2

(4a2)y

4a
if 1

2
≤ y ≤ 1.

For 3
4
≤ a ≤ 1, let

ya =
1

a
− 1

2
.

Then the other parametrized function fa4 is defined as

follows:

fa4 (y) =




ay + 1− a if 0≤ y ≤ 1− ya

a
2
y + 1

2
− a

4
if 1− ya ≤ y ≤ ya

ay if ya ≤ y ≤ 1.

Thus, fa3 (y) + fa3 (1 − y) = 1, fa4 (y) + fa4 (1 − y) = 1

hold for 0 ≤ y ≤ 1. Furthermore, fa3 and fa4 are both

continuous functions which are increasing with y. Thus,

fa3 (
1
2
) = fa4 (

1
2
) = 1

2
. Let ζak and ηak be the numbers

defined as follows.

ζak =

{
a if k = 1

1− 1
4
ak−2 if k ≥ 2,

ηak,1 = 1− ak
(
1− 1

k

)k
,

ηak,2 = 1− ak−2

4
,

ηak,3 = 1− ak

2

(
1− 1− ya

k − 1

)k−1

,

ηak,4 = 1− 1

2k

(
1 +

a

2
− a

k

)k
,

ηak =

{
a if k = 1
min {ηak,1, ηak,2, ηak,3, ηak,4} if k ≥ 2

(ηak,1 = γak,2 and ηak,2 = ζak ). Then we have the following

theorems for the two parameterized functions fa3 and

fa4 .

Theorem 4.1 For 1
2
≤ a ≤

√
e

2
= 0.82436, the proba-

bility of Cj = x1 ∨x2 ∨ · · · ∨xk ∈ C being satisfied by the

random truth assignment xp = fa3 (y
∗) = (fa3 (y

∗
1), . . . ,

fa3 (y
∗
2n)) is

Cj(f
a
3 (y

∗)) = 1−
k∏
i=1

(1− fa3 (y
∗
i )) ≥ ζakz

∗
j .

Thus, the expected value F (fa3 (y
∗)) of xp = fa3 (y

∗) sat-

isfies F (fa3 (y
∗)) ≥

∑
k≥1

ζakW
∗
k .

Theorem 4.2 For
√
e

2
=0.82436≤a≤1, the probability

of Cj = x1∨x2∨· · ·∨xk ∈ C being satisfied by the random

truth assignment xp = fa4 (y
∗) = (fa4 (y

∗
1), . . . , f

a
4 (y

∗
2n)) is

Cj(f
a
4 (y

∗)) = 1−
k∏
i=1

(1− fa4 (y
∗
i )) ≥ ηakz

∗
j .

Thus, the expected value F (fa4 (y
∗)) of xp = fa4 (y

∗) sat-

isfies F (fa4 (y
∗)) ≥

∑
k≥1

ηakW
∗
k .
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Theorem 4.3 The following statements hold for γak , δ
a
k ,

ζak , and ηak .

1. If 1
2
≤ a ≤

√
e

2
= 0.82436, then ζak > γak > δak hold

for all k ≥ 3.

2. If
√
e

2
= 0.82436 ≤ a < 1, then ηak ≥ γak > δak hold

for all k ≥ 3. In particular, if
√
e

2
= 0.82436 ≤ a ≤

0.881611, then ηak > γak > δak hold for all k ≥ 3.

3. For k = 1, 2, γak = δak = ζak hold if 1
2
≤ a ≤

√
e

2
=

0.82436, and γak = δak = ηak hold if
√
e

2
= 0.82436 ≤

a ≤ 1.

5 改善アルゴリズム

In this section, we briefly outline our improved app-

proximation algorithms for MAX SAT based on a hy-

brid approach which is described in detail in Asano

and Williamson [1]. We use a semidefinite program-

ming relaxation of MAX SAT which is a combination

of ones given by Goemans and Williamson [4], Feige and

Goemans [2], Karloff and Zwick [8], Halperin and Zwick

[6], and Zwick [9]. Our algorithms pick the best so-

lution returned by the four algorithms corresponding

to (1) fa3 in Goemans and Williamson [3], (2) MAX

2SAT algorithm of Feige and Goemans [2] or of Halperin

and Zwick [6], (3) MAX 3SAT algorithm of Karloff and

Zwick [8] or of Halperin and Zwick [6], and (4) Zwick’s

MAX SAT algorithm with a conjectured performance

guarantee 0.7977 [9]. The expected value of the so-

lution is at least as good as the expected value of an

algorithm that uses Algorithm (i) with probability pi,

where p1 + p2 + p3 + p4 = 1.

Our first algorithm pick the best solution returned

by the three algorithms corresponding to (1) fa3 in

Goemans and Williamson [3], (2) Feige and Goemans’s

MAX 2SAT algorithm [2], and (3) Karloff and Zwick’s

MAX 3SAT algorithm [8] (this implies that p4 = 0).

From the arguments in Section 3, the probability that

a clause Cj ∈ Ck is satisfied by Algorithm (1) is at least

ζakz
∗
j , where ζak is defined in Eq.(1). Similarly, from

the arguments in [4, 2], the probability that a clause

Cj ∈ Ck is satisfied by Algorithm (2) is

at least 0.93109 · 2
k
z∗j for k ≥ 2,

and at least 0.97653z∗j for k = 1.

By an analysis obtained by Karloff and Zwick [8] and

an argument similar to one in [4], the probability that a

clause Cj ∈ Ck is satisfied by Algorithm (3) is at least

at least
3

k

7

8
z∗j for k ≥ 3,

and at least 0.87856z∗j for k = 1, 2.

Suppose that we set a = 0.74054, p1 = 0.7861, p2 =

0.1637, and p3 = 0.0502 (p4 = 0). Then

ap1 + 0.97653p2 + 0.87856p3 ≥ 0.7860

for k = 1,

3

4
p1 + 0.93109p2 + 0.87856p3 ≥ 0.7860

for k = 2,

ζakp1 +
2× 0.93109

k
p2 +

3

k

7

8
p3 ≥ 0.7860

for k ≥ 3.

Thus this is a 0.7860-approximation algorithm. Note

that, under same conditions in Asano and Williamson

[1], the algorithm picking the best solution returned by

the three algorithms corresponding to (1) fa1 with a = 3
4

in Goemans and Williamson [3], (2) Feige and Goemans

[2], and (3) Karloff and Zwick [8] only achieves the per-

formance guarantee 0.7846.

Suppose next that we use three algorithms (1) fa3 in

Goemans and Williamson [3], (2) Halperin and Zwick’s

MAX 2SAT algorithm [6], and (3) Halperin and Zwick’s

MAX 3SAT algorithm [6] instead of Feige and Goemans

[2] and Karloff and Zwick [8]. If we set a = 0.739634,

p1 = 0.787777, p2 = 0.157346, and p3 = 0.054877, then

we have

ap1 + 0.9828p2 + 0.9197p3 ≥ 0.7877

for k = 1,

3

4
p1 + 0.9309p2 + 0.9197p3 ≥ 0.7877

for k = 2,

ζakp1 +
2× 0.9309

k
p2 +

3

k

7

8
p3 ≥ 0.7877

for k ≥ 3.

Thus we have a 0.7877-approximation algorithm for

MAX SAT (note that the performance guarantees of

Halperin and Zwick’s MAX 2SAT and MAX 3SAT al-

gorithms are based on the numerical evidence [6]).

Suppose finally that we use two algorithms (1) fa4

in Goemans and Williamson [3] and (4) Zwick’s MAX
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SAT algorithm with a conjectured performance guaran-

tee 0.7977 [9]. If we set a = 0.907180, p1 = 0.343137

and p4 = 0.656863 (p2 = p3 = 0), then the probability

of clause Cj with k literals being satisfied can be shown

to be at least 0.8353z∗j for each k ≥ 1. Thus, we can

obtain a 0.8353-approximation algorithm for MAX SAT

if a conjectured performance guarantee 0.7977 is true in

Zwick’s MAX SAT algorithm [9].
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