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Introduction. The analysis of the scattering and diffrac-

tion by open-ended metallic waveguide cavities has been

of great interest recently in connection with the pre-

diction and reduction of the radar cross section (RCS)

of a target. This problem serves as a simple model

of duct structures such as jet engine intakes of air-

crafts and cracks occurring on surfaces of general com-

plicated bodies. Therefore the investigation of a scat-

tering mechanism in case of the existence of open cav-

ities is an important subject in the field of the RCS

prediction and reduction. Some of the cavity diffrac-

tion problems have been analyzed thus far using a va-

riety of different analytical and numerical methods. If

the cavity dimensions are small in comparison to the

incident wavelength, numerical techniques such as the

method of moments (Senior, 1976) and the finite ele-

ment method (Jeng, 1990) can be applied efficiently.

For large cavities with uniform cross sections, the re-

sults based on the waveguide modal approach by the

use of the reciprocity relationship and the Kirchhoff

approximation have been reported (Altintas, Pathak,

and Liang, 1988; Ling, Lee, and Chou, 1989). In order

to describe systematically the scattering mechanism as

related to a fairly general class of large cavities with

reasonable accuracy, the three ray-based approaches,

namely, the method of shooting and bouncing rays, the

Gaussian beam method, and the generalized ray expan-

sion method have been developed (Ling, Lee , and Chou,

1989; Pathak and Burkholder, 1991). Furthermore, hy-

brid techniques such as the asymptotic/modal approach

and the boundary integral/modal approach (Ling, 1990)

have also been established. These hybrid approaches

take advantage of the efficiency of the modal analysis

as well as the flexibility of asymptotic or numerical tech-

niques. Most of these analysis methods incorporate the

scattering from the interior of the cavity including the

rim diffraction at the open end, but they do not rigor-

ously take into account the scattering effect arising from

the entire exterior surface of the cavity. Therefore, final

solutions due to these approaches are valid only for the

restricted range of incidence and observation angles. In

addition, these solutions may not be uniformly valid for
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arbitrary dimensions of the cavity.

The Wiener-Hopf technique is known as a powerful

tool for analyzing electromagnetic wave problems asso-

ciated with canonical geometries, which is mathemat-

ically rigorous in the sense that the edge condition is

explicitly incorporated into the analysis. Kobayashi

(1993) considered a finite parallel-plate waveguide with

a planar termination at the open end as an example

of simple two-dimensional (2-D) cavity structures, and

solved the plane wave diffraction problem rigorously us-

ing the Wiener-Hopf technique. As a result, an effi-

cient approximate solution has been obtained, which

is valid for the cavity depth greater than the incident

wavelength. Kobayashi and Koshikawa (1993, 1994,

1996) have further considered 2-D material-loaded cavi-

ties formed by finite and semi-infinite parallel-plate

waveguides, and carried out a rigorous RCS analysis

by means of the Wiener-Hopf technique. It has been

shown by numerical computation that the results are

valid over a broad frequency range and can be used as

a reference solution for validating more general-purpose

computer codes based on approximate methods.

In this paper, we shall consider two value boundary

diffraction problems. In the first part we shall con-

sider the vector diffraction by a cavity formed by a

semi-infinite circular waveguide and an interior planar

termination with non zero impedance as a generalisa-

tion of our previous problems, and analyse the non-

symmetric electromagnetic wave diffraction by means

of the Wiener-Hopf technique. The method of solu-

tion is similar to that we have developed for the scalar

diffraction analysis of parallel-plate and circular waveg-

uide cavities, but is more complicated because the TM

and TE wave interaction at the circular edge and an

impedance termination are also involved. In the sec-

ond part we consider the axial symmetric wave diffrac-

tion by the semi-infinite truncated cone and develop the

Wiener-Hopf technique for it solution. The exact solu-

tion of these problems is a great impotence for horn

antennas theory, near field study, radiated elements for

phased antennas grating designing and non-destructive

testing. The time factor is assumed to be e−iωt and

suppressed throughout this paper.

Fig.1 Geometry of the problem.

1 Development of the Wiener-Hopf Technique for

Wave Diffraction by a Circular Waveguide Cavity

We shall generalise the technique, previously devel-

oped for a rigorous analysis of the 2-D diffraction by

parallel-plate waveguide cavities, to the analysis of the

three-dimensional (3-D) vector diffraction by open-

ended cavity structures. Let us consider a semi-infinite

circular waveguide with an interior planar termination

as shown in Fig. 1., where (ρ, ϕ, z) are cylindrical coor-

dinates. The mixed boundary value problem for wave

diffraction by a cylindrical waveguide cavity mentioned

above involves the unknown TM and TE scalar poten-

tials. Let the total field ut1(2)(ρ, z) be given by

ut1(ρ, z) =

{
ui1(ρ, z) + u1(ρ, z),

u1(ρ, z),

ut2(ρ, z) =

{
u2(ρ, z), 0< ρ < b −L ≤ z < ∞,
u2(ρ, z), ρ > b −∞ < z < ∞,

(1.1)

where ui1(ρ, z) = cimjJm(ξjρ/b)e−γjz is the incident field

that consists with TM- dominant mode for perfectly

conducting infinite cylinder, with the complex ampli-

tude cimj ; ξj for j = 1, 2, 3, . . . denote the zeros of Bessel

function Jm(·), γj = [(ξj/b)
2−k2]1/2 (Re γj > 0). Then

the mathematical formulation of this diffraction prob-

lem is looks as follows:(
∆+ k2 0

0 ∆ + k2

)(
u1(ρ, z)
u2(ρ, z)

)
=

(
0
0

)
, (1.2)

The boundary condition at the cylindrical surface: z ∈
(−∞, L) with ρ = b+0 and z ∈ (−L,L) with ρ = b−0(

ϑ[∂2/∂z2 + k2] 0
ϑmρ−1∂/∂z ∂/∂ρ

)(
ut1
ut2

)
=

(
0
0

)
,

The boundary condition at the absorbing plate termi-

nation: ρ ∈ (0, b), z = −L(
[∂/∂ρ(Z1 − ϑ∂/∂z)] [mρ−1(1− ηZ1∂/∂z)]
[mρ−1(Z1 − ϑ∂/∂z)] [∂/∂ρ(1− ηZ1∂/∂z)]

)(
ut1
ut2

)
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=

(
0
0

)
, (1.3)

Here Z1 is the plate termination impedance, ϑ =

i(ωε)−1, η = i(ωµ)−1 and m is the number of the az-

imuth mode.

Taking the Fourier transform of (1.2) and (1.3) appro-

priately, we derive the transformed wave equations with

unknown inhomogeneous terms comprising the field po-

tentials and their normal derivatives on the surface of

the interior planar termination, with the result that(
T̂ 0

0 T̂

)(
U1(ρ, α)
U2(ρ, α)

)
=

(
0
0

)
in ρ > b

for |τ | < k2, (1.4)(
T̂ 0

0 T̂

)(
Φ1(ρ, α) + eiαLΨ+

1 (ρ, α)

Φ2(ρ, α) + eiαLΨ+
2 (ρ, α)

)
= e−iαL

×
(

g̃1(ρ)− iαf̃1(ρ)

g̃2(ρ)− iαf̃2(ρ)

)
in 0< ρ < b for τ > −k2, (1.5)

where α = Re α + iImα(≡ σ + iτ) with l = 1, 2,

T̂ = 
d2/dρ2+ρ−1d/dρ−(γ2+m2/ρ2)�, γ = (α2−k2)1/2

with Re γ > 0, and f̃l(ρ), g̃l(ρ) are the unknown inho-

mogeneous terms defined by

f̃l(ρ) = (2π)−1/2utl(ρ,−L),

g̃l(ρ) = (2π)−1/2∂utl(ρ, z)/∂z|z=−L. (1.6)

The terms on the left-hand sides of (1.4) and (1.5) are

the Fourier transforms of the unknown functions in (1.2)

and (1.3), being defined by

Ul(ρ, α)=(2π)−1/2

∫ +∞

−∞
ul(ρ, z)eiαzdz, for ρ > b;

Ul(ρ, α)=(2π)−1/2

∫ +∞

−L
ul(ρ, z)eiαzdz, for ρ < b (1.7a)

U+
l (ρ, α) =

1√
2π

∫ +∞

+L

ul(ρ, z)eiα(z−L)dz,

Φl(ρ, α) =
1√
2π

∫ +L

−L
utl(ρ, z)eiαzdz. (1.7b)

It is found that U+
l (ρ, α) are regular in the half-plane

τ > −k2 and Φl(ρ, α) with l = 1, 2 are entire functions.

Using the notation as given by (1.7), we may express

Ul(ρ, α) as

Ul(ρ, α) = Φl(ρ, α) + eiαLΨ+
l (ρ, α)− U il (ρ, α) (1.8)

for 0 < ρ < b, where

Ψ+
1 (ρ, α) = U+

1 (ρ, α) +Q+
1 (ρ, α),

Ψ+
2 (ρ, α) = U+

2 (ρ, α), (1.9)

Q+
1 (ρ, α) = −

cimje
−γjL

i
√
2π(α+ iγj)

Jm(ξjρ/b),

U i1(ρ, α) = −
cimje

−i(α+iγj )L

i
√
2π(α+ iγj)

Jm(ξjρ/b). (1.10)

The main idea is to derive the expressions of the func-

tions in (1.6) in terms of the Fourier-Bessel and Dini

series as well as the static terms with common unknown

coefficients due to the correct separation of the variables

for (1.2) and (1.3) and account the interaction of TM

and TE waves. This allows finding the field image in

Fourier transform domain. Since the scattered field for

the region ρ > b must vanish as ρ → ∞ according to the

radiation condition, we find by taking into account the

boundary conditions at the termination the solutions of

(1.4) and (1.5). This leads to a scattered field repre-

sentation in the Fourier transform domain. Using the

boundary conditions for the field components ez(ρ, z),

eϕ(ρ, z) at the cylindrical surfers with ρ = b and the con-

ditions of continuity for the field components hz(ρ, z),

hϕ(ρ, z) with ρ = b and L < z < ∞ in the Fourier

transform domain, we derive the Wiener-Hopf equation

as well as the set of linear algebraic equations of the

second kind after the factorization and decomposition

procedure, which leads to a rigorous solution for arbi-

trary physical parameters. An approximate solution is

further derived for the case where the dominant propa-

gating TE and TM modes consecutively appear in the

circular cavity of large depth.

　

2 Development of the Wiener-Hopf Technique for

Wave Diffraction by a Semi-Infinite Truncated Cone.

Axially symmetric case.

Conical surfaces are important for the study of wide

-band antennas, target identification, waveguide junc-

tions, and material defects. The problem of wave scat-

tering by cones has been studied by means of different

approaches such as asymptotic, numerical, and numeri-

cal-analytical methods. Accounting for the importance

of such structures in the wide range of problems arising

in technical physics as well as for the complexity of the

analysis of the corresponding diffraction processes, this

paper proposes a new rigorous method of solution for

diffraction problems involving canonical, conical struc-

tures.
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Fig.2 Geometry of the problem.

Let us consider the axial symmetric excitation of a

truncated, perfectly conducting semi-infinite cone C =

{c < r < ∞,−π < ϕ < π, θ = γ} by the radial elec-

tric dipole located at the conical axis, where (r, θ, ϕ)

are spherical coordinates (see Fig. 2). The problem is

to determine the unknown scalar TM potential u(r, θ)

satisfying the Helmholtz equation

∆u+ k2u= 0, (2.1)

where k is free-space wavenumber and the boundary

condition in a cone C

Etr(r, θ)
[
≡ 1

r sin θ

∂

∂θ

(
sin θ

∂

∂θ
u(t)

)]
= 0

for θ = γ and c < r < ∞. (2.2)

Here u = u(r, θ) is the diffracted field and u(t) = u(t)

(r, θ) is the total field; the symbol ∆ denotes the Lapla-

cian in spherical coordinates (r, θ, ϕ) for axial symmet-

ric case.

Let the total field u(t)(r, θ) be given by

u(t)(r, θ) =

{
u(i)(r, θ) + u(r, θ) for 0< θ < γ,

u(r, θ) for γ < θ < π,
(2.3)

where u(i)(r, θ) is the incident field excited in semi infi-

nite perfectly conducting circular cone due to the radial

electric dipole, which takes the form

u(i)(r, θ) =
A0

2i
√

srsl

∫
Γ

ν[Pν−1/2(cos γ)Pν−1/2(−cos θ)− Pν−1/2(−cos γ)Pν−1/2(cos θ)]

cosπν Pν−1/2(cos γ)

Kν(sl)Iν(sr)dν (2.4)

with Γ ∈ Π : {|Re ν| < 1/2}, s = −ik and θ < 2γ;

Pν−1/2(·) is the Legendre function of the first kind,

Iν(·), Kν(·) are the modified Bessel function of the first

and second kinds respectively.

Taking the Kantorovich-Lebedev transform of (2.1),

(2.2) and apply the condition of tangensial electric field

component continuety (Etr(r, γ + 0) = Etr(r, γ − 0))

we derive the Kantorovich-Lebedev transform of the

diffracted field as follows

Φ(ν, θ) =

{
E1(ν,γ)

ν2−1/4

Pν−1/2(cos θ)

Pν−1/2(cos γ)
for 0< θ < γ,

E1(ν,γ)

ν2−1/4

Pν−1/2(− cos θ)

Pν−1/2(− cos γ)
for γ < θ < π.

(2.5)

Here

E1(ν, γ) =

∫ c

0

rEr(r, γ)Kν(sr)
dr√
r
. (2.6)

It follows from the boundary condition for tangential

magnetic fields that

H(t)
ϕ (r, γ + 0)− H(t)

ϕ (r, γ − 0)

=

{
0 for 0< r < c,

j1(r) for c < r < ∞.
(2.7)

Taking into account that Hϕ(r, θ) = iωε∂/∂θ{u} and

using the equations (2.5), (2.7) we arrive at the Wiener-

Hopf equation that takes the form

E1(ν, γ)M(ν, γ)− A0

2s
√

l

Kν(sl)

Pν−1/2(cos γ)

= −π sin γ

2iωε
J1(ν, γ). (2.8)

with ν ∈ Π (Π(≡: {|Re ν| < 1/2})), where M(ν, γ) is

the kernel function and

J1(ν, γ)

==

∫ ∞

c

[H(t)
ϕ (r, γ−0)−H(t)

ϕ (r, γ−0)]Kν(sr)
dr√
r
. (2.9)

Let us represent the unknown function E1(ν, γ) as fol-

lows

E1(ν, γ) =
1

2
E+

1 (ν, γ)
(

sc

2

)ν
Γ(−ν)

+
1

2
E−

1 (ν, γ)
(

sc

2

)−ν
Γ(ν), (2.10)

where

E±
1 (ν, γ) = Γ(1± ν)

(
sc

2

)∓ν

∫ c

0

rEr(r, γ)I±ν(sr)
dr√
r
. (2.11)

E±
1 (ν, γ) are an analytic functions at the half planes

Re ν
>−1/2

<1/2 ; E±
1 (ν, γ) = O(ν−1/2) for ν → ∞ at the

half planes of regularity. The kernel function is factor-

ized as M(ν, γ) = M+(ν, γ)M−(ν, γ), where M+(ν, γ) =

M−(−ν, γ) and split functions M±(ν, γ) are regular ad
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Fig.3 Far field pattern for semi-infinite truncated cone:

kc = 24, γ = 89◦: 1 – kl = 0.01; 2 – kl = 5; 3 – kl = 10

Fig.4 Far field pattern: kc = 24, kl = 20, γ = 89◦: 1 –

semi-infinite truncated cone; 2 – semi-infinite cone.

A) b)

Fig.5 Far field pattern: 1 – semi-infinite truncated cone, 2 – semi-infinite cone kc = 24, kl = 23.5; a) γ = 50◦; b) γ = 110◦

nonzero in Re ν
>−1/2

<1/2 , and show the asymptotic behavi-

our M±(ν, γ) = O(ν−1/2) as ν → ∞ with Re ν
>−1/2

<1/2
.

Having used the edge condition, we find that the un-

known functions in (2.9) and (2.11) behave like E+
1 (ν, γ)

= O(ν−1/2) for ν > −1/2, E−
1 (ν, γ) = O(ν−1/2) and

J1(ν, γ)(sc/2)
−νΓ−1(−ν) = O(ν−3/2) for ν < 1/2 as

ν → ∞ and J1(ν, γ) is an entire function. Multiplying

both sides of (2.8) by 2(sc/2)−νM−1
− (ν, γ)Γ−1(−ν) and

applying the decomposition procedure we derive that

E+
1 (α, γ)M+(α, γ)

+
[
E−

1 (α, γ)(sc/2)−2αM+(α, γ)Γ(α)/Γ(−α)
]+

=
A0π

s
√

l

[
(sc/2)−αKα(sl)

M−(α, γ)Pα−1/2(cos γ)Γ(−α)

]+

. (2.12)

Here

[· · ·]+ =− 1

2πi

∫
Γ

[· · ·] dν

ν − α

with Re α > Re ν and ν ∈ Π defines the regular func-

tion in the right half plane Re α > −1/2. This leads

to the exact solution, which involves a numerical solu-

tion of the set of linear algebraic equations of the second

kind. The results are valid for arbitrary physical param-

eters. It is to be noted that for the static case (k → 0),

we obtain the analytical solution explicitly. Based on

the above results, we have carried out numerical com-

putation for various physical parameters. Illustrative

numerical examples presented for the radiation patterns

of amplitudes of the field components Hϕ that show in

the Fig. 3-5 with D(θ) = limr→∞ |rHϕ(r, θ)e−ikr|.

　
Conclusions. An exact solutions of two new problems

we have presented here. The electromagnetic wave ra-

diation from an open end of a circular waveguide cavity

formed by a perfectly conducting cylinder and an in-

ternal plate termination with non zero impedance that

is excited non symmetrically by TM dominant mode is

the first problem that has been solved. This solution has

wide range of application in particular can be used for

design a new approaches as well as a benchmark for the

comparison of approximate technique applied to more

practical problems. This problem has formulated as a

vector diffraction problem for two scalar potentials. The

method of the solution presented here is a generalisation

of the approach we have established previously for the

analysis of the perfectly conducting parallel-plate and

circular waveguide cavities with a planar termination.

The key result is the correct analytical representation of

the unknown scalar potentials in the Fourier transform

domain which shows the TM and TE waves interaction

at the open end and takes into account the impedance
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boundary conditions at the termination. These allow

to recast the vector diffraction problem as a coupled

Wiener-Hopf equations with respect to unknown ana-

lytical functions in an overlap complex half-planes. Fi-

nally, the problem is reduced to infinite system of linear

algebraic equations due to the factorization and decom-

position procedure.

We also considered the mixed value boundary problem

for the Helmholtz equation in a spherical coordinate

system for the conical region which is bounded by the

circular perfectly conducting truncated cone. It is the

second problem that was exactly solved here. For this

purpose a new approach is proposed. The scheme of the

solution includes applying of the Kontorovich-Lebedev

transformation, derivation of the Wiener-Hopf equation

and its reduction to the set of linear algebraic equation

of the second kind. We analyse the Wiener Hopf equa-

tion for the case of an axial symmetric excitation of the

semi infinite truncated cone by the radial electric dipole

(E polarization wave diffraction problem) and the rep-

resentative numerical results for far field pattern is pre-

sented. An exact analysis of this problem by an alter-

native semi-inversion technique was presented recently

by Kuryliak, D., Radiophysics and Radio Astronomy,

vol.4, no.2, pp.121–128, 1999; vol.5, no.3, pp.284–290,

2000.
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