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1 Introduction

Support vector machines combined with kernel tech-

niques are very successful in various applications such

as classification and regression, etc with high capabil-

ity of generalization [1][2]. On the other hand, following

problems can be observed in formulation of such kernel-

based support vector machines. In the first place, it

assumed that the data in the feature space are linearly

separable, which however, can not be tested a priori.

In fact, there are always the possibility for outliers and

current treatments of them such as using soft margin

etc. at their best only to reduce the damage rather

than to solve the problem from the begining.

In the second place, with the fixed kernels or em-

bedding functions from the input space to the feature

space, even when the data are linearly separable in the

feature space, it could and usually need a very high

dimesional feature space, or a large number of such

embedding functions. This causes a huge amount of

computational and memory cost, the major difficulty

in implemtation of support vector machines. Besides,

the kernels in infinite dimensional functional spaces are

usually designed to behave asymptotically optimal but

it seems to be much harder to find the optimal approx-

imation in finite dimension.

In this paper, to overcome the above difficulties, we

show an approach of support vector machines different

from kernel-based techneque. In particular, instead of

using the fixed kernel to determine the embedding func-

tions or feature maps, we train the embedding functions

adaptively in order to achieve linearly separability auto-

matically therefore solve the outlier problem completely.

A nonlinear function is used in these cost functions to

train only mis-classfied data but leave the correctly clas-

sified ones remain intact. Besides, this training could

also make it possible to find optimal embeddings or fea-

ture maps from the input space to a low dimensional

feature space, then reduce implementation cost. Fur-

thermore, to maximize the margin as large as one wishes

by training of the embedding functions.

Starting from observation on the cost funciton pres-

ently for support vector machines, two new cost func-

tions are presented and their properties are discussed.

Then algorithms to train the weight coefficients and

the parameters in the embedding functions are shown.

These algorithms are then applied to support vector

machines with RBF kernels.

2 Observation on cost-function

Let w be the weight vector of the SVM, b the thresh-

old, {xi, di} the pairs of inputs and desired output as

training data, φ(·) the feature maps or embedding func-
tions from the input space to the feature space.

In order to train the embedding functions or the fea-

ture maps from the input space to the feature space, we

first try to use the standard Lagrange multiplier cost

function of SVM, but assume that the embedding func-

tion φ = φθ is parametrized by θ.

L(w, b,α) =
1

2
wTw −

n∑
i=1

αi
(
di(w

Tφθ(xi) + b)− 1
)

but we are going to training the embedding φθ and the

weight w at the same time. The gradients

∂L

∂w
= w −

n∑
i=1

αidiφ(xi)

∂L

∂θ
= −

n∑
i=1

αidiw
∂φ(xi)

∂θ

can be used to training the weights and embedding func-

tions as well. e.g.

θ(n+ 1) = θ(n) + µ

n∑
i=1

αidiw
∂φ(xi)

∂θ

However, a big problem, as in the primal problem of

support vector machine is that the exact values of the
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Lagrange multipliers αi are unknown here so one can

not determine the values of the gradients.

This problem was successfully overcomed by switch-

ing to the dual problem of which the dual cost function

is castedl purely in the multipliers as unknown. Unfor-

tunately this trick does not work for our case since the

dual cost function will, as the primal one, still contain

the parameter θ of embedding functions.

Another problem is that the errors even when

di(w
Tφ(xi) + b) > 1

or the correctly classifield data are taken into it and

also used in training. Although theoretically one can

disgard the data with zero mulpliers and only consider

the support vectors or the data on the support hyper-

plane, the information of multipliers virturally equals

the solution of SVM itself. Thus, in practice one has

to consider the possibility of all data to be support vec-

tors and this cost function simply drive all data onto

the support hyperplanes.

In the following section, we will show new cost func-

tions which overcome these problems

3 New cost functions

We return to the original formulation of SVM:

min f(w) =
1

2
wTw (1)

subject to di(w
Tφ(xi) + b) ≥ 1, i = 1, ..., N (2)

Let b = w0, one may redefine the discrimination func-

tion to absort the threshold b into w, and use the same

w to denote the new weight vector:

w = (b, w1, ..., wM )
T = (w0, w1, ..., wM )

T

and also φ0 = 1 so let y = φ(x) be the embedding

function from input space to feature space.

y = (1,φT (x))T

= (1, φ1(x), ..., φj(x), ..., φM (x)))
T

= (1, y1, ..., yM )
T .

In particular, the embedding functions yj = φj are pa-

rameterized by the parameter vectors θj i.e.

yj(x) = yθj (x)

Let w0 = b, then one has

g(y) = (w1, ..., wM )φ(x) + b (3)

= (b, w1, ..., wM )

(
1
φ

)
=wTy (4)

Denote yi = φ(xi), i = 1, ..., N ,

yi = (φ1(xi), ..., φj(xi), ..., φM (xi))
T

= (y1(xi), ..., yj(xi), ..., yM (xi))
T

The SVM can separate correctly yi = φ(xi) if

dig(yi) = diw
Tyi > 0

However, in order to formulate the maximizing margin

problem as the minimizing weight vector prolem, one

needs to stick with the scaling assumption or use instead

the condition

dig(yi) = diw
Tyi ≥ 1

Even though these two statements above are in fact

equivalent, upto a particular scaling of w, this scaling

here is critical and only the weight vector under this

scaling can be used in the SVM cost function.

The SVM then failed to separate the yi only when

dig(yi) = diw
Tyi < 1.

Define a step function

s(x) =

{
x x ≥ 0
0 x < 0

The recognition error can then be evaluated by the

value of s(1− dig(yi)) for the scaled w.

We will use this latter term in the new cost functions.

Let Θ = (θj , j = 1, ...,M)

J1(w,Θ) =
1

2
wTw +

∑
i

s(1− dig(yi))

=
1

2
wTw +

∑
i,dig(yi)<1

(1− dig(yi))

=
1

2
wTw +

∑
i,diw

T yi<1

(1− diw
Tyi)

This cost function is continuous and smooth (linear)

where the step function s is nonzero. All we need to

calculate is when then step function s to be nonzero.
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One can also define another cost function

J2(w,Θ)=
1

2
wTw +

∑
i

s2(1− dig(yi))

=
1

2
wTw +

∑
i,dig(yi)<1

(1− dig(yi))
2

=
1

2
wTw + (diw

Tφθ(xi))
2
∑

i,diw
T yi<1

(1− diw
Tyi)

2

which is continously differentiable. This is enough to

gradient algorithms. Besides, it has larger penalty for

large recognition error but insensitive to small error.

Another important feature of these cost functions is

that the minimal points of (1),(2) are contained in the

minimal points of J1 and J2. This can be observed

from the fact that on the minimal points of J1 and J2,

the second terms of them are zero, which means the

margins achieved a minimal while all data are correctly

classified. Moreover, they do not drive all data onto the

support hyperplanes.

4 Training feature map of SVM

As we assumed that the embedding function y =

φ(x) is parametrized by parameter vector Θ = (θj , j =

1, ..., M). We will show training algorithms for both w

and θj using the two new cost functions.

4.1 Training using cost function J1

The training algorithm uses the gradient of the cost

function.

∂

∂w
J1(w,Θ)

=
∂

∂w


1

2
wTw +

∑
i,diw

T yi<1

1− diw
Tyi




= wT −
∑

i,diw
T yi<1

diy
T
i

∂

∂θj
J1(w,Θ)

=
∂

∂θj


1

2
wTw +

∑
i,diw

T yi<1

1− diw
Tyi




=

{
−diwj

∂yj(xi)

∂θj
if diw

Tyi < 1

0 if diw
Tyi ≥ 1

4.2 Training using cost function J2

The cost function J2 is a quadratic function of w.

The gradient is

∂

∂w
J2(w,Θ)

=
∂

∂w


1

2
wTw +

∑
i,diw

T yi<1

(1− diw
Tyi)

2




= wT +
∑

i,diw
Tyi<1

−2di(1− diw
Tyi)y

T
i

∂

∂θj
J2(w,Θ)

=
∂

∂θj


1

2
wTw +

∑
i,diw

Tyi<1

(1− diw
Tyi)

2




=

{
−diwj(1− diw

Tyi)
∂yj(xi)

∂θj
if diw

Tyi < 1

0 if diw
Tyi ≥ 1

5 Training RBF SVM

The RBF networks with the most general form as

yi(x) = φ(xi) = exp{−1

2
(x− ci)TΣi(x− ci)}

where the center is ci = xi+ai Even most RBF kernel

SVM did not include ai in the center, Mercer kernel

also, although we do not need it to be a prefixed kernel.

In fact, it is vitally important to include ai in the

centers here since we wish to find optimal embedding

functions which can asign the input xi a new position

by ci = xi+ai in the feature space so that both linearlly

separablity and the maximal margin can be achieved.

In the training algorithm of embedding functions of

RBF networks, the gradients with respect to the center

and the covariance matrix can be obtained as follows.

∂yi
∂ai

= yi(x− ci)TΣi.

Let Σ = (σlk),x = (xl)
T , ci = (cik)

T ,

∂yi(x)

∂σlk
= −yi(x)

2
(xl − cil)

T (xk − cik)

or
∂yi(x)

∂Σ
= −yi(x)

2
(x− ci)T (x− ci)T .

6 Simulation

The proposed algorithm is applied to train the feature

map of a RBF SVM using data of Australian credit card

problem and Heart disease problem. As shown in Fig.

1 a RBF with fixed embedding functions in practice are

rarely able to linearly separate data even in a high- di-

mensional feature space, not mention the maximization

of margin. However, using the proposed algorithm both
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図 1 RBF SVM without and with feature map training

linearly seperatability and margin are improved signifi-

cantly, which mean improvement of recognition rate and

generalization perfermonce.

7 Further extensions

This training strategy of embedding functions of fea-

ture maps can also be applied to support vector ma-

chines with different kernel or even not kernel-based

networks, e.g. single or multilayered percetrons, of mul-

tilayered RBF networks [4] and a more general network

with a new topology called pyramid networks [3].
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